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OVERVIEW                     
We focus on information processing in sensory cortex. 

 

The ͞ĐlassiĐal͟ ǀieǁ of ĐortiĐal proĐessiŶg ;Barloǁ; Huďel aŶd 
Wiesel) was  that 1) information gets compressed as it travels up 

the hierarchy of each sensory modality,  and 2) feedback (a.k.a. 

top-down) signaling is inessential to information processing, this 

despite the then-known anatomical fact that more than half the 

communication links in sensory cortex carry top-down signals.   

 

As neuroscience experimental techniques have become more 

sophisticated over the decades, this classical view has become 

increasingly repudiated. Indeed, even the briefest of sensory 

stimuli now are known to result in extensive neural firing along 

bottom-up, top-down and horizontal cortical pathways.  Barlow 

himself humbly acknowledged this in a paper he wrote in 2001, 

forty years after its more celebrated predecessor, Barlow (1961).  
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WHAT HAS REPLACED THE CLASSICAL VIEW? 

THE ANSWER DEPENDS, OF COURSE, ON TO WHOM YOU ASK THE QUESTION.   

MY ANSWER, SHARED I BELIEVE BY MANY OTHERS, IS  THAT INFORMATION IS 

NEITHER DESTROYED NOR CREATED BETWEEN ONE LEVEL OF CORTEX OR THE 

NEXT.  ‘ATHE‘, IN THE LOWE“T LEVEL“ ;P‘IMA‘Y CO‘TEXͿ, IT I“ ͞‘EA‘‘ANGED͟ 

INTO A FORM THAT IS BEST SUITED NOT ONLY TO INFORMATION PROCESSING IN 

THE GIVEN LEVEL BUT ALSO TO THAT OF THE IMMEDIATELY HIGHER AND THE 

IMMEDIATELY LOWER LEVEL TO WHICH THE GIVEN LEVEL IS HEAVILY TIED. THE 

TOP-DOWN SIGNALS LARGELY (NOT EXCLUSIVELY) SUPPRESS CERTAIN CELLS IN 

THE LEVEL BELOW VIA INHIBITORY CONNECTIONS, AND BOTTOM-UP SIGNALS  

LARGELY (AGAIN, NOT EXCLUSIVELY)  STIMULATE CERTAIN CELLS IN THE LEVEL 

ABOVE VIA EXCITATORY CONNECTIONS. 

 

PART WAY UP, SOME OF THE INFORMATION STARTS GETTING SENT TO OTHER 

SENSORY MODALITIES  (E.G., SOME AUDITORY INFO IS SENT TO THE VISUAL 

SYSTEM HIERARCHY, AND VICE VERSA.)  HOWEVER, THE NET AMOUNT OF INFO 

AT EACH LEVEL OF EACH MODALITY REMAINS MUCH THE SAME.  AT THE 

HIGHEST LEVELS, NEAR THE SENSORY-MOTOR INTERFACE,  INFO ALSO IS 

EXCHANGED WITH MEMORY AT WHICH STAGE THE MATHEMATICAL PURPOSE OF 

THE INFORMATION PROCESSING  BECOMES MORE CONCERNED WITH DECISION 

THEORY (FISHER et al.) THAN WITH INFORMATION THEORY (SHANNON et al.). 
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HOW DOES AN INDIVIDUAL NEURON (IN PRIMARY 

CORTEX) CONTRIBUTE TO THE PROCESSING OF 

INFORMATION DESCRIBED IN THE PREVIOUS SLIDE?  

THIS IS CLEARLY A QUESTION OF GREAT CONCERN TO 

THOSE  AT THIS WORKSHOP.  I WILL ATTEMPT TO 

ANSWER IT, AT LEAST IN PART.  IN SO DOING, I WILL 

DESCRIBE AND ANALYZE GENERALIZED INVERSE 

GAUSSIAN (GIG) NEURON MODELS FROM THE 

VIEWPOINT OF SHANNON THEORY.  THE PRESENTATION 

WILL BE A MIXTURE OF NEUROSCIENCE AND 

INFORMATION THEORY.  PLEASE UNDERSTAND THAT, 

ALTHOUGH I CLAIM TO BE AN INFORMATION THEORIST, 

I DO NOT CLAIM TO BE A NEUROSCIENTIST. 
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Our Performance Criterion: bits/Joule 

 Let a and b denote the times of occurrence of 
two successive spikes generated by a neuron.  
The half-open interval (a,b] is called the 
interspike interval (ISI). We seek to maximize 
the number of Shannon information bits that 
each of the neuron’s targets receives upon 
learning the value of b-a per Joule of energy 
that the neuron expends to process its inputs 
during the ISI, generate the spike at b, and 
propagate that spike to each of its targets. 
 

(Actually, we seek the bit rate at which the targets receive information over a 
long sequence of successive ISIs per Joule expended by the neuron.  This rate 
is less than the single-ISI information per Joule.  The reason for this is that, 
although the eŶergǇ eǆpeŶded is additiǀe oǀer suĐĐessiǀe I“I͛s, the 
iŶforŵatioŶ reĐeiǀed iŶ suĐĐessiǀe I“I͛s is subadditive in general.  In earlier 
work we have shown how to correct analytically for this to first order.) 7 



WHY EMPHASIZE ENERGY? 

8 

Reason 1.  In 2010-11 a team of eminent life science, computer 

science, electrical engineering and mathematics experts generated 

a simulation of 10 million neurons in cat visual cortex that processes 

its input stimuli in real time.  When emailing congratulations to that 

teaŵ͛s leader, Dharmendra Modha of IBM, Chip Levy and I also 

included our estimate that Modha s͛ teaŵ͛s siŵulatioŶ used ϭϬ8 

times more energy per ͚ŶeuroŶ͛ thaŶ does a real Đat to perform  the 

tasks in question.  Dr. Modha s͛ candid reply was, "No, 109!͞  (A 

human brain runs on less energy than does a 40 watt light bulb.) 

 

Reason 2.  Energy constraints are, in a sense, the only constraints 

there are.  For example, when sending a satellite into orbit there 

appear to be volume and weight constraints, but volume and 

weight constraints become inconsequential if you have unlimited 

energy. Sputnik proved it was thrust energy that mattered most. 
 



Energy Costs 
Neuroscientifically speaking, there probably are dozens if 

not hundreds of different kinds of energy expenditures 

that transpire within a neuron during an ISI.  However, it is 

possible (I think it even likely) that there are only a few 

mathematical forms that most of these energy costs 

assume.  In what follows, we assume that the major 

energy-expending costs during an ISI are functions of the 

iŶteŶsitǇ,    , of the ŶeuroŶ s͛ affereŶt eǆĐitatioŶ thereiŶ aŶd 
the duration, t, of the ISI.  (The definition of     will be 

given on a subsequent slide.)  

 

Our candidates for the three main energy costs are listed 

at the top of the next slide. 



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FUNCTIONAL FORMS OF THE THREE 

 MAIN ENERGY TERMS 

The first thing that occurs to one looking at this list is that 

none of the three allegedly main energy terms depends 

oŶ      .  That s͛ right; ŶoŶe of theŵ does!  We shall eŵďark 
oŶ a leŶgthǇ ďut ǁorthǁhile ͞digressioŶ͟ aiŵed at 
explaining why this is the case.  (Note also that all three 

of these allegedly main energy constraints depend on the 

ŶeuroŶ s͛ output variable, t, whereas in man-made 

communication systems the constraints on energy, or 

power, traditionally are imposed on the input.)  



10 

2

1

3

( , ) log(1/ )

( , ) /

( , )

t A t

g t B t

g t

g

Ct











DEFINING THE EXCITATION INTENSITY  

THE SET OF ALL NEURONS WHOSE AXONS CONNECT TO ONE OR MORE SYNAPSES OF A 

GIVEN NEU‘ON I“ CALLED THAT NEU‘ON͛“ AFFERENT COHORT.  A NEU‘ON͛“ 
EXCITATION DERIVES FROM THE SPIKE TRAINS IT RECEIVES FROM THE NEURONS THAT 

COMPRISE ITS AFFERENT COHORT.  ONE MEASURE OF THE EXCITATION INTENSITY IS 

THE TOTAL NUMBER OF SUCH SPIKES THAT ARRIVE PER SECOND.  ANOTHER 

CANDIDATE MEA“U‘E MULTIPLIE“ EACH OF THE AFFE‘ENT “PIKE“ BY THE `WEIGHT͛ OF 
THE SYNAPSE TO WHICH IT ARRIVES, SUMS THESE WEIGHTED ARRIVALS, AND THEN 

DIVIDES BY THE DURATION OF THE INTERVAL DURING WHICH THEY ALL ARRIVED.  

MOREOVER, MOST NEURONS HAVE BOTH EXCITATORY AND INHIBITORY SYNAPSES, SO 

A SUM WITH BOTH POSITIVE AND NEGATIVE ALGEBRAIC SIGNS MAY BE MORE 

APPROPRIATE.  UNFORTUNATELY, HOW NEURONS COMBINE THEIR EXCITATORY AND 

INHIBITORY ARRIVALS REMAINS QUITE MYSTERIOUS DESPITE CONSIDERABLE 

EXPERIMENTAL INVESTIGATION.  ADD TO THIS THE FACT THAT A TYPICAL CORTICAL 

NEURON HAS CIRCA 10,000 SYNAPSES TIGHTLY PACKED in 3-D BOTH ON ITS DENRITE 

T‘EE AND ON IT“ “OMA. FU‘THE‘MO‘E,  IT TU‘N“ OUT TO BE MO‘E ͞NATU‘AL͟  TO 
MEASURE EXCITATION INTENSITY IN SECONDS/SPIKE THAN IN SPIKES/SECOND. 

WHAT SHOULD A THEORIST DO RE ALL THESE COMPLICATIONS? 
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DEFINING THE EXCITATION INTENSITY (Cont.-1)  

OUR APPRROACH (NOT UNIQUE TO US) IS TO DEFINE 

EXCITATION INTENSITY NOT AT THE SPIKE LEVEL BUT AT THE 

ION LEVEL. THE ARRIVAL OF AFFERENT SPIKES GALVANIZES 

MULTIPLE PHENOMENA IN THE SYNAPSES, DENDRITE AND 

SOMA. THESE PHENOMENA RESULT IN BOTH POSITIVELY AND 

NEGATIVELY CHARGED IONS CONTINUALLY BEING DEPOSITED 

ON THE POSTSYNAPTIC MEMBRANE, SOME OF WHICH LATER 

DECAY TO GROUND.  SINCE THE MEMBRANE IS CAPACITATIVE, 

A VOLTAGE CALLED THE POSTSYNAPTIC POTENTIAL (PSP) IS 

PRODUCED THEREON THAT FLUCTUATES IN ACCORDANCE 

WITH THE ION FLUX.  WE ASSUME THAT THE PSP HAS A 

POSITIVE DRIFT RATE DURING EACH ISI.  THUS, IT EVENTUALLY 

REACHES A THRESHOLD,   , WHICH FOR NOW WE CONSIDER 

TO BE A FIXED LEVEL. THIS ENDS THE ISI BY TRIGGERING AN 

EFFERENT SPIKE [a.k.a ACTION POTENTIAL (AP)]THAT TRAVELS 

ALONG THE NEU‘ON͛“ AXON TO ALL IT“ TA‘GET NEU‘ON“. 
 

 


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DEFINING THE EXCITATION INTENSITY (Cont.-2) 

WE CONSIDER THE POSITIVE DRIFT RATE OF ION FLUX OF THE 

P‘EVIOU“ “LIDE TO BE THE NEU‘ON͛“ NET EXCITATION 
INTENSITY.  IF THE NEU‘ON͛“ TARGETS WERE TO KNOW THIS 

EXCITATION INTENSITY a priori, THE NEU‘ON͛“ raison 

d’etra WOULD CEASE TO EXIST; SAID raison d’etra IS TO 

CONTINUALLY REPORT TO ITS TARGETS INFORMATION ABOUT 

ITS AFFERENT EXCITATION INTENSITY. IN ACCORDANCE WITH 

THE ABOVE, THE EXCITATION INTENSITY AT TIME t IS A 

RANDOM VARIABLE WHICH WE SHALL DENOTE BY             

 

THE NEURON REPORTS ONLY AT THE DISTINCT TIME INSTANTS 

AT WHICH IT EMITS A SPIKE.  SINCE ALL ITS SPIKES ARE NEARLY 

IDENTICAL IN SHAPE, THE INFORMATION IN A SPIKE TRAIN 

RESIDES ENTIRELY IN THE RANDOM DURATIONS             THAT 

SEPARATE ITS SUCCCESSIVE SPIKES, i.e., ITS ISI DURATIONS. 

 

( ).t

1 2, ,T T 
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DEFINING THE EXCITATION INTENSITY (Cont. -3) 

SINCE THE  NEURON SENDS ONLY ONE RANDOM VARIABLE PER ISI, IT 

CANNOT SPECIFY THE ENTIRE HISTORY OF           DURING AN ISI.  WE TAKE 

THE VIEWPOINT THAT, FOR THE kth ISI, CALL IT           , THE NEURON USES 

THE  DURATION       OF           TO ENCODE THE TIME AVERAGE OF           OVER 

ALL OF          EXCEPT THE ABSOLUTE REFRACTORY PERIOD THAT OCCUPIES 

THE INITIAL      SECONDS OF EVERY ISI.  WE DENOTE THIS TIME AVERAGE BY 
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THE CONDITIONAL GIG DISTRIBUTION 
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The GIG conditional pdf                    has three parameters,  
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and order    , is strictly positive for positive real arguments.  

·)(K 



15 



16 



• The conditional GIG is in the exponential class, 
using KoopŵaŶ s͛ general definition thereof. 

• Having three parameters is compatible with von 
NeuŵaŶŶ s͛ rule for Ŷot overfitting, namely:  

  ͞With four paraŵeters, I ĐaŶ fit aŶ elephaŶt, aŶd   
ǁith fiǀe I ĐaŶ ŵake hiŵ ǁiggle his truŶk.͟  

• The marginal GIG-    pdf is the conditional GIG-    
with          For         the GIG  reduces to a Gamma 
conditional pdf. 

• I strongly recommend the conditional GIG pdf for 
modeling neurons in primary cortex for reasons to 
be elucidated herein. 

 

SOME FACTS ABOUT CONDITIONAL AND MARGINAL GIG pdf’s 

1.  
0, 

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The GIG Diffusion 

In the late ϭ97Ϭ s͛, O. Barndoff-Nielsen et al. found a positively 

drifting diffusion with infinitesmal increments that first hits a 

fixed threshold at a time that is GIG-distributed.  That generalized 

a 1915 result of Schrodinger showing that a particle released at 

height h undergoing viscous Brownian motion in a gravitational 

field will first hit the ground at a time that today is said to be 

Inverse Gaussian (IG) distributed, i.e.,GIG with             .  For        

the increments in Barndorff-NielseŶ͛s diffusioŶ over disjoint time 

intervals are neither mutually independent nor Gaussian the way 

they are when              , but they remain infinitely divisible.  In 

future work we hope to relate the parameters in Barndorff-

NielseŶ͛s diffusioŶ to properties of real ŶeuroŶs. 
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IT FOLLOWS FROM THE PREVIOUS SLIDE THAT THE CHANNEL 

WITH INPUT                   , ͞NOI“E͟            , AND OUTPUT            
IS AN ADDITIVE INDEPENDENT NOISE CHANNEL, WHICH  

FAMILY OF CHANNELS IS PARTICULARLY AMENABLE TO 

MATHEMATICAL ANALYSIS .  WE SHALL RETURN TO THIS FACT 

AT AN OPPORTUNE TIME.      

log(1/ ) logU logT

AN ADDITIVE INDEPENDENT NOISE CHANNEL 



PERF0RMANCE CRITERION REDUX 

        WE HAVE SAID THAT OUR OBJECTIVE IS TO MAXIMIZE BITS PER JOULE (bpJ).  BUT  

 

WHAT I“ IT WE’RE GOING TO VARY IN ORDER TO ACHIEVE THI“ MAXIMUM?   

 

FOR MORE THAN A DECADE , I HAVE DONE A POOR JOB OF EXPLAINING THIS TO OTHERS.  

FROM THE OUTSET I CONSIDERED THAT THE CHANNEL MODEL, i.e., THE pdf OF T 

CONDITIONAL  ON     , WAS FIXED/GIVEN.  SINCE THE JOINT DISTRIBUTION OF      AND T 

DETERMINES BOTH THE AVERAGE MUTUAL INFORMATION AND THE AVERAGE ENERGY 

EXPENDITURE, THIS LEFT THE MARGINAL DISTRIBUTION OF     AS THE ONLY ENTITY OVER 

WHICH TO PE‘FO‘M THE MAXIMI)ATION, “O THAT͛“ WHAT I DID.  THE T‘OUBLE 
WITH THIS IS THAT THE NEURON HAS ALMOST NO ABILITY, ESPECIALLY IN THE 

SHORT TERM, TO VARY THE     MARGINAL. THE AFFERENT COHORT IS THE OBJECT 

THAT GENERATES THE     - MARGINAL.   






 

OF LATE, IT HAS BECOME CLEAR THAT WHAT REALLY IS GOING ON NEUROSCIENTIFICALLY 

IS A JOINT SOURCE-CHANNEL OPTIMIZATION THAT I ADDRESS IN THE NEXT SLIDE. 



ENERGY-EFFICIENT JOINT SOURCE-

CHANNEL OPTIMIZATION FOR NEURONS 
IF YOU SIMPLY SAY THAT YOU WILL OPTIMIZE OVER THE JOINT 

DISTRIBUTION OF THE SOURCE AND THE CHANNEL, THEN YOU 

HAVE NO MATHMATICALLY USEFUL STRUCTURE; EVERY JOINT 

DISTRIBUTION OVER ANY PRODUCT SPACE IS AT YOUR DISPOSAL. 

I BELIEVE THE CORRECT STRUCTURE FOR THE PROBLEM AT HAND IS AS FOLLOWS:  FIRST, 

FIX THE FAMILY OF CHANNELS (CONDITIONAL DISTRIBUTIONS) YOU ARE GOING TO USE. (FOR 

NEURONS, MY FAVORITE  SUCH CHOICE IS THE FAMILY OF GIG CONDITIONAL MODELS.)  

HOWEVER, DO NOT FIX WHICH CONDITIONAL pdf IN THE FAMILY YOUR ARE CONSIDERING.  

INSTEAD, ASSUME THAT THE NEURON IS ADAPTIVE IN THE SENSE THAT IT CAN VARY ITS 

PARAMETERS, EVEN IF ONLY OVER A LIMITED DYNAMIC  RANGE.  FOR GIG NEURONS, THIS 

MEANS THAT                            CAN BE VARIED BY THE NEURON OVER A 3-D SUBSET.  

ASSOCIATED WITH THIS SUBSET, THERE IS A FAMILY OF     -MARGINALS EACH OF WHICH IS bpJ-

OPTIMIZING FOR ONE SUCH     .  IF THE AFFERENT COHORT IS, OF LATE, GENERATING A      

MARGINAL FOR      WHICH IS NEAR IN DISTRIBUTION TO ONE OF SAID bpJ-OPTIMIZING     - 

MARGINALS, THE NEURON WILL IN REASONABLY SHORT ORDER ADAPT ITS     VALUE THERETO.   

THIS IS WHY FINDING THE bpJ-MAXIMIZING    -MARGINAL FOR EACH     IS SO INTERESTING! 

( , , )   







 
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A SELF-SERVING BRIEF HISTORY OF JOINT SOURCE-CHANNEL MATCHING 

IN A FEBRUARY 1998 INVITED LECTURE DELIVERED AT SALK INSTITUTE, I STATED PUBLICLY 

FOR THE FIRST TIME MY BELIEF THAT MANY BIOLOGICAL SYSTEMS ARE DOUBLY MATCHED 

IN THAT THE “OU‘CE OF THE “Y“TEM͛“ INPUT D‘IVE“ THE “Y“TEM MODEL, O‘ CHANNEL, 
AT A RATE THAT EQUALS ITS (ENERGY-CONSTRAINED) SHANNON CAPACITY, WHILE 

“IMULTANEOU“LY THE CHANNEL͛ “ CONDITIONAL DI“T‘IBUTION OF OUTPUT GIVEN INPUT 
ACHIEVE“ AN OPE‘ATING POINT ON “HANNON͛“ ‘ATE-DISTORTION FUNCTION WITH 

RESPECT TO A FIDELITY CRITERION APROPOS OF THE JOINT (SOURCE,USER) PAIR.  THIS 

MEANS THAT SHANNON-OPTIMAL END-TO-END PERFORMANCE IS OBTAINED SIMPLY BY 

PUTTING THE SOURCE DIRECTLY INTO THE CHANNEL AND THE FEEDING THE CHANNEL 

OUTPUT DIRECTLY TO THE USER. (I LATER DISCOVERED THAT DECADES EARLIER PETER 

ELIAS HAD PUBLISHED AN EXAMPLE OF SUCH A CODING-FREE OPTIMUM SYSTEM IN AN 

OBSCURE NON-BIOLIGICAL CONTEXT).  AT ISIT 2000 IN SORRENTO I DISCUSSED SUCH 

DOUBLE MATCHING AT LENGTH WITH BIXIO RIMOLDI. ON JULY 4  2001 I WAS INVITED BY 

EPFL LAUSANNE, WHERE RIMOLDI HAD RECENTLY JOINED THE FACULTY, TO GIVE A 

PLENARY LECTURE IN WHICH I ALSO TOUCHED ON SUCH DOUBLE MATCHING.  A YEAR 

LATER TO THE DAY, I HAD THE HONOR OF PRESENTING THE SHANNON LECTURE ENTITLED 

͞LIVING INFO‘MATION THEO‘Y͟ AT I“IT ϮϬϬϮ, LAU“ANNE, A PO‘TION OF WHICH WA“ 
DEVOTED TO BIOLOGICAL DOUBLE MATCHING .  I NEVER PUBLISHED ANYTHING ABOUT 

DOUBLE MATCHING.  ‘IMOLDI͛“ “TA‘ “TUDENT, MICHAEL GA“TPA‘, “UB“EQUENTLY 
W‘OTE A THE“I“ ENTITLED ͞To Code or Not To Code͟ THAT EXPANDED DOUBLE 
MATCHING THEORY. ͞To Code or Not To Code͟ ALSO WAS PUBLISHED AS A PAPER IN IEEE 

TRANSACTIONS ON INFORMATION THEORY WITH CO-AUTHORS RIMOLDI AND VETTERLI. 



WHY DON’T THE  ENERGY 
CONSTRAINTS  DEPEND ON     ?      
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
WE ARE NOW IN A POSITION TO ADDRESS THIS INTERESTING QUESTION.  

MANY NEUROSCIENTISTS WOULD CORRECTLY STATE THAT THE AMOUNT OF 

SIGNAL PROCESSING (ION MOVING) THAT THE NEURON PERFORMS DURING 

AN ISI IS PROPORTIONAL TO THE PRODUCT OF                  , WHICH CERTAINLY 

SUGGESTS THE NEED FOR AN ENERGY TERM PROPORTIONAL TO       .  WE 

HAVE JUST EXPLICATED WHY OUR PROBLEM IS TO MAXIMIZE bpJ  BY 

VA‘YING THE       MA‘GINAL.  WE DON͛T CON“T‘AIN THE ENE‘GY IN EACH 
ISI, THOUGH.  WE CONSTRAIN THE AVERAGE ENERGY EXPENDED IN AN ISI. 

THAT IS, bpJ IS A RATIO OF TWO AVERAGES, AN AVERAGE MUTUAL 

INFORMATION AND AN AVERAGE ENERGY. ON THE NEXT SLIDE WE WILL 

SHOW THAT FOR A GIG NEURON, AMONG OTHERS, ANY FUNCTION OF                   

THAT IS EXPRESSIBLE AS A FUNCTION SOLELY OF         HAS AN EXPECTED 

VALUE THAT DOES NOT DEPEND ON HOW THE       MARGINAL IS CHOSEN.  

THEREFORE, IT IS NOT NECESSARY TO INCLUDE ANY ENERGY TERM THAT IS A 

FUNCTION SOLELY OF THE        PRODUCT IN THE SOLUTION PROCEDURE. 

SUCH TERMS HAVE AN EFFECT ON THE TOTAL ENERGY EXPENDED BUT NOT 

ON THE bpJ MAXIMIZING       MARGINAL.  

 and T
T

 

 and T
T


T





PROOF THAT, FOR A GIG NEURON 

MODEL,  E[g;   TͿ] DOE“N͛T DEPEND 
ON THE    -MARGINAL 
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THE INNER INTEGRAL IS SEEN TO BE A CONSTANT, CALL IT C.  IT FOLLOWS 

THAT THE ANSWER IS C REGARDLESS OF THE FORM OF THE CHOICE OF THE  

     - MARGINAL   ·).(   QEDF



OTHER FUNCTION“ THAT CAN’T BE ENERGY FUNCTION“ 

NO ENERGY FUNCTION CAN DEPEND SOLELY ON     AND NOT AT ALL ON T. 

THAT͛“ BECAU“E     I“ GENE‘ATED ENTI‘ELY BY THE NEU‘ON͛“ AFFE‘ENT 
COHORT, NOT THE NEURON ITSELF.  THEREFORE, THE MEMBERS OF THE 

AFFERENT COHORT GET CHARGED FOR THE ENERGY THEY EXPEND IN 

GENERATING     .  TO CHARGE IT AGAIN TO OUR NEURON CONSTITUTES 

FAULTY ACCOUNTING.  THE FIXED COSTS PER ISI, SUCH AS THAT FOR 

PROPAGATING THE AP GENERATED AT THE END OF THE ISI TO ALL THE 

TARGETS, ALSO ARE NOT OF INTEREST TO bpJ MAXIMIZATION, SINCE A 

CONSTANT, C, ALSO IS A FUNCTION OF       , NAMELY C  





T 0·( ) .T
THIS LEAVES AS THE ONLY REMAINING POSSIBILITY FUNCTIONS THAT 

INVOLVE BOTH                    IN A WAY THAT DOES NOT REDUCE TO A 

FUNCTION SOLELY OF THEIR PRODUCT. SUCH FUNCTIONS SEEM 

RATHER FAR-FETCHED, SO I  WON͛T THINK ABOUT THEM UNLE““ 
AND UNTIL SOME ONE FINDS ONE THAT IS SHOWN TO HAVE 

NEUROSCIENTIFIC SIGNIFICANCE IN THE ENERGY SENSE.      

 THU“, I’M “TICKING TO MY CLAIM THAT THE ONLY ENERGY 
     TERMS THAT MATTER ARE FUNCTIONS OF T ONLY. 

 AND T



A MATHEMATICAL PROCEDURE FOR 

DETERMING THE bpJ-MAXIMIZING  
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
), log ,  AND 

WE NOTED EA

log ,  CONSTITUTES

 AN ADDITIVE INDEPENDENT NOIS

RLIER THAT, ,  WHERE

log (1

E CHA L.

/

NNE

Y U Z

Z X Y

X T 






IT FOLLOWS THAT THE CHARACTERISTIC FUNCTION OF 

IS THE PRODUCT OF THE CHARACTERISTIC FUNCTION OF  

AND THAT OF . IN SYMBOLS,

Z

X

Y ( ) ( )· ( )
Z X Y

v v v  
( ) ( ) / ( ).THEREFORE, 

X Z Y
v v v  

log  AND WE KNOW THAT ~  GIG( ),

AT LEAST IN THEORY WE KNOW HOW TO F

SINC

IND ( ).

E 

Y

U U

v

Y 



( ) IS.  BUT, IT TURNS 

OUT THAT IN THE CASE OF INTEREST TO US, NAMELY THAT IN

WHICH  IS bpJ-MAXIMIZING, WE CAN FIND ( )! (SEE NEXT

WE DON'T KNOW IN GENERAL 

 SLIDE)

THAT MEANS WE CAN FIND ( )

WHAT 
Z

Z

X

v

v

v




 log(1/ ) log(1/ ) 1/( ),  THEN (·),  THEN ( ·).v f f   
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(·) WHEN bpJ IS FIN MAXDI IN E DG MIZ
T

f

GALLAGER'S TEXT CONTAINS THE EQUATIONS ONE MUST SOLVE 

TO FIND THE INPUT DISTRIBUTION THAT ACHIEVES A CHANNEL'S 

CAPACITY.  THESE HAVE BEEN EXTENDED BY JIMBO-KUNISAWA 

AND OTHERS TO TIME AND AMPLITUDE CONTINOUS SIGNALS AND

 TO CONSTRAINTS ON THE  INPUT AND/OR OUTPUT.

 FOR OUR bpJ MAXIMIZATION PROBLEM, ONE OBTAINS

THE FOLLOWING PAIR OF INTEGRAL EQUATIONS:

|

|
0

|
0

( |
 ( |

                               

)
)[log( ) log(1/ ) / ] 0 for all 0   (1)

( )

( ) ) ( | )                             (           (2)

T

T

T

T T

f t
dt f t

f

f

A

d

t B t Ct
t

t f f t

 
  

 



 

    





Equation (1) above is the one that results from the energy-constrained

version of the Jimbo-Kunisawa extension of Gallager's result.  Note that (1)

does not even explicitly involve the unknown ( ).  Tf  hat's why equation (2)

is needed as well.  The procedure is first to solve (1) for the ( ) that the 

optimizing ( ) generates, then to solve (2) for ( ) itself.

T
f t

f f  



SOLVING EQUATION (1): 
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IN THE SPECIAL CASE OF A GAMMA CHANNEL MODEL OBTAINED FROM 

THE GIG MODEL BY SETTING              IT IS STRAIGHTFORWARD TO SOLVE  

Eq. (1) USING LAPLACE TRANSFORMS, AMONG OTHER METHODS.  

0, 

( ) also is Gamma-distributed, but with different

parameters than  and  of the co

The result is th

nditional pdf wit

at 

h 1.

T
f t

   
LAPLACE TRANSFORMS ARE UNABLE TO SOLVE Eq. (1) IN THE GENERAL GIG CASE, 

BUT THE ABOVE RESULT IN THE G

FOR SOM

AMMA SUBCA

E  

SE SUGGEST

,

ED THE CONJECTURE

THAT,  ( ) IS GIG ( ( , , )) FOR A GIG ( (
T

a f t a a b c     , , )) CONDITIONAL.    
SUBSTITUTING THIS CONJECTURE INTO Eq. (1) PRODUCES TERMS ON THE LHS EACH

OF WHICH IS PROPORTIONAL EITH ,1/ ,  or log .  UPON GROUPING TERMS OF

OF THESE THREE TYPES, IT IS POSSIBLE TO ZERO T

ER TO

HE N T C

 

E

  
OEFFICIENTS OF EACH

GROUP BY SETTING , ,  and ,  THEREBY "VALIDATING" THE CONJECTURE. a A b B c C  

.  THIS IS NOT REALLY THE CASE, THOUGH.  WE KNOW FROM

THE GAMMA SUBCASE THAT THE

I PUT "VALIDATING" IN QUOTES BECAUSE THE ZEROING CHOICES (a,b,c) = (A,B,C) SEEM TO HOLD 

 OF THE VALUE O

R

F 

E

INDEPENDENTLY 
 IS ALSO THE REQUIREMENT THAT 0 .  THAT CONDITION, 

AND PERHAPS ANOTHER WE'RE UNSURE OF AT PRESENT, ARE REQUIRED FOR THE GENERAL GIG.

a  



HYPERGEOMETRIC FUNCTIONS AND 

BARNES INTEGRALS 

30 

WHEN WE FOLLOW THROUGH THE PROCEDURE FOR FINDING           FOR THE GAMMA 

SUBCASE, WE OBTAIN FOR THE CHARACTERISTIC FUNCTION OF          AN INTEGRAL 

REPRESENTATION OF A CONFLUENT HYPERGEOMETRIC  FUNCTION                     WITH 

PURELY IMAGINARY, WHICH REPRESENTATION IS CALLED A BARNES INTEGRAL (1908).  

THE‘E I“ ANOTHE‘ INTEG‘AL ‘EP‘E“ENTATION FO‘                      THAT͛“ INTE‘P‘ETABLE 
AS THE CHARACTERISTIC FUNCTION OF A BETA DISTRIBUTION.  IT FOLLOWS THAT THE 

bpJ-MAXIMIZING             IS A SCALED BETA DISTRIBUTION, THE SCALE FACTOR BEING             

( )
T

f t

1/ 
1 1( , ; )F g h z z

1 1( , ; )F g h jv

1/ ( )f  .
c



THERE IS A SIMPLER WAY TO SHOW IN THE GAMMA SUBCASE THAT              IS A BETA 

DISTRIBUTION, NAMELY VIA LAPLACE TRANSFORMS (Berger-Levy, 2010).  NONETHELESS, 

THE ABOVE IS QUITE INTRIGUING BECAUSE 1) LAPLACE TRANSFORMS DO NOT WORK 

FOR GENERAL GIG, AND 2) THERE IS ALSO A BARNES INTEGRAL REPRESENTATION OF THE 

HYPERGEOMETRIC FUNCTION                       .  WE ARE INVESTIGATING IF THIS CAN LEAD 

TO AN ͞EXPLICIT͟ AN“WE‘ FO‘                                                  FOR THE GENERAL GIG CASE.   
2 1( , , ; )F g h l z

1/ 1/( ) and thus (·) and (·)v f f   

WE REMARK THAT BARNES INTEGRALS ARE BEING EMPLOYED IN BRANCHES OF 

MODERN PHYSICS, INCLUDING GAUGE THEORY AND STRING THEORY. 

1/ ( )f 



PROFFERED NEUROSCIENTIFIC 

EXPLANATION OF B/T ENERGY TERM 
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DURING THE ABSOLUTE REFRACTORY PERIOD (ARP) IMMEDIATELY FOLLOWING THE 

TRIGGERING OF A SPIKE, THE NEURON CANNOT FIRE ANOTHER SPIKE REGARDLESS 

OF HOW STRONG ITS AFFERENT EXCITATION MAY BE.  WE HAVE DENOTED THE 

DURATION OF THE ARP BY    .   

 

NEUROSCIENTISTS CAN EXPERIMENTALLY INDUCE/EVOKE AN EFFERENT ACTION 

POTENTIAL (AP) SHORTLY AFTER           , IN THE SO-CALLED RELATIVE REFRACTORY 

PE‘IOD ;‘‘PͿ, BY DI‘ECTLY IN“E‘TING ELECT‘ONIC “TIMULATION INTO THE AXON͛“ 
INITIAL “EGMENT WHE‘E AP s͛ A‘E GENE‘ATED.  THE “T‘ONGE‘ THE“E “IGNAL“ 
ARE, THE SOONER AFTER            IT IS THAT THE NEURON FIRES.  HOWEVER, IT TAKES 

LARGER AND LARGER INPUT ENERGY TO GET CLOSER AND CLOSER TO           .   

 

IN ‘E“ON“E TO AFFE‘ENT AP s͛, NEU‘ON“ GENE‘ATE EXCITATO‘Y PO“T“YNAPTIC 
POTENTIAL“ ;EP“P s͛ͿWHO“E DU‘ATION“ A‘E “OME Ϯ ms LONG.  AT ITS SYNAPSES A 

NEURON HAS NO WAY OF KNOWING WHETHER THE NEXT SPIKE WILL BE 

GENE‘ATED DU‘ING THE ‘‘P O‘ WELL AFTE‘ THE END OF THE ‘‘P, “O EP“P s͛ 
HAVE THE SAME DURATION IN EITHER CASE. 



t  

t  t  



PROFFERED EXPLANTION OF THE  

B/T ENERGY TERM (Cont.) 
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THE ONLY EP“P s͛ THAT CAN CONT‘IBUTE TO AN AP GENE‘ATED AT                    MU“T 
ARRIVE AT THE AXON HILLOCK AFTER              AND BEFORE                   , WHERE      

DENOTES THE DURATION OF AN EPSP.  SINCE THE PSP CANNOT LEAVE ITS RESET 

VALUE UNTIL THE ARP IS OVER, AT MOST A FRACTION           OF ANY PSP CAN 

CONTRIBUTE TO A SPIKE GENERATED AT                    .  . THE UPSHOT OF THIS IS THAT, 

IF                    , IT TAKES                        TIMES AS MUCH ENERGY , MUCH OF WHICH IS 

WASTED,* TO PRODUCE A SPIKE AT             AS IT DOES TO PRODUCE ONE AT ANY 

TIME GREATER THAN         

SAYING THE SAME THING SLIGHTLY DIFFERENTLY, IF THE ACTIVE PROCESSING TIME  

                 IS LESS THAN      , IT TAKES            TIMES AS MUCH ENERGY TO SPIKE AT  

AS IT DOES TO SPIKE AT ANY TIME GREATER THAN    .   

THIS EXPLAINS THE PRESENCE OF AN ENERGY TERM THAT VARIES INVERSELY WITH 

THE ACTIVE PROCESSING TIME IN AN ISI.  IN PRACTICE, THIS TERM BECOMES 

NEGLIGIBLE ONCE THE ACTIVE PROCESSING TIME EXCEEDS     ; IN OTHER WORDS, 

THE RRP IS APPROXIMATELY     SECONDS LONG. 

 

* IT͛“ QUITE PO““IBLE THE NEU‘ON FIND“ “OME WAY TO ‘ECOVE‘ A GOODLY 
FRACTION OF THIS ENERGY IN SOME MANNER AKIN TO REGENERATIVE BRAKING, 

BUT EVEN IF 90% IS RECOVERED, THE OTHER 10% STILL IS PRORTIONAL TO          . 

 

 

t   ò  t  ò
t  ò /ò

T   / ( )T 
T 

. 
* :T T   */ T *

T




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    HOW NEURONS LEARNED HOW TO DO IT ALL !! 



THE END 
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