REVIEW

The Involvement of Protein Kinases in the Cardioprotective Effect of Chronic Hypoxia

Natalia V. NARYZHNAYA¹, Hui-Jie MA², Leonid N. MASLOV¹

¹Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia, ²Hebei Medical University, Shijiazhuang, Hebei Province, P.R. China

Received January 21, 2020
Accepted September 29, 2020
Epub Ahead of Print November 2, 2020

Summary
The purpose of this review is to analyze the involvement of protein kinases in the cardioprotective mechanism induced by chronic hypoxia. It has been reported that chronic intermittent hypoxia contributes to increased expression of the following kinases in the myocardium: PKCδ, PKCα, p-PKCε, p-PKCα, AMPK, p-AMPK, CaMKII, p-ERK1/2, p-Akt, PI3-kinase, p-p38, HK-1, and HK-2; whereas, chronic normobaric hypoxia promotes increased expression of the following kinases in the myocardium: PKCε, PKCβII, PKCη, CaMKII, p-ERK1/2, p-Akt, p-p38, HK-1, and HK-2. However, CNH does not promote enhanced expression of the AMPK and JNK kinases. Adaptation to hypoxia enhances HK-2 association with mitochondria and causes translocation of PKCδ, PKCβII, and PKCη to the mitochondria. It has been shown that PKCδ, PKCε, ERK1/2, and MEK1/2 are involved in the cardioprotective effect of chronic hypoxia. The role of other kinases in the cardioprotective effect of adaptation to hypoxia requires further research.

Key words
Heart • Adaptation • Chronic hypoxia • Ischemia/reperfusion • Kinases

Introduction

It is well known that adaptation to hypoxia increases resistance of the heart to ischemia/reperfusion (I/R) (Meerson et al. 1989, Kolar and Ostádal 2004, Gu et al. 2018, Tsibulnikov et al. 2018, Naryzhnaya et al. 2019, Prokudina et al. 2019). A cardioprotective effect has been observed in various models of chronic hypoxia. The most studied cardioprotective model has been that of intermittent hypobaric hypoxia (IHH), which partially mimics high altitude hypoxia and continuous normobaric hypoxia (CNH), and there are many variations of this model; for example, IHH is modeled at altitudes of 5000 m (Li et al. 2016, Gu et al. 2018), 5500 m (Morel et al. 2003), 7000 m (Neckar et al. 2005, Hlaváčková et al. 2010), and even 7620 m (Nehra et al. 2016), while normobaric hypoxia is modeled for O₂ contents of 8 % (Viganò et al. 2011), 10 % (Rafiee et al. 2002, Kolar et al. 2017, Zhao et al. 2008), and 12 % (Tsibulnikov et al. 2018, Naryzhnaya et al. 2016, Prokudina et al. 2019), with and without reoxygenation periods.

The study of the mechanisms of cardioprotection that occur during chronic hypoxia, particularly the intracellular kinase mechanisms, has attracted the attention of numerous researchers. It has been established that kinases play an important role in regulating cardiac tolerance to I/R (Heusch 2015, Yellon and Downey 2003). The activation of some kinases increases the resistance of the heart to I/R (Heusch 2015, Yellon and Downey 2003) while other kinases, in contrast, are involved in I/R heart damage (Milano et al. 2007, Ling...
et al. 2013). The kinase mechanism of protective action has been studied extensively in various pre- and post-conditioning models (Heusch 2015). However, it is reasonable to believe that this mechanism is significantly different in chronic hypoxia, compared to that in the conditioning models. The expression and activity of many kinases in the myocardium are altered after various hypoxic effects (Table 1). This review analyzes published data on the role of kinases in implementing the infarction-limiting effect of adaptation to hypoxia.

Table 1. The effect of chronic hypoxia on the expression of protein kinases in the myocardium

<table>
<thead>
<tr>
<th>The name of the kinases</th>
<th>Localization</th>
<th>Hypoxia model</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCε↑, PKCδ↑</td>
<td>RV</td>
<td>IHH (5500 m, 23 h/day, 2 weeks)</td>
<td>Morel et al. 2003</td>
</tr>
<tr>
<td>PKCδ↑</td>
<td>LV</td>
<td>IHH (7000 m, 8 h/day, 5 days/week, 24–32 exposure)</td>
<td>Neckar et al. 2005</td>
</tr>
<tr>
<td>p-PKCε↑</td>
<td>LV</td>
<td>IHH (7000 m, 8 h/day, 5 days/week, 24–32 exposure)</td>
<td>Hlavackova et al. 2007</td>
</tr>
<tr>
<td>PKCa, p-PKCa↑</td>
<td>LV</td>
<td>IHH (7000 m, 8 h/day, 5 weeks)</td>
<td>Micova et al. 2016</td>
</tr>
<tr>
<td>PKCe↑</td>
<td>LV</td>
<td>LV IHH (SaO2 85%, 10-days, infant rabbit)</td>
<td>Rafiee et al. 2002</td>
</tr>
<tr>
<td>PKCe↑</td>
<td>LV</td>
<td>CNH (10% O2, 21 days)</td>
<td>Holzerova et al. 2015</td>
</tr>
<tr>
<td>AMPK↑, p-AMPK↑</td>
<td>Total</td>
<td>IHH (5000 m, 6 h/day 28 days)</td>
<td>Li et al. 2016</td>
</tr>
<tr>
<td>p-AMPK↓</td>
<td>LV</td>
<td>CNH (8% O2, 120 s) : (21%, 300 s.) cycles, 8 h/day, 7 days/week, 10 weeks</td>
<td>Xie et al. 2016</td>
</tr>
<tr>
<td>AMPK no effect</td>
<td>Total</td>
<td>CNH (18% O2, 24 h)</td>
<td>Mohammed Abdul et al. 2015</td>
</tr>
<tr>
<td>p-AMPK↑</td>
<td>Total</td>
<td>CNH (48 h at 8% O2)</td>
<td>Viganò et al. 2011</td>
</tr>
<tr>
<td>p-AMPK no effect</td>
<td>LV</td>
<td>CNH (10 days at 8% O2)</td>
<td></td>
</tr>
<tr>
<td>p-AMPK↓</td>
<td>RV</td>
<td>Cyanotic heart disease</td>
<td>Zhang et al. 2018</td>
</tr>
<tr>
<td>CaMKIIγ↑, CaMKIIδ↑</td>
<td>Total</td>
<td>CNH (10% O2, 3 weeks)</td>
<td>Zhao et al. 2008</td>
</tr>
<tr>
<td>CaMKII↑</td>
<td>LV</td>
<td>IHH (7620 m, 21 days)</td>
<td>Nehra et al. 2016</td>
</tr>
<tr>
<td>ERK2↑</td>
<td>RV</td>
<td>IHH (7000 m, 8 h/day, 25 exposures)</td>
<td>Strnisková et al. 2006</td>
</tr>
<tr>
<td>p-ERK2 no effect</td>
<td>RV, LV</td>
<td>IHH (7000 m, 8 h/day, 5 weeks)</td>
<td>Micova et al. 2016</td>
</tr>
<tr>
<td>p-ERK1/2↑</td>
<td>LV</td>
<td>IHH (7000 m, 8 h/day, 5 weeks)</td>
<td>Milano et al. 2010</td>
</tr>
<tr>
<td>p-ERK1/2↑ to CNH</td>
<td>LV</td>
<td>IHH (7000 m, 8 h/day, 25 exposures)</td>
<td>Zhang et al. 2018b</td>
</tr>
<tr>
<td>p-Akt↑</td>
<td>Atriums</td>
<td>IHH (7000 m, 8 h/day, 25 exposures)</td>
<td>Strnisková et al. 2006</td>
</tr>
<tr>
<td>p-Akt↑ to CNH</td>
<td>LV</td>
<td>IHH (7000 m, 8 h/day, 25 exposures)</td>
<td>Milano et al. 2010</td>
</tr>
<tr>
<td>p-Akt↑</td>
<td>LV</td>
<td>CNH (10% O2, 21 days)</td>
<td>Kolar et al. 2017</td>
</tr>
<tr>
<td>PI3K↑</td>
<td>Total</td>
<td>IHH (4 daily cycles, each composed of 2-min at 6-8% O2 followed by 3-min reoxygenation for 5 times, for 14 days)</td>
<td>Milano et al. 2013</td>
</tr>
<tr>
<td>PI3K↓, p-Akt↓</td>
<td>RV</td>
<td>CNH (8% O2, 6 h/day, 30 days)</td>
<td>Zhang et al. 2018b</td>
</tr>
<tr>
<td>PKA no effect</td>
<td>Total</td>
<td>CNH (10% O2, 14 days)</td>
<td>Larsen et al. 2008</td>
</tr>
<tr>
<td>PKA↑</td>
<td>LV</td>
<td>IHH (7000 m, 8 h/day, 35 exposures)</td>
<td>Kohutova et al. 2019</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>The name of the kinases</th>
<th>Localization</th>
<th>Hypoxia model</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>p38 no effect</td>
<td>RV, LV</td>
<td>IHH (7000 m, 8 h/day, 35 exposures)</td>
<td>Strnisková et al. 2006</td>
</tr>
<tr>
<td>p-p38 ↓</td>
<td>RV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-p38 ↑</td>
<td>LV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-p38 ↑</td>
<td>LV</td>
<td>IHH (7000 m, 8 h/day, 5 weeks)</td>
<td>Micova et al. 2016</td>
</tr>
<tr>
<td>p-p38↑</td>
<td>LV</td>
<td>CNH (10 % O₂, 2 weeks)</td>
<td>Morel et al. 2006, Milano et al. 2010</td>
</tr>
<tr>
<td>p-p38 ↑</td>
<td>RV</td>
<td>CNH, cyanotic heart defects</td>
<td>Quing et al. 2007</td>
</tr>
<tr>
<td>p-JNK no effect</td>
<td>LV</td>
<td>CNH (10 % O₂, 2 weeks)</td>
<td>Morel et al. 2006</td>
</tr>
<tr>
<td>JNK particular fraction ↓</td>
<td>LV</td>
<td>IHH (7000 m, 8 h/day, 25 exposures)</td>
<td>Strnisková et al. 2006</td>
</tr>
<tr>
<td>JNK particular fraction ↑</td>
<td>RV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-JNK ↑</td>
<td>H₂C₂ cells</td>
<td>Acute hypoxia (1 % O₂, 12-72 h)</td>
<td>He et al. 2016</td>
</tr>
<tr>
<td>p-JNK/JNK ↑</td>
<td>Total</td>
<td>INH (9 % O₂, 20 times/h for 8 h/day, 35 days)</td>
<td>Zhao et al. 2019</td>
</tr>
<tr>
<td>PKG</td>
<td>LV</td>
<td>IHH (7000m, 8 h/day, 35 exposures)</td>
<td>Kohutova et al. 2019</td>
</tr>
<tr>
<td>HK-1 ↑, HK-2 ↑</td>
<td>LV</td>
<td>IHH (7000 m, 8 h/day, 5 weeks)</td>
<td>Waskova-Arnostova et al. 2015</td>
</tr>
<tr>
<td>HK-1 ↑, HK-2 ↑</td>
<td>LV</td>
<td>CNH (10 % O₂, 3 weeks)</td>
<td>Kolar et al. 2017</td>
</tr>
<tr>
<td>HK-2 ↑</td>
<td>LV</td>
<td>CNH (10 % O₂, 3 weeks)</td>
<td>Nedvedova et al. 2018</td>
</tr>
</tbody>
</table>

Protein kinase C

Protein kinase C, commonly abbreviated as PKC (EC 2.7.11.13), is a family of protein kinase enzymes involved in controlling the function of several other proteins by phosphorylating the hydroxyl groups of the serine and threonine amino acid residues in them. PKC enzymes, in turn, are activated by signals such as increases in the concentration of diacylglycerol (DAG) or calcium ions (Ca²⁺) (Endoh 1995). Hence, PKC enzymes play important roles in several signal transduction cascades, including the protective cascade of different types of conditioning (Okubo et al. 2003, Gao et al. 2013).

Intermittent hypoxia

In adult rats that were exposed to IHH, 23 h/day at a 5500 m simulated altitude with 1 h reoxygenation for 2 weeks, there was an increase in PKCα and PKCε levels in the right myocardial ventricle (Morel et al. 2003). It has been found that the PKCδ protein level in the left ventricle of chronically hypoxic rats is elevated in more severe IHH (8h/day at a 7000 m simulated altitude, 5 days/week, 24–32 exposure, Neckar et al. 2005, Hlaváčková et al. 2010). In a study by Neckar, it was established that the infarction-reducing effect of IHH does not appear after PKC inhibition with chelerythrine and the selective PKCδ blocker rottlerin reduced, but did not eliminate, the infarction-limiting effect of IHH (Neckar et al. 2005). In a later study, it was found that the PKCδ level in the particulate fraction of the left ventricle negatively correlates with infarct size after adaptation to intermittent hypoxia under the same conditions (Hlavackova et al. 2007). At the same time, there is evidence that an increase in PKCδ activity could be the result of the oxidative stress observed after exposure to IHH. Thus, it has been found that daily administration of the antioxidant N-acetylcysteine to rats eliminates the infarction-reducing effect of IHH and eliminates translocation of PKCδ to the particulate fraction (Kolar et al. 2007).

It has been found that IHH (8 h/day, 5 weeks at a 7000 m simulated altitude) contributes to an increase in PKCα expression and phosphorylation (activation) p-PKCα
AMPK kinase

AMPK or 5′ adenosine monophosphate-activated protein kinase is the enzyme (EC 2.7.11.31), which plays a role in cellular energy homeostasis, largely to activate glucose and fatty acid uptake and oxidation when cellular energy is low. It is involved in the cardioprotective effects of preconditioning (Khalilin et al. 2007) and postconditioning (Hermann et al. 2012).

Intermittent hypoxia

It has been shown that IHH (5,000m for 28 days, 6 h/day) contributed to an increase in the p-AMPK level in the left myocardial ventricle (Li et al. 2016) and in isolated left ventricular cardiomyocytes (Gu et al. 2018).

However, it has been demonstrated a decrease in the p-AMPK level in the myocardium of rats subjected to severe intermittent normobaric hypoxia (INH, 8 % O2, 120 s : 21 %, 300 s. cycles, 8 h/day, 7 days/week, 10 weeks) (Xie et al. 2016).

Continuous hypoxia

Short-term moderate CNH (24h, 18 % O2) does not induce a change in AMPK content in myocardial tissue (Mohammed Abdul et al. 2015). Moreover, the authors report on the infarction-limiting effect of this regimen of adaptation to hypoxia. Acute normobaric hypoxia lasting 48 h at 8 % O2 in mice causes an increase in the p-AMPK (activated AMPK) level, but chronic continuous hypoxia - 10 days at 8 % O2 - does not cause such significant changes (Viganò et al. 2011). Chronic continuous hypoxia (10 % O2 21 days) causes a decrease in the p-AMPK level in the rat left ventricle during ischemia, but there are no differences after the reperfusion phase (Kolar et al. 2017). Contrary in the myocardium of patients with congenital heart disease, which corresponds to severe hypoxic conditions, the amount of p-AMPK was higher than that in patients with acyanotic heart disease (Zhang et al. 2018a).

These data showed positive changes in AMPK at moderate intermittent hypoxia and downregulation of AMPK under continuous severe intermittent hypoxia. It should be noted that there is no data on the elimination of the cardioprotective effect of chronic hypoxia by AMPK blockers. There is no evidence that a decrease or an increase in AMPK phosphorylation is associated with cardioprotection in conditions of chronic hypoxia. Therefore, we cannot evaluate the role of this kinase.
CaMKII kinase

CaMKII kinase (CaMKII, EC 2.7.11.17) is a serine/threonine-specific protein kinase that is regulated by the Ca$^{2+}$/calmodulin complex. CaMKII is necessary for Ca$^{2+}$ homeostasis and reuptake in cardiomyocytes (Anderson 2005).

It is known that the activation of Ca$^{2+}$-calmodulin kinase II (CaMKII kinase) exacerbates I/R injury of the heart (Ling et al. 2013). It has been found that the expression of mRNA encoding calmodulin, CaMKIIγ, and CaMKIIδ in the rat myocardium was enhanced after exposure to severe continuous hypoxia (10% O$_2$, 3 weeks) (Zhao et al. 2008). An increased CaMKII expression in the right ventricle after exposure to severe IHH at 7620 m (21 days) was noted by other investigators (Nehra et al. 2016). Cardioprotection under chronic hypoxia has not been identified in the last two articles. However, under mild IHH (5000 m, 6 h/day, 6 week) preservation of contractility function and cardioprotection under Ca$^{2+}$ overload depended on increased CaMKII expression, because a selective CaMKII inhibitor KN93 prevented protection (Xie et al. 2004). These data are the reason for a consideration of CaMKII as a candidate to one of regulating mechanisms at chronic hypoxia. However, after the course of chronic INH (10% O$_2$, 6 h/day, 7 days) elevated 45Ca$^{2+}$ uptake via sarcoplasmic reticulum Ca$^{2+}$-ATPase (SERCA), release via ryanodine receptor (RyR) or extrusion by the Na$^+$/Ca$^{2+}$ exchanger (NCX) is not dependent on CaMKII (Yeung et al. 2007).

PI3 and protein kinase B/Akt kinase

PI3Ks (EC 2.7.1-1) are a family of related intracellular signal transducer enzymes capable of phosphorylating the 3 position hydroxyl group of the inositol ring of phosphatidylinositol. PI3K/AKT is an intracellular signaling pathway that is important in regulating the cell cycle. PI3K activation promotes phosphorylation and stimulation of Akt, localizing it in the plasma membrane (Mockridge et al. 2000). Protein kinase B/Akt kinase (AKT, EC 2.7.11-12), can have a number of downstream effects, such as activating mTOR (Jonassen et al. 2001) and largely involved in preconditioning phenomenon (Rossello et al. 2018).

It has been shown that IHH (7000 m, 8 h/day, 25 exposures) causes an increase in p-Akt expression in the left ventricle of the rat heart (Strnisková et al. 2006). It was established that the PI3K/Akt inhibitor LY294002 eliminates the infarction-limiting effect of IHH (Ravingerová et al. 2007).

In Milano’s study (2013), it has been found that severe INH (4 daily cycles, each composed of 2-min at 6-8% O$_2$ followed by 3-min reoxygenation for 5 times, for 14 days) contributes to the infarct-sparing effect and shows elevation of a p-Akt amount (Milano et al. 2013). The PI3-kine inhibitor wortmannin eliminated the infarct-reducing effect of INH, as well as elevation of the level of HIF-1α and Nrf2 transcription factors. However, other authors report that similar hypoxic conditioning — INH — lead to a decrease in the PI3K and p-Akt levels in the rat right ventricle (Zhang et al. 2018b).

Severe CNH (10% O$_2$, 2 weeks) promotes an increase in a p-Akt amount (and a corresponding increase in the p-Akt/Akt ratio) in rat left ventricles only if daily 1 h reoxygenation was performed, but not in continuous hypoxia model (Milano et al. 2010). The Akt/PI3 kinase inhibitor LY-294002 abolished enhancement of contractility and decreased of infarct size caused by hypoxia/reoxygenation episodes compared to non-reoxygenated animals. In addition, it was shown important facts: Akt/PI3 inhibition by LY-294002 had no effect on the p-ERK1/2/ERK1/2 ratio, but ERK1/2 inhibition by PD-98059 contributed to a decrease in the p-Akt/Akt ratio. These facts indicate that ERK1/2 is an upstream kinase with respect to Akt (Milano et al. 2010).

Milder continuous hypoxia without a reoxygenation phase (10% O$_2$, 21 days) causes an increase in the p-Akt level in the rat left ventricle (Kolar et al. 2017). However, we failed to confirm the involvement of PI3K in the infarct-limiting effect of similar hypoxic adaptation (12% O$_2$, 21 days) (Tsibulnikov et al. 2018). In addition, we found that PI3K blockade by wortmannin does not affect increased tolerance of isolated cardiomyocytes to anoxia/reoxygenation in rats adapted for CNH (Naryzhnaya et al. 2016). Thus, the role of PI3K and Akt in the cardioprotective effect of chronic hypoxia is controversial.

MEK and ERK kinases

The mitogen-activated protein kinases (the MAPK/ERK kinases; MKKs or MEKs; EC 2.7.11.24) and subsequent downstream kinase Extracellular signal-Regulated Kinases (ERKs, EC 2.7.11.24) are widely
expressed protein kinase. These kinases are intracellular signaling molecules that are involved in functions including the regulation of meiosis, mitosis, and post-mitotic functions in differentiated cells. Many different stimuli, including growth factors, cytokines, ligands for heterotrimeric G-protein-coupled receptors, transforming agents activate the MEK/ERK pathway (Sugden and Clerk 1997). It is known that these kinases are involved in cardioprotection at ischemic preconditioning (Rossello et al. 2018).

It has been established that chronic IHH (7000 m, 8 h/day, 25 exposures) contributes to an increase in ERK2 expression in the right, but not left myocardium ventricle (Strnisková et al. 2006). However, it was not found phosphorylation (activation) of ERK2 in both ventricles. Other investigators demonstrated increased phosphorylation of p-ERK1/2 in the myocardium at IHH in the same conditions (Micova et al. 2016). In addition, an increase in the p-ERK1/2 level has been found in rat atrium after INH performed in severe hypoxia (6 h/day for 30 days 8 % O2) (Zhang et al. 2018).

It was established that excessive chronic CNH (two weeks, 10 % O2) exacerbates reperfusion myocardial contractility dysfunction of the isolated heart model and increases infarct size (Milano et al. 2010). However, if a similar hypoxia was modeled with daily periods of reoxygenation, this negative effect was avoided; there was no a reduction in contractility and an increase in infarct size. This method of modeling chronic hypoxia, an increase in phosphorylated ERK1/2 (p-ERK1/2) content in the myocardium was noted, and inhibition of ERK1/2 PD-98059 or MEK1/2 U0126 prevented the protective effect of reoxygenation episodes (Milano et al. 2010). These data suggest that ERK and MEK are involved in cardioprotection at chronic hypoxia.

P38 kinase

The p38 mitogen-activated protein kinases (EC 2.7.11.24) are a class of the mitogen-activated protein kinases (MAPKs) that are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and are involved in cell differentiation, apoptosis and autophagy (Liu et al. 2015). Phosphorylation of p38 kinase is necessary to realize cardioprotection due to ischemic preconditioning (Weinbrenner et al. 1997) and postconditioning (Sun et al. 2006).

According to Strnisková’s data (Strnisková et al. 2006), after IHH (7000 m, 8 h/day, 35 exposures) the total p38 level does not change in both ventricles. The p-p38 level in the right ventricle was reduced, and was elevated in the left ventricle. An increase in the p-p38 level in the myocardium of the left ventricle after IHH was noted in a later study (Micova et al. 2016).

It has been established that CNH (two weeks, 10 % O2) causes an increase in the p-p38 kinase level in the myocardium (Morel et al. 2006, Milano et al. 2010). Normobaric hypoxia with daily reoxygenation did not have a similar effect (Morel et al. 2006, Milano et al. 2010). In these studies, it was observed negative inotropic effect of CNH and enlarged of infarct size, which are prevented by the p-38 kinase inhibitors SB203580 or SB202190 (Morel et al. 2006). It was shown that the p-p38 level is increased in the myocardium of infants with cyanotic heart defects, but not in patients with acyanotic heart defects (Rafiee et al. 2002, Quing et al. 2007). However, in a study of the isolated heart of neonatal rabbit it was established that blocking p38 with SB203580 eliminates the cardioprotective effect of CNH (Rafiee et al. 2002). This is the only article about a positive role of p-p38 in the cardioprotective effect of chronic hypoxia.

JNK kinase

The c-Jun N-terminal kinases (JNKs, EC 2.7.11.24) were originally identified as the kinases that bind and phosphorylate c-Jun on Ser-63 and Ser-73 within its transcriptional activation domain. They belong to the mitogen-activated protein kinase family and are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock. It is generally accepted that JNK plays a negative role in the regulation of cardiac tolerance to I/R (Milano et al. 2007). However, there is evidence that this enzyme is involved in the cardioprotective effect of remote preconditioning (Heidbreder et al. 2008).

Changes in the total JNK and p-JNK levels were not detected in the right and left ventricles of rats adapted for IHH (IHH 7000 m, 8 h/day, 35 exposures); however, it has been found that JNK content in the particulate fraction of the right ventricle was increased, but decreased in the particulate fraction of the left ventricles (Strnisková et al. 2006). It has been established that INH contributes to an increase in the p-JNK/JNK ratio in the myocardium (Zhao et al. 2019).
It has been found that curcumin, a JNK inhibitor, eliminates the cardioprotective effect of CNH in rabbit infants (Rafiee et al. 2002). However, an increase in the p-JNK level has not been found in the left ventricle of adult rats after CNH (Morel et al. 2006), as it was shown at cell H9C2 culture (He et al. 2016). The presented data indicate that chronic hypoxia could promote an increase in the active p-JNK level in the myocardium. At the same time, data on the involvement of this kinase in the cardioprotective effect of adaptation is limited to one study so far (Rafiee et al. 2002). Therefore, the role of JNK in the protective effect of chronic hypoxia remains to be elucidated.

Protein kinase A

Protein kinase A is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (EC 2.7.11.11). Protein kinase A has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism. This kinase is activated in β-adrenergic receptor agonists induced preconditioning (Robinet et al. 2005) and pharmacological preconditioning, but not in ischemic preconditioning (Lange et al. 2006).

At IHH (7000 m, 8 h/day, 35 exposures) PKA expression was increased in left ventricular myocardium (Kohutova et al. 2019).

In mice which were exposed to CNH (10 % O2, 14 days), change in PKA isoforms’ amount in left and right heart ventricle was not detected, as well as the total number of β-adrenergic receptors and adenyl cyclase activity (Larsen et al. 2008). However, this is so far the only work in which the effect of CNH on the PKA level has been evaluated.

Therefore, it is too early to conclude a role of PKA in the cardioprotective effect of adaptation to hypoxia.

Protein kinase G

Protein kinase G (PKG, EC 2.7.11.12) or cGMP-dependent protein kinase is a serine/threonine-specific protein kinase that is activated by cGMP. Protein kinase G type I (PKG1) is involved in survival signaling of preconditioning (Heusch 2015) and postconditioning (Inserte et al. 2013).

It has been found that IHH (7620 m, 21 days) causes an increase in the level of cGMP, PKG activator, in the myocardium (Nehra et al. 2016). In a later study it has been found an increase in PKG expression in the left ventricular myocardium at IHH (7000 m, 8 h/day, 35 exposures) (Kohutova et al. 2019). It is not known what is a role of this kinase in the infarction-limiting effect of chronic hypoxia.

Hexokinase

Hexokinase (HK, EC 2.7.1.1) is the enzyme that phosphorylates hexoses (six-carbon sugars), forming hexose phosphate. Hexokinase 1 and 2 in cardiomyocytes are associated with voltage-dependent anion channel (VDAC) in the outer mitochondrial membrane (Shoshan-Barmatz et al. 2009) and involved in the regulation of mitochondrial permeability transition pore (mPTP) opening (Tanaka et al. 2018). It is believed that the binding of hexokinase 2 (HK-2) to the mitochondria prevents apoptosis of cardiomyocytes (Majewski et al. 2004). It has been established that IHH (7000 m, 8 h/day, 5 wk) causes an increase in HK-1 and HK-2 expression in the myocardium and enhancement of translocation of hexokinase to the mitochondria (Waskova-Arnostova et al. 2015). CNH also increased HK-1 and HK-2 expression in the myocardium, enhanced the association of HK-2 with the mitochondria (Kolar et al. 2017). Similar effects of CNH were in SHR rats (Nedvedova et al. 2018). These findings are agreed with our results indicated on the stability of mPTP to opening inducing by I/R of the heart after CNH (Prokudina et al. 2019).

Conclusion

This study is devoted to an analysis of published data on the role of kinases in implementing the cardioprotective effect of adaptation to hypoxia (Fig. 1). It has been established that chronic intermittent hypoxia promotes increased expression of the following kinases in the myocardium: PKCδ, PKCa, p-PKCε, p-PKCα, AMPK, p-AMPK, CaMKII, p-ERK1/2, p-Akt, PI3-kinase, p-p38, HK-1, and HK-2.

Chronic continuous hypoxia contributes to increased expression of the following kinases in the myocardium: PKCe, PKCBII, PKCη, CaMKII, p-ERK1/2, p-Akt, p-p38, HK-1, and HK-2. However, enhanced expression of the AMPK and JNK kinases has not been detected.

Adaptation to hypoxia enhances the association
of HK-2 with the mitochondria and causes translocation of PKCδ, PKCβII, and PKCη to the mitochondria. It has been proven that PKCδ, PKCε, ERK1/2, and MEK1/2 are involved in the cardioprotective effect of chronic hypoxia. The role of other kinases in the cardioprotective effect of adaptation to hypoxia requires further research. Possible relationships between the listed kinases have been studied in several works (Fig. 1). Thus, it has been found that chelerythrine significantly inhibits the translocation of both PKCε and p38 MAPK from the cytosolic to the particulate fraction in hypoxic rabbit heart, but p38 blockade does not alter PKCε phosphorylation (Rafiee et al. 2002). These data establish a relationship between PKC and p38 under continuous hypoxia. Inhibition of Akt/PI3 by LY-294002 did not affect the p-ERK1/2/ERK1/2 ratio, but inhibition of ERK1/2 by PD-98059 promoted a decrease in the p-Akt/Akt ratio under intermittent hypoxia (Milano et al. 2010). These facts indicate that ERK1/2 is an upstream kinase in relation to Akt.

![Fig. 1](https://via.placeholder.com/150)

Fig. 1. Involvement of kinases in the cardioprotective effect of chronic hypoxia.

SUR2A – KATP channels regulatory subunits, MEK1/2 – mitogen-activated protein kinase kinase, ERK1/2 – extracellular signal-regulated kinase, PKC – protein kinase C, PKA – protein kinase A, PGC1α – peroxisome proliferator-activated receptor-γ coactivator 1-α, JNK – c-Jun N-terminal kinase, p38 – p38 kinase, PI3K – phosphatidylinositol-3-kinase, Akt – Akt kinase, CaMKII – Ca²⁺-calmodulin kinase II, HK – hexokinase, HSP70 – heat shock protein 70, HIF1α – hypoxia induced factor 1α, Nrf2 – nuclear factor-E2-related factor 2, ATF2,6 – activating transcription factors 2 and 6. **Bold type** indicates kinases, the inhibition of which leads to the elimination of the infarction-limiting effect of chronic hypoxia.

Protection corresponding to activation of kinases may be developed through any of the studied pathway (Fig. 1). Thus, the relationship between p38-kinase and the activation of transcription factor ATF6 was established under continuous hypoxia (Rafiee et al. 2002). Activation of HIF-1α and Nrf2 transcription factors after INH is depended on PI3-kinase (Milano et al. 2013). A relationship was also established between AKT and the sarcolemmal KATP channel, and the PI3K inhibitor prevented an increase in subunit SUR2A expression in the left ventricle during normobaric hypoxia (Mohammed Abdul, et al. 2015). It was established that activation of AMPK promoted peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) expression, which is involved in the cytoprotective effect of chronic hypoxia (Gu et al. 2018).
The PI3-kinase inhibitor wortmannin prevented endothelial NO-synthase (eNOS) phosphorylation in cardiomyocytes under intermittent hypoxia (4 daily cycles, each composed of 2-min at 6-8 % O₂ followed by 3-min reoxygenation for 5 times, for 14 days), (Milano et al. 2013). Activation of eNOS and enhancement of NO synthesis may prevent endothelial dysfunction during reperfusion.

The present data eloquently suggests that the study of the mechanisms cardioprotection formation in chronic hypoxia needs further development.

Acknowledgements
The authors are grateful for the technical support of Nikita S. Voronkov.

The work was supported by the Russian Science Foundation, Grant 16-15-10001. Section devoted to PKA and PKG, is carried out within the framework of state task AAAA-A15-115120910024-0

Conflict of Interest
There is no conflict of interest.

References

https://doi.org/10.1161/hh2401.101385

https://doi.org/10.1113/jphysiol.2007.130369

https://doi.org/10.1007/s11010-017-3001-5

