Physiol. Res.  52: 657-679, 2003


Pathophysiological and Clinical Importance of Insulin-Like Growth Factor-I with Respect to Bone Metabolism       


Institute of Endocrinology, Prague, Czech Republic

Received March 25, 2002
Accepted January 10, 2003

The modern concept of causality of diseases emphasizes the study of natural defense functions of the organism and possibilities of influencing them, which will lead to effective prevention of these diseases. A great deal of information has been obtained on the system growth hormone (GH)/insulin-like growth factor (IGF)-I, which is of quite fundamental importance for the integrity of the organism. A dysbalance of the system may be the cause of diseases of the neonatal period, as well as diseases associated with aging. In old age, the synthesis of the crucial peptide system, IGF-I, declines as well as the sensitivity of tissues to this hormone. At the same time the changes in the expression of IGF-binding proteins (IGFBP) occur. Systemic growth factors are present in measurable concentrations in the circulation, they are, however, taken up or synthesized by some tissues, where they act as local cellular regulators. IGF-I is produced by many tissues, including bones under the control of estrogens, growth hormone and the parathyroid hormone. A decline of bone IGF-I in the cortical portion of bones is one of the many mechanisms leading to the development of involutional osteoporosis. Correlation studies, which have provided evidence of a relationship between the IGF system and the building of peak bone mass and its subsequent loss contributed to the understanding of the pathogenesis of this disease. It may be foreseen that the results of intervention studies focused on the effects of the recombinant IGF-I will also influence therapeutic and preventive approaches. Modern antiresorption pharmacotherapy stabilizes or enhances bone density and reduces the risk of fractures. The addition of effective anabolics might increase the effectiveness of treatment by shifting the remodeling equilibrium in favor of formative processes. Because both recombinant GH and IGF-I have certain therapeutic limitations, it is considered to utilize substances which either stimulate endogenous IGF-I production directly in the bone or modulate synthesis and distribution of binding proteins for the peptide. Further new findings related to physiology and pathophysiology of this peptide will contribute to designing new strategies in the prevention of osteoporosis and other serious diseases of old age, such as diabetes, neoplasias or cardiovascular diseases.

Key words
Insulin-like growth factor-I • Growth • Development • Metabolism • Bone mineral density

© 2003 by the Institute of Physiology, Czech Academy of Sciences