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Summary 
Sarcoplasmic reticulum (SR) is a specialized tubular network, 
which not only maintains the intracellular concentration of Ca2+ at 
a low level but is also known to release and accumulate Ca2+ for 
the occurrence of cardiac contraction and relaxation, respectively. 
This subcellular organelle is composed of several phospholipids 
and different Ca2+-cycling, Ca2+-binding and regulatory proteins, 
which work in a coordinated manner to determine its function in 
cardiomyocytes. Some of the major proteins in the cardiac SR 
membrane include Ca2+-pump ATPase (SERCA2), Ca2+-release 
protein (ryanodine receptor), calsequestrin (Ca2+-binding protein) 
and phospholamban (regulatory protein). The phosphorylation of 
SR Ca2+-cycling proteins by protein kinase A or Ca2+-calmodulin 
kinase (directly or indirectly) has been demonstrated to augment 
SR Ca2+-release and Ca2+-uptake activities and promote cardiac 
contraction and relaxation functions. The activation of 
phospholipases and proteases as well as changes in different 
gene expressions under different pathological conditions have 
been shown to alter the SR composition and produce  
Ca2+-handling abnormalities in cardiomyocytes for the 
development of cardiac dysfunction. The post-translational 
modifications of SR Ca2+-cycling proteins by processes such as 
oxidation, nitrosylation, glycosylation, lipidation, acetylation, 
sumoylation, and O-GlcNacylation have also been reported to 
affect the SR Ca2+-release and uptake activities as well as cardiac 
contractile activity. The SR function in the heart is also influenced 
in association with changes in cardiac performance by several 
hormones including thyroid hormones and adiponectin as well as 

by exercise-training. On the basis of such observations, it is 
suggested that both Ca2+-cycling and regulatory proteins in the 
SR membranes are intimately involved in determining the status 
of cardiac function and are thus excellent targets for drug 
development for the treatment of heart disease.  
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Introduction 
 

Since the observations of Sydney Ringer 
describing the involvement of Ca2+ in cardiac contraction, 
the role of Ca2+ in heart function, metabolism and 
structure has been a subject of extensive investigations 
(Ringer 1883, Nayler 1963, Ebashi and Endo 1968, 
Langer 1968, Katz 1970, Carafoli 1973, Fabiato and 
Fabiato 1979, Ebashi 1976, Dhalla et al. 1982, Dhalla et 
al. 1984, Eisner et al. 2000, Bers 2002, Eisner at al. 
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2017, Mackrill and Shiels 2020, Marty and Faure 2016, 
Synetos et al. 2016). It is now clear that not only the 
extracellular Ca2+ is required for maintaining the integrity 
of myocardial cell membrane but a small amount of  
Ca2+-influx into cardiomyocytes is also essential for the 
occurrence of cardiac contraction. Various subcellular 
organelles such as sarcoplasmic reticulum (SR), 
sarcolemma, mitochondria and nucleus have been shown 
to maintain the intracellular concentration of Ca2+ at  
a low level (Lehninger et al. 1967, Haugaard et al. 1969, 
Dhalla et al. 1970, Dhalla et al. 1977, Reddish et al. 
2017, Santulli et al. 2015, Primeau et al. 2018, Stammers 
et al. 2015, Zhihao et al. 2020). Raising and lowering the 
concentration of intracellular Ca2+ upon depolarization 
and repolarization of cardiomyocyte have been 
demonstrated to be associated with cardiac contraction 
and relaxation processes, respectively. Furthermore, 
instability of Ca2+-handling mechanisms in 
cardiomyocyte has been linked to the pathogenesis of 
cardiac arrhythmias (Ter Keurs and Boyden 2007, 
Landstrom et al. 2017, Greiser 2017, Dobrev and 
Wehrens 2017) whereas the occurrence of Ca2+-overload 
has been reported to produce myocardial cell damage and 
cardiac dysfunction (Zimmerman and Hulsmann 1966, 
Dhalla 1976, Alto and Dhalla 1979, Santulli et al. 2015). 
In fact, it has become evident that abnormalities in 
intracellular Ca2+ handling are involved in the 
development of impaired heart function.  

By virtue of its ability to release and accumulate 
Ca2+, SR is to known to be intimately associated with 
cardiac and skeletal muscle contraction and relaxation 
processes (Inesi 1972, Martonosi 1972, MacLennan and 
Holland 1975, Dhalla et al. 1982). It is noteworthy that 
the function of SR for accumulating Ca2+   in an energy-
dependent manner was discovered in skeletal muscle 
about sixty years ago (Hasselbach and Makinose 1962, 
Ebashi and Lipmann 1962, Hasselbach 1964, Ebashi and 
Ebashi 1962) whereas electrophysiological, biophysical 
and biochemical studies have provided evidence for  
Ca2+-release from SR (Lee et al. 1966, Fabiato 1983, 
Dhalla et al. 1983, Nabauer et al. 1989, Bers 2004, 
Santulli et al. 2017b, Guerrero-Hernandez et al. 2020). 
The involvement of SR Ca2+-transport in muscular 
contraction is evident from the observations that the 
activity of SR for Ca2+-handling in skeletal muscle is 
much greater than that in cardiac or smooth muscles 
(Adachi 2010, Frank et al. 2003, MacLennan and Holland 
1975, Yoshida et al. 2005, Ganguly et al. 1986, Ganguly 
et al. 1983). Furthermore, the SR Ca2+-transport activity 

in the left ventricle is higher than that in the right 
ventricle (Afzal and Dhalla 1992, Dhalla et al. 1980). It 
should be mentioned that several observations from 
different animals have revealed that both heart function 
and cardiac SR activities are species-dependent (Lüss et 
al. 1999, Dhalla et al. 1980, Afzal and Dhalla 1992, 
Singal et al. 1986, Sulakhe and Dhalla 1971, Dhalla et al. 
1984, Heyliger et al. 1985). Depressed cardiac function 
due to aging and myocardial infarction has also been 
shown to be associated with decreased SR Ca2+-transport 
activity (Knyushko et al. 2005, Jahng et al. 2015, Dhalla 
et al. 2012, Dhalla et al. 2009). Thus changes in SR  
Ca2+-release and Ca2+-uptake activities can be seen to 
play a critical role in determining the status of cardiac 
performance in health and disease. 

 
 

 
 
Fig. 1. Some of the major components of the sarcoplasmic 
reticulum and their functions in cardiomyocytes.  

 
 
Several proteins and phospholipids have been 

identified as structural components of the SR membrane 
(Martonosi et al. 1968, Martonosi and Halpin 1971, 
MacLennan et al. 1973, MacLennan et al. 1974, 
MacLennan 1970). Some of the major components in the 
SR membrane and their functions in the myocardium are 
shown in Figure 1.  It was demonstrated that SR  
Ca2+-transport activities are regulated by different 
mechanisms involving several endogenous proteins and 
phospholipids as well as protein kinases in the cytoplasm 
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(Martonosi et al. 1971, Katz et al. 1975, Tada et al. 1978, 
LePeuch et al. 1979, Netticadan et al. 1999). This review 
is intended to provide an updated synthesis of the existing 
literature regarding structure-function of different major 
protein components of the cardiac SR membrane with 
particular focus on their relationship with SR Ca2+-pump 
system. The regulation of cardiac SR Ca2+-transport 
system by some protein kinases will be described to 
emphasize the role of protein phosphorylation in 
modulating cardiac contractile function. Various 
mechanisms which are known to modify the function of 
some SR proteins for Ca2+-transport activities will be 
discussed to show the involvement of Ca2+-handling 
abnormalities in cardiac dysfunction in heart disease. In 
addition, the influence of some hormones such as thyroid 
hormones and adiponectin as well as exercise on cardiac 
SR activities will be outlined to gain further information 
regarding structure-function relationships with  
Ca2+-cycling and regulatory proteins. Since there are 
several similarities between cardiac muscle and skeletal 
muscle SR organelles with respect to their functional and 
biochemical aspects, some of the work for structural 
components of the skeletal muscle SR has also been 
included in this review.  

 
Structural and functional aspects of SR 

  
The SR is a tabular network in both skeletal and 

cardiac muscles. It is a specialized form of the smooth 
muscle endoplasmic reticulum (ER), which is responsible 
for the maintenance of intracellular Ca2+ homeostasis as 
well as Ca2+ storage (Sommer 1982, Altshuler et al. 2012, 
Prins and Michalak 2011, Rossi et al. 2008, Doroudgar 
and Glembotski 2013, Lam and Galione 2013). From the 
structural point of view, SR is divided into two  
well-characterized regions: the terminal cisternae, from 
where Ca2+ ions are released, and the longitudinal 
tubules, which accumulates Ca2+ ions (Beard et al. 2004). 
Cardiac and skeletal muscle cells also contain transverse 
tubules (T-tubules), which are the extensions of the cell 
membrane and are closely associated with the terminal 
cisternae, the primary site of Ca2+ storage and release 
(Hong and Shaw 2017). The longitudinal SR (LSR) are 
thinner projections, that run between the terminal 
cisternae and junctional SR (JSR), and are the location 
for Ca2+ ion accumulation. The LSR tubules envelop the 
myofibrils and the dyadic junctions between terminal 
cisternae and t-tubules have a specific location at the  
Z-lines whereas terminal cisternae are a specific form of 

JSR. Structural variability of dyads has been reported to 
relate with Ca2+-release in cardiomyocyte (Novotova et 
al. 2020). It is pointed out that a small amount of Ca2+ 
entering upon depolarization of cardiomyocytes has been 
shown to be sufficient for opening Ca2+-sensitive 
channels in the SR and causing a marked release of Ca2+ 
into the cytoplasm. This Ca2+ then binds with troponin 
and promotes the interaction of actin and myosin for the 
occurrence of myofibril contraction. On the other hand, 
repolarization of cardiomyocyte is associated with 
lowering the intracellular concentration of Ca2+, mainly 
due to accumulation in the SR and this then results in 
myofibril relaxation. These events in cardiac excitation, 
contraction and relaxation processes involving the SR 
Ca2+-release and uptake have been described elsewhere 
(Dhalla et al. 1982, Berridge et al. 2003, Eisner et al. 
2017, Bovo et al. 2019, Mckillop and Geeves 1991, 
McKillop and Geeves 1993, Jones et al. 1998). It is 
pointed out that we have described the following 13 SR 
proteins, which are involved in SR Ca2+-release,  
Ca2+-uptake, Ca2+-binding and regulation of Ca2+-cycling. 
Since some of these proteins play multiple roles, their 
description has not followed any specific order:  

 
Sarcoplasmic reticulum ATPase (SERCA, SR 

Ca2+-pump ATPase) plays a major role in Ca2+ signalling 
(Jiao et al. 2009), and is involved in various aspects of 
cell function (Clapham et al. 2007), such as transcription 
(Flavell and Greenberg 2008), apoptosis, exocytosis, 
signal transduction (Dodd et al. 2010), and cell motility 
(Qi et al. 2007). SERCA is responsible for the movement 
of Ca2+ against concentration gradient between the SR 
and the cytosol. There are three different genes coding for 
3 SERCA isoforms, which are spliced alternatively into 
11 variants (SERCA1a–1b, -2a–2c, and -3a–3f) 
(Altshuler et al. 2012; Brandl et al. 1987). It has been 
demonstrated that SR contains Ca2+-pump ATPases in its 
membrane that are responsible for pumping Ca2+ ions into 
the tubular network as these are required because Ca2+ 
ions from the cytoplasm cannot passively pass into the 
SR (Voss et al. 1994). These Ca2+-pumps have several 
forms with SERCA2a mainly found in cardiac and 
skeletal muscle (Martonosi 1996, Satoh et al. 2011, 
Lamboley et al. 2013). It may be noted that SERCA is 
composed of 13 subunits, M1-M10, A, P and N; the  
M1-M10 subunits are located in the SR membrane and 
are responsible for binding Ca2+ ions whereas the A,  
P and N subunits are located on the outer surface of the 
membrane and are responsible for ATP binding (Primeau 
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et al. 2018). Smejtek and coworkers (2014) have reported 
that SR is considered as a complex biomembrane due to 
the presence of Ca2+-ATPase in the APN domain. Protein 
components of the LSR and terminal cisternae are quite 
different, representing the functional specialization of 
these membrane elements, which are Ca2+-uptake and 
release, respectively; the major component of the LSR, is 
SERCA which is responsible for pumping the released 
Ca2+ back into the SR (Van Petegem 2012).  

When two Ca2+ ions and one molecule of ATP 
bind to the cytosolic side of the Ca2+-pump ATPase, the 
pump opens because ATP hydrolyses releases  
a phosphate group. Consequently, the released phosphate 
group then binds to the pump, causing a conformational 
change, allowing the cytosolic side of the pump to open 
and permitting two Ca2+ ions to enter. The cytosolic side 
of the pump then closes and releasing Ca2+ ions into the 
SR (Toyoshima and Nomura 2002, Le Peuch et al. 1983). 
It has been shown that SERCA 2 gene knockout 
disrupted SR function and this disruption was associated 
with heart failure in mice (Bers 2002, Louch et al. 2010). 
Additionally, it has been reported that cardiomyocyte-
specific gene knockout resulted in mice that remained 
alive for 10 weeks following the gene knockout (Louch et 
al. 2010, Andersson et al. 2009a). It was also observed 
that 4 weeks after the gene knockout, SERCA2 protein 
content was reduced to <5%, without any changes in 
cardiac function, and it was only after 7 weeks that these 
mice started developing severe cardiac dysfunction 
(Andersson et al. 2009b). Accordingly, some defect in 
SERCA2 was suggested to result in the development of 
cardiac contractile dysfunction.  

 
Ryanodine receptor (RyR) is another major 

protein in the SR membrane and is responsible for the 
release of Ca2+ from the intracellular stores during 
excitation-contraction (Wehrens and Marks 2003). This 
protein is the largest known ion channel, which exists in 
three isoforms (RyR 1, 2 and 3) (Lanner et al. 2010). It 
consist of four identical subunits, which interact with and 
are regulated by phosphorylation, redox modifications, 
and other various small proteins (Meissner 2010). It has 
been shown that complete absence of RyR2 in 
cardiomyocytes of knockout mouse model is lethal due to 
the lack of SR Ca2+ release (Kushnir et al. 2010). 
Mutations in RyR2, the predominant form in the heart 
muscle, are associated with human disorders such as 
catecholaminergic polymorphic ventricular tachycardia 
while mutations in RyR1 underlie diseases such as central 
core disease and malignant hyperthermia (Priori et al. 

2002, Nakai et al. 1990, Valdivia 2007). Thus SR  
Ca2+-release is not only known to play a critical role in 
inducing cardiac contraction but alterations in its 
signaling and function are also considered to be involved 
in the genesis of cardiac arrhythmias and fibrillation 
(Landstrom et al. 2017, Greiser 2017, Debrev and 
Wehrens 2017).  

The structure-function relationships for SR  
Ca2+-release channels (both RyR1 and RyR2) under  
a wide variety of physiological and pathological 
situations have been described recently (Santulli et al. 
2017b, Santulli et al. 2018, Meissner 2017, Sheard et al. 
2019). While RyR1 has been reported to be associated 
with intracellular Ca2+-leak and induction of 
cardiomyopathy (Chen and Kudryashev 2020), RyR2 is 
mainly concerned with Ca2+-release for the generation of 
cardiac contractile force (Lascano et al. 2017).  The 
mechanisms for opening the RyR and its functional role 
in cardiac excitation-contraction coupling have also been 
discussed elsewhere (Santulli et al. 2017a, Van Petegem 
2016). The sensitivity of RyR has been shown to govern 
the stability and synchrony of Ca2+-release during the 
process of excitation-contraction coupling in the heart 
(Wescott et al. 2016). Several investigators have studied 
the molecular and cellular control for the regulation of SR 
Ca2+-release channels. In this regard, it is pointed out that 
SR Ca2+-release is not only regulated by phosphorylation 
and dephosphorylation (Yamaguchi 2020, Terentyev and 
Hamilton 2016) but is also modulated by glycation and 
oxidation (Ruiz-Meana et al. 2019, Zima and Mazurek 
2016). SR Ca2+-release is also controlled by SR luminal 
Ca2+ as well as protein-protein interaction (Jones et al. 
2017, Rani et al. 2016, Seidel et al. 2015) and its 
magnitude is dependent upon the RyR cluster size (Galice 
et al. 2018). Different recent studies have revealed the 
role of RyR in the genesis of arrhythmias and fibrillation 
(Dridi et al. 2020, Campbell et al. 2020, Alsina et al. 
2019). Excessive release of SR Ca2+ induced by inositol 
triphosphate has been demonstrated to produce 
arrhythmias (Blanch et al. 2018) whereas that induced by 
CAMKinase associated phosphorylation has been shown 
to produce cardiac dysfunction (Sepulveda et al. 2020, 
Sepulveda et al. 2017). Thus targeting RyR and 
associated pathological SR Ca2+-release has been 
considered to have a great impact for the treatment of 
arrhythmias and heart failure (Connell et al. 2020).  

 
Phospholamban (PLB) is present in the LSR and 

it is involved in regulating the activity of the SR  
Ca2+-pump in the heart. Over the years, numerous 
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investigators have demonstrated that PLB is an inhibitor 
protein for the SERCA2 function in the heart; the 
mechanism of inhibition is accomplished by PLB binding 
to SERCA, decreasing its affinity to Ca2+ and preventing 
Ca2+ uptake into the SR. Accordingly, failure to remove 
Ca2+ from the cytosol, prevents the cardiac relaxation and 
consequently decrease the muscle contraction 
(Simmerman and Jones 1998). Nevertheless, hormones 
such as adrenaline and noradrenaline can prevent PLB 
from inhibiting SERCA (Dhalla et al. 2019). When these 
hormones bind to the beta 1 adrenoceptor on the cell 
membrane, they increase the formation of cAMP, activate 
protein kinase A (PKA), phosphorylate PLB, prevent the 
inhibition of SERCA and thus promote cardiac muscle 
relaxation (Le Peuch et al. 1983, Moccia et al. 2019). 
Slack and coworkers (1997) showed that PLB is a key 
determinant of relaxation in slow-twitch skeletal muscle 
under basal conditions and during isoproterenol 
stimulation, supporting its important role in the regulation 
of SERCA activity. In fact, PLB knockout models have 
revealed that the ratio of PLB to SERCA2a may be 
a significant determinant of the regulation of the cardiac 
contraction–relaxation cycle (Frank et al. 2003, 
Periasamy et al. 1999).  

 
Inositol-Trisphosphate Receptor (InsP3R) is a 

Ca2+ release channel found widely in the ERSR system in 
almost all cells. The function of InsP3R is to facilitate 
Ca2+ release from the intracellular Ca2+ stores upon 
binding of Inositol trisphosphate (IP3) and resulting in 
Ca2+ signals that control various physiological processes 
in the cell (Foskett et al. 2007). Furthermore, InsP3R is  
a Ca2+ selective cation channel that is regulated by 
cytoplasmic Ca2+ in addition to InsP3. Its interaction with 
other ER/SR proteins contribute to the specificity and 
speed of Ca2+ signaling pathways (Yamazaki et al. 2011, 
Zhou et al. 2014). It has been reported that genetic 
hypertension in rats is related to the increase in IP3 
concentrations as well as InsP3R-IP3 binding affinity in 
smooth muscle cells (Narayanan et al. 2012). Although 
the presence of InsP3Rs has also been detected in 
cardiomyocyte SR membranes, extensive work needs to 
be carried out to establish their functional significance 
under both physiological and pathological conditions. 
Nonetheless, InsP3R has been reported to play some role 
in the interaction between SR and mitochondria (Dia et 
al. 2020).  

 
Calsequestrin is another protein which is 

primarily located in the junctional SR and terminal 

cisternae, in close association with the Ca2+ release 
channel (Lamboley et al. 2013). This protein is capable of 
binding a large amount of Ca2+, reducing free Ca2+ in the 
SR and serving as a Ca2+-store in the SR; calsequestrin is 
thus, considered as a Ca2+ buffering system (Perni et al. 
2013, Treves et al. 2009). Furthermore, Wang and 
coworkers (2019) reported that calsequestrin binds to the 
ER luminal domain of inositol-requiring enzyme 1 
(IRE1α), inhibiting its dimerization and suppressing the 
activation of IRE1α at the junctional SR. By using  
a transgenic mice model, it has been reported that 
calsequestrin is both a storage and a Ca2+-signaling 
cascade regulatory protein in the myocardium (Jones et 
al. 1998). It should be mentioned that calsequestrin is 
considered to be a regulator of RyR2 activity and its 
malfunction either as a Ca2+-buffer or as a regular may 
lead to the genesis of arrhythmias. The structure-function 
of calsequestrin as well as its Ca2+-binding properties are 
also well described (Wang and Michalak 2020, Loescher 
et al. 2019, Woo et al. 2020).  

 
Sarcalumenin (SAR) is a minor glycoprotein in 

the LSR membrane which is encoded by the SAR gene. 
and is partially responsible for Ca2+ buffering in the 
lumen of SR. Interestingly, alternative splicing of the 
same transcript results in two variants of SAR. The large 
transcript of SAR has a low affinity and high capacity 
Ca2+ binding protein whereas the shorter product lacks 
the Ca2+-binding domain. Because of the presence of 
SAR in close vicinity of SERCA protein, it is considered 
to be involved in the regulation of the SERCA activity 
(Leberer et al. 1990). Some studies with SAR knockout 
animal models have revealed that SAR plays a crucial 
role in the maintenance of cardiac function under 
physiological stresses, by regulating Ca2+ transport 
activity into the SR (Yoshida et al. 2005, Jiao et al. 
2009).  

 
Junctin and Junctate are integral membrane 

proteins of cardiac and skeletal muscle SR, with moderate 
affinity, high capacity for Ca2+ binding (Treves et al. 
2000). It should be pointed out that aspartyl beta-
hydroxylas, junctin and junctate are three different single 
gene products, generated by alternative splicing (Feriotto 
et al. 2005). Both junctin and junctate are involved in the 
regulation of intracellular Ca2+ concentrations (Delbono 
et al. 2007, Dinchuk et al. 2000, Ha et al. 2007). 
Furthermore, knockout and transgenic mice model studies 
have shed light on the function of these proteins; it has 
been suggested that altered expression of junctin or 
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junctate can modify the cellular Ca2+ handling and disturb 
the balanced activity of other Ca2+ regulatory proteins 
(Treves et al. 2004). It should be mentioned that junctin 
is predominantly a RyR regulator whereas junctate in 
cardiomyocytes is connected with other membrane 
proteins such as InsP3R and SERCA (Kwon and Kim 
2009, Stamboulian et al. 2005). Junctin together with 
triadin has also been shown to play a role in preventing 
arrhythmias (Wleklinski et al. 2020) However, the exact 
contribution of these Ca2+-storage site in the SR 
membrane remains to be established.  

 
Nexilin (NEXN) is an essential component of the 

junctional membrane complex which is necessary for 
optimal Ca2+ transients and is required for initiation and 
formation of T-tubules (Hassel et al. 2009). Recently, 
NEXN has been shown to play a role in the maintenance 
of the tranverse-axial tubular system (Spinozzi et al. 
2020). Even though, the exact role of NEXN in cardiac 
function and disease is not well understood, it has been 
identified as an actin-binding protein (Liu et al. 2019). 
Aherrahrou and coworkers (2016) have evaluated the 
functional role of NEXN by using a constitutive NEXN 
knockout mouse model, and have reported that the 
absence of NEXN may result in premature death of mice 
due to dilated cardiomyopathy.  

 
Amphiphysin 2 and Mitsugumin29 (Mg 29) are 

proteins that play a major role in T-tubules formation; 
amphiphysin 2 induces membrane curvature and 
tubulations, which is similar to the sarcolemma T-tubules 

(Lee et al. 2002). Knockout of amphiphysin 2 is 
associated with abnormal T-tubules formation and 
excitation-contraction coupling defects (Razzaq et al. 
2001). Since amphiphysin 2 has been shown to be 
involved in the formation of dyads, it can be seen to play 
a role in the excitation-contraction coupling (Guo et al. 
2021, De La Mata et al. 2019). On the other hand, Mg29 
is a structural protein that is thought to be exclusively 
expressed in skeletal muscle. Mg29 is a member of the 
synaptophysin family, which is involved in the fusion of 
synaptic vesicles with the cell membrane. Mg29 
knockout animal model showed structural abnormalities 
in both the SR and T-tubules, suggesting that it plays  
a role in assembly and/or docking of such membrane 
systems (Komazaki et al. 2001). Mg29 interacts with 
transient receptor potential canonical 3. However, Mg29 
mRNA is not expressed in mouse heart as it was 
untraceable by various immunoblotting techniques. 

Nonetheless, Mg29 mRNA is expressed in human heart 
at a very low level.  Interestingly, it was shown that the 
gene expression of Mg29 is significantly upregulated in 
animal models of heart failure (Woo et al. 2015, Correll 
et al. 2017). Thus the exact functional role of both 
amphiphysin 2 and Mg 29 with respect to the structural 
integrity of SR membrane needs to be determined in 
future studies.  

Junctophilins are a family of integral membrane 
proteins which provide a structural bridge between the 
sarcolemma and SR. These proteins are attached to the 
JSR by a transmembrane domain in the C-terminus and 
contact the plasma membrane through lipid-interacting 
motifs in their N-terminus (Takeshima et al. 2000). There 
are several junctophilin isoforms, with isoform 2 being 
expressed in the heart (Nishi et al. 2000, Munro et al. 
2016). As was demonstrated in knockout animal models, 
ablation of junctophilin resulted in a less contractile force 
after electrical stimulation and showed abnormal 
sensitivity to extracellular Ca2+ and altered triad 
formation as well (Ito et al. 2001, Komazaki et al. 2002). 
Since the heterologous expression of junctophilins 
resulted in the development of junctional-like assemblies 
between the ER and the plasma membrane (Takeshima et 
al. 2000, Komazaki et al. 2002), junctophilins are 
considered to play an important role in triad organization 
and stabilization (Nakeda et al. 2018). It should be noted 
that the interaction of junctophilin-2 with L-type  
Ca2+-channel is important for dyad assembly and 
intracellular Ca2+ dynamics (Gross et al. 2021, Poulet et 
al. 2021). 

 
TRIC-A/SRP-27 is a trimeric intracellular cation-

selective channel (TRIC-A) or (SRP-27). This SR protein 
is expressed in excitable tissues, particularly in fast twitch 
skeletal muscles (Yazawa et al. 2007, Bleunven et al. 
2008). It has been reported that its expression level peaks 
after 2 months of post-natal development (Zhou et al. 
2007, Treves et al. 2009). Treves and coworkers (2009) 
have also reported that mice lacking TRIC/SRP-27 are 
viable and display no overt phenotype. In contrast, other 
investigators have observed that TRIC-A knockout mice 
have impaired ER/SR Ca2+ release in several cell types 
and developed hypertension (Yamazaki et al. 2011). 
Evidence has also been presented to suggest that TRIC 
channels mediate counter potassium movements to 
facilitate physiological Ca2+ release from intracellular 
Ca2+ stores and can be seen to provide a counter-current 
for SR/ER Ca2+ release; thus it may also function as 
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accessory proteins that directly modulate the RyR/IP3 
receptor channel functions (Zhou et al. 2014). Recent 
information on cardiac muscle has revealed the 
interaction of TRIC-A with RyR2 for handling and 
storage of Ca2+ in the SR tubules (Zhou et al. 2020, Zhou 
et al. 2021).  

 
Regulation of SR Ca2+-ATPase protein 

 
Due to its essential role in regulating Ca2+ 

handling and contractility of the heart muscle, the 
SERCA2a protein has been extensively investigated. The 
SERCA protein is embedded in the SR membrane and 
consists of three parts namely, a cytoplasmic face, 
transmembrane helices (that harbor Ca2+ binding sites), 
and luminal loops (Periasamy et al. 2007, Tupling et al. 
2004, Periasamy et al. 2008). The cytoplasmic face of 
SERCA consists of a phosphorylation domain, 
a nucleotide domain and an actuator domain. Each 
domain plays a special role that governs the function of 
SERCA as a pump. While ATP hydrolysis takes place at 
the interface between the phosphorylation and the 
nucleotide domains, the actuator domain provides the hub 
for Ca2+ translocation (Stammers et al. 2015, Toyoshima 
and Inesi 2004). The importance of SERCA function 
attributes to its essential role in controlling and regulating 
the handling of Ca2+. ATP hydrolysis facilitates transfer 
of two Ca2+ molecules into the lumen of SR. Therefore, 
ATP hydrolysis is essential, because it provides the 
required energy for pumping Ca2+ against the 
concentration gradient, as a much higher concentration 
gradient is present across the SR membrane (Toyoshima 
2009, Smith et al. 2013). 

 
Regulation of SERCA function by gene transcription and 
alternative splicing 

The gene which encodes the SERCA  
Ca2+-ATPase for catalyzing the hydrolysis of ATP 
associated with the translocation of Ca2+ from the cytosol 
to the SR lumen, is located on human chromosome 12 
(Papp et al. 1993, Otsu et al. 1993). During gene 
expression, alternative splicing of the SERCA gene 
results in three different mRNAs species that encode for 
SERCA2a, SERCA2b, and SERCA2c proteins (Zarain-
Herxberg 2006, Gelebert et al. 2003). These SERCA 
proteins are expressed in different body tissues at various 
rates; SERCA2a is expressed preferentially in cardiac 
muscle, SERCA2b is expressed in small quantities in 
muscle cells (Gelebert et al. 2003). The SERCA2c 
isoform is also expressed in cardiac myocytes, but it has a 

lower affinity for cytosolic Ca2+ than SERCA2a and the 
turnover rate is comparable to that of SERCA2b (Dode et 
al. 2003, Wuytack et al. 2002, Dally et al. 2006).  

The transcription of ATP2a2 gene is regulated 
by several transcriptional factors that bind to the 
promotor region. Mitochondrial transcription factors A 
(TFAM) and B2 (TFB2M) were shown to regulate the 
transcription of the SERCA2 gene in the myocardium by 
binding to specific promoter regions (Fujino et al. 2012, 
Watanabe et al. 2011). It was demonstrated that the 
expression of mRNA for SERCA2a in the myocardium is 
correlated with the expression of both TFAM and 
TFB2M (Watanabe et al. 2011). The overexpression of 
TFAM and TFB2M was shown to  increase the 
transcriptional activity by 2-folds, in addition to 
protecting against the stress related decrease in mRNA 
levels of SERCA2a. The importance of factors such as 
TFAM and TFB2M was found to be crucial in regulating 
the transcription of the SERCA gene, as the expression of 
TFAM was downregulated in the diabetic heart and 
cardiac failure due to myocardial infarction (Kang et al. 
2007, Choi et al. 2001, Ikeuchi et al. 2005, Suarej et al. 
2003). Furthermore, the Specificity Protein 1 (SP1), 
another transcriptional factor, was observed to play a role 
in decreasing the SERCA2a mRNA level due to pressure 
overload (Brady et al. 2003, Takizawa et al. 2003). 

 
Role of phospholamban in the regulation of SERCA2a 

In cardiac myocytes, SERCA2a activity is 
inhibited by the SR protein, phospholamban (PLN) 
(Asahi et al. 2003). PLN binds to SERCA2a when the 
cytosolic Ca2+ is low, causing a decrease in SERCA2a 
affinity for Ca2+ (Ha et al. 2007, Periasamy and Huke 
2001, Periasamy et al. 2008). Nevertheless, when Ca2+ is 
high, the inhibitory effect is removed, due to the 
activation of Ca2+/calmodulin kinase (CaMKII), which 
phosphorylates PLN (Mattiazzi and Kranias 2011). PLN 
is similarly regulated by protein kinase A (PKA), which 
is activated due to β-adrenergic stimulation (Drummond 
and Severson 1979, MacLennan and Kranias 2003), 
which eventually phosphorylates PLN and prevents the 
inhibition of SERCA2a and thus augments cardiac 
muscle contraction and relaxation (MacLennan and 
Kranias 2003, Koss et al. 1998). The activity of 
SERCA2a has been reported to increase significantly 
when PLN is phosphorylated by either CAMKII or PKA; 
this change enhances the velocity of relaxation and 
contributes to the relaxant effects of high intramuscular 
Ca2+ and β-adrenergic stimulation as well (MacLennan 
and Kranias 2003, Koss et al. 1998). It is pointed out that 
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the regulation of cardiac SERCA2a is accomplished by 
either increasing the gene expression of PLN protein or 
the phosphorylation of PLN. It has been demonstrated 
that the expression of PLN in murine ventricular 
myocytes is much higher than that in atrial myocytes 
(Koss et al. 1998) as well as PLN expression is 
significantly less in human right atrium when compared 
to that in the right ventricular (Lüss et al. 1999). 
Although, variations in the level of PLN expression can 
be seen to contribute to the increased contractile activity 
in isolated human right ventricule in comparison to right 
atrium, the exact reason for this difference is far from 
clear.  

 
Role of sarcolipin in the regulation of SERCA2a 

Sarcolipin (SLN) has been shown to attenuate 
Ca2+ sensitivity by binding to SERCA2a and inhibiting its 
activity in the myocardium by lowering its affinity for 
Ca2+ (Asahi et al. 2003, MacLennan and Kranias 2003). It 
has been suggested that SLN is an uncoupler of SERCA 
pump activity and increase ATP hydrolysis resulting in 
heat production (Shaikh et al. 2015). When SLN is 
phosphorylated by serine/threonine kinase 16 (STK16), it 
facilitates the relaxant effects of β-adrenergic stimulation 
by promoting the separation of SLN from SERCA2a 
(Babu et al. 2007, Gramolini et al. 2006). This 
observation was supported by studies on PLN knockout 
mice, overexpressing SLN. It was demonstrated that the 
inhibitory effect of SLN on SERCA was alleviated when 
β-adrenergic agonist was administered (Babu et al. 2007, 
Gramolini et al. 2006). Furthermore, SERCA2a 
inhibition by SLN was evident from the reduction of cell 
shortening in rat myocytes overexpressing SLN after 
adenoviral gene transfer (Asahi et al. 2004). On the other 
hand, it was reported that SLN mRNA is highly 
expressed in murine and human atrium but not in human 
ventricle (Babu et al. 2005, Minamisawa et al. 2003). 
Moreover, SLN expression is poorly regulated in patients 
suffering from cardiovascular disease (Odermatt et al. 
1997). Interestingly, a substantial increase in the levels of 
both SLN mRNA and protein was observed in left 
ventricular samples obtained from patients following 
surgery for mitral valve regurgitation (Zheng et al. 2014). 
Such evidence may indicate that SLN offers further 
control over Ca2+ handling in human myocytes, mainly in 
areas like the atrium where PLN is not present and in 
settings where Ca2+ concentrations are elevated (Sahoo et 
al. 2013).  
 

Role of thyroid hormone in the regulation of SERCA2a 
Thyroid hormone plays a critical role in the 

regulation of SERCA2a gene expression in the heart 
(Nagai et al. 1989, Ojamaa et al. 2000). It has been 
shown that administration of thyroid hormone causes 
significant increase in the mRNA levels in 
cardiomyocytes of experimental animals (Rohrer and 
Dillmann 1988, Arai et al. 1991, Kinugawa et al. 2001) 
which, results in accelerated uptake of Ca2+ into the SR, 
enhanced relaxation time, and improved force production 
in the heart. It may be noted that the mRNA levels for SR 
Ca2+-pump ATPase and RyR2 as well as for myosin 
heavy chain (β-MHC) were increased in hearts from 
hypertrophied animals. On the other hand, it has been 
reported that there occurs a decrease in the mRNA of 
levels encoding SERCA2a and RyR2 as well as for  
α-MHC in hearts of hypothyroid animal models (Rohrer 
and Dillmann 1988, Kinugawa et al. 2001, Ji et al. 2000, 
Reed et al. 2000). A substantial increase in both mRNA 
and protein levels for SERCA2a was reported in hearts of 
hyperthyroid animals (Kinuzawa et al. 2001, Kiss et al. 
1994), and a marked decrease in hearts of hypothyroid 
animals (Kiss et al. 1994). Such an effect of thyroid 
hormone on SERCA2a in hearts has been shown to be the 
result of transcriptional regulation, which is facilitated by 
distinct thyroid hormone-response elements (Hartong et 
al. 1994, Zarain-Herzberg et al. 1994). Additionally, the 
thyroid hormone, triiodothyronine, is involved in the 
regulation of PLN (Kiss et al. 1994). It has been 
demonstrated in experimental animal models under 
conditions of hyperthyroidism and hypothyroidism that 
the levels of PLN mRNA and protein are markedly 
reduced and increased, respectively (Kimura et al. 1994, 
Chang et al. 1997). Moreover, such change in the 
expression of PLN was reported to boost the effects of 
thyroid hormone on the functionality of SERCA2a, 
enhancing the uptake of Ca2+ in hyperthyroidism and 
reducing cardiac performance in chronic hypothyroidism 
(Kimura et al. 1994, Chang et al. 1997).  

 
Role of adiponectin in the regulation of SERCA2a 

Adiponectin is a hormone peptide of adipocytes 
(Ahima 2006), the reduction of which plays an essential 
role in obesity-related cardiovascular disorders (Fortuño 
et al. 2003, Hug and Lodish 2005). Besides its function 
as an antioxidant and cardioprotective agent, it is also 
involved in the regulation of SERCA2a function (Pischon 
et al. 2004, Zhang et al. 2013, Shibata et al. 2012, 
Villarreal-Molina and Antuna-Puente 2012). It was 
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suggested that the cardio-protection effect of adiponectin 
occurs by alleviating the stress of endoplasmic reticulum, 
thus enabling the recovery of SERCA2a function (Zhang 
et al. 2013). It has been shown in animal models of 
myocardial ischemia/reperfusion and cardiomyocyte 
hypoxia/reoxygenation that intravenous administration of 
adiponectin causes restoration of the function of 
SERCA2a (Guo et al. 2013). Moreover, a substantial 
increase in the levels of mRNA of SERCA2a in H9C2 
cells was demonstrated when cardiomyocytes were 
cultured in an adiponectin-enriched medium for 60 
minutes in comparison to those in adiponectin-depleted 
medium (Jahng et al. 2015, Boddu et al. 2014). While the 
exact mechanism of activation of SERCA2a by 
adiponectin is not known, it could be due to the 
enhancement of PLN phosphorylation, thus relieving its 
inhibition of SERCA2a. In fact, adiponectin 
administration in rats has been reported to increase PLN 
phosphorylation in the left ventricle (Guo et al. 2013). 
Therefore, the increase in PLN phosphorylation alleviates 
inhibition and increases Ca2+ sequestering action of the 
SERCA. Furthermore, it is believed that cardioprotective 
effect of adiponectin is achieved through the signaling of 
the regulatory enzyme of energy homeostasis, adenosine 
monophosphate-activated protein kinase (AMPK). It 
should be noted that AMPK is responsible for the 
metabolic regulation of adiponectin (Gonon et al. 2008), 
which has been shown to alter SERCA1a protein levels 
and SERCA2a mRNA in mice muscle (Morissette et al. 
2014). 
 
Post-translational modifications of SERCA2a 

 
In addition to PLN and SLN phosphorylations, 

which regulate SERCA2a function, numerous 
posttranslational events are known to participate in the 
modification of SR protein function. Although both 
SERCA2a and RyR2 are modified by different 
posttranslational events by similar mechanism, only these 
affecting the SERCA2a function are given in Figure 2. 
These events include different processes such as 
nitrosylation, acetylation, sumoylation, glycosylation,  
O-GlcNAcylation, and glutathionylation. It is pointed out 
that nitrosylation or nitration is the addition of a nitro 
group to proteins, which has been reported to increase 
due to aging (Knyushko et al. 2005). The aging hearts 
were found to reveal much higher levels of nitrotyrosine 
in comparison to control hearts (Knyushko et al. 2005). 
Furthermore, nitrotyrosine levels in SR were almost  

2 folds higher in the ischemic hearts perfused with high 
glucose than those perfused with normal levels of glucose 
(Tang et al. 2010). It has been reported that nitration of 
SERCA2a and RyR proteins occurs through polyol 
pathway, which plays a central role in oxidative stress 
due to hyperglycemia as seen in diabetes (Tang et al. 
2010, Arun and Nalini, 2002). A significant negative 
correlation was found between SERCA2a as well as RyR 
tyrosine nitration and maximal SR acitvities. Although 
nitration of the SERCA2a was confirmed in experimental 
animal models of chronic disease, its role in modifying 
the activity of SERCA2a in humans is poorly understood. 
Nonetheless, it is believed that nitration of certain 
tyrosine residues may cause distortion in helical 
interactions and thus restricts the coordinated movement 
of membrane helices, which is required for optimal 
SERCA function (Kynyushko et al. 2005).  

 
 

 
 
Fig. 2. Modification of cardiac sarcoplasmic reticulum function by 
some post-translational events. 

 
 
Sumoylation of SERCA2a is achieved by 

binding of a small ubiquitin-related modifier type 1 
protein, SUMO1 to SERCA2a lysine residue (Kho et al. 
2015). A significant decrease in SUMO1 in heart failure, 
has been reported to accompany a decrease in SERCA2a 
sumoylation (Kho et al. 2015). A SUMO1 injection in the 
pressure overload animal model of heart failure was 
found to enhance cardiac performance and SERCA2a 
activity (Kho et al. 2011, Kho et al. 2015). These studies 
indicate that sumoylation has cardioprotective properties 
in the heart. It should be mentioned that downregulation 
of SUMO1 by a hairpin RNA caused a significant 
decrease in the level of SERCA2a protein (Kho et al. 
2011). Moreover, the transfer of SUMO1 gene was 
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shown to reinstate mRNA expression of SERCA2a, cause 
enhancement in the left ventricular ejection fraction and 
maintain the activity of SERCA2a in an animal model of 
ischemic heart disease (Kho et al. 2011). It was suggested 
that inhibition of acetylation of certain lysine residues of 
SERCA2a and increase in its sensitivity to ATP underlies 
the action of sumoylation in maintaining SERCA2a 
function (Park and Oh, 2013). On the other hand, it is 
believed that acetylation and deacetylation play a role in 
the acute modification of SERCA2a activity (Park and 
Oh 2013, Sack 2012). Although, SERCA2a acetylation 
and deacetylation are not well defined, some evidence has 
been presented to show that these processes could play  
a role in intracellular Ca2+ handling in cardiac myocytes 
(Grillon et al. 2012). In diabetes, when glucose levels are 
high, an increase in SERCA2a glycosylation occur, which 
has been reported to cause a significant decrease in 
SERCA2a activity (Clark et al. 2003, Belke et al. 2004). 
A substantial decrease in both SERCA2a mRNA and 
proteins as well as a considerable increase in PLN have 
been attributed to the increase in glycosylation (Belke et 
al. 2004, Hamm et al. 2016, Calligaris et al. 2013). 

When O-linked N-acetylglucosamine is 
incorporated into threonine or serine residues, this process 
is called O-GlcNAcylation, which is known to modify the 
levels of SERCA2a protein and result in the disruption of 
Ca2+ cycling (Medford et al. 2013, Bennett et al. 2013). In 
fact, Clark and coworkers (2003) have reported 
a significant decrease in SERCA2a protein levels 
associated with longer Ca2+ decay in cardiac myocytes of 
newborn rat. Additionally, it was shown that O-
GlcNAcylation controls SERCA2a gene expression in 
hearts, which is facilitated by the transcription factor SP1 
and is involved in the transcription of many heart function 
regulatory genes (Dellow et al. 2001, Belke 2011, Johnsen 
et al. 2013). A significant reduction in SP1specific 
O-GlcNAcylation in hearts of swim-trained mice has been 
reported (Belke 2011). Furthermore, O-GlcNAcylation 
was also observed to alter the SERCA2a function by 
phosphorylation of PLN (Hu et al. 2005, Watson et al. 
2010). A significant decrease in total PLN protein level 
and an increase in phosphorylated PLN has been 
demonstrated by decreasing the cellular O-GlcNAcylation 
by adenoviral overexpression of the enzyme 
O-GlycNAcase (Hu et al. 2005). These studies seem to 
support the view that O-GlcNAcylation affects SERCA2a 
function in the heart, either by affecting the SERCA2a 
activity directly or by prompting the PLN phosphorylation. 

It is noteworthy that both oxidative stress and 

nitrosative stress are known to adversely affect the 
process of glutathionylation where disulphide bonds are 
formed between cysteine and glutathione in SR proteins 
(Ghezzi 2005), to increase SERCA activity and boost 
Ca2+ uptake (Lancel et al. 2009, Tong et al. 2008, Jardim-
Messeder et al. 2012). Under normal conditions, the 
SERCA2a sulfhydryl modifications are reversible, but in 
the case of atherosclerosis, SERCA2a cysteine becomes 
oxidized irreversibly, to prevent glutathionylation and 
activation of SERCA function (Tong et al. 2008, Jardim-
Messeder et al. 2012, Adachi 2010). Thus, alterations in 
the process of glutathionylation of SERCA2a in addition 
to other post-translational events can be seen to play  
a major role in inducing Ca2+-handling abnormalities in 
cardiomyocytes during the development of cardiac 
dysfunction in heart disease.  
 
Modification of SERCA2a gene expression 
by miRNAs 

 
MicroRNAs (miRNAs) are small, noncoding 

RNAs with important functions in development, cell 
differentiation and apoptosis, gene expression post-
translationally, degradation of mRNAs and preventing the 
translation process (Ambros 2004, Karakikes et al. 2013). 
Since the 3-prime untranslated region (3'-UTR) of the 
SERCA2a gene harbors the recognition site for miRNA, 
it has been suggested that miRNAs alter heart function by 
regulating SERCA2a gene expression.  In this regard,  
a significant increase in miRNA expression was found 
cause a substantial reduction in SERCA2a protein and 
was associated with a progressive reduction in fractional 
shortening (Montgomery et al. 2011). On the other hand, 
a significant increase in the expression of SERCA2a 
protein was observed when mice were injected with 
antisense oligonucleotide against miRNA (Zsebo et al. 
2014, Wahlquist et al. 2014). In fact, miRNA knockout 
mice showed long cytosolic Ca2+ decay and lower SR 
Ca2+ load, in comparison to wild-type mice (Huang et al. 
2013). 

  
Modification of SERCA2a gene expression 
by exercise  

 
It has been reported that aerobic exercise 

improves SR Ca2+ uptake and contractility of 
cardiomyocyte in some models of cardiovascular 
disorders (Natali et al. 2002, Wisløff et al. 2001, Kemi 
and Wisløff 2010). In fact, it was shown that aerobic 
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exercise for 8-weeks in mice caused 30% increase in SR 
Ca2+ uptake; this event was explained by an increase in 
the protein content of SERCA2a (Kemi et al. 2008). 
Furthermore, 8-weeks of strenuous exercise increased the 
expression of SERCA2a protein by approximately 40% 
in the left ventricle, but when exercise was stopped, this 
increase was reversed within a period of one month 
(Carneiro-Junior et al. 2005). However, it is pointed out 
that the mechanism of increased SERCA2a activity due 
to exercise are not well understood. Although, exercise is 
a burden on the homeostasis of energy metabolism which 
causes an increase in the number and function of 
mitochondria, the synthesis of mitochondria requires 
activation of gene expression which cannot be achieved 
without the activation of certain transcriptional factors, 
such as TFAM and TFB2M; both these factors were 
involved in the regulation of SERCA2a (Watanabe et al. 
2011). It is also pointed out that the effect of repeated 
muscular contractions on the activation of TFAM and 
TFB2M is controversial because some reports on 
repeated contractions have reported activation of TFAM 
and TFB2M (Gleyzer et al. 2005) whereas others have 
shown that exercise has no effect on TFAM and TFB2M 
in skeletal muscles (Norrbom et al. 2004). Nonetheless, 
upregulation of TFAM or TFB2M has been reported to 
occur due to exercise (Theilen et al. 2017, Norrbom et al, 
2010, Lumini-Oliveira et al. 2011). For instance, it has 
been shown that when diabetic rats showing both reduced 
SR Ca2+ uptake and TFAM expression, were subjected to 
strenuous exercise for 14-weeks, an attenuation of the 
decrease in TFAM was observed (Lumini-Oliveira et al. 
2011). Furthermore, athletes were found to have 
significantly higher TFB2M mRNA in comparison to less 
active individuals and the blood flow restricted training 
for 10 days in comparison to control showed an upsurge 
in the basal TFB2M levels (Norrbom et al. 2010). 
Therefore, the enhancement in SERCA2a function and 
Ca2+ handling following aerobic exercise can be 
explained by an increase in induction of TFAM or 
TFB2M expression.  

Different regulatory factors and posttranslational 
events have also been considered to explain the 
overexpression of SERCA2a due to exercise. It may be 
noted that exercise has been reported to regulate the 
activity of SERCA2a by phosphorylating PLN, as well as 
by directly modifying the expression of SERCA2a 
protein (Bupha-Intr et al. 2009). Additionally, it was 
shown that exercise causes a significant increase in 
SERCA2a protein without affecting total PLN protein 

and thus inducing a decrease in PLN to SERCA2a ratio 
(Kemi et al. 2007). Furthermore, an enhancement in the 
inotropic and lusitropic sensitivity to β-adrenergic 
stimulation was demonstrated as a response to PLN 
phosphorylation in hypertensive rats subjected to exercise 
(MacDonnell et al. 2005). It was also shown that when 
aged mice were subjected to exercise, SERCA activity 
and SR Ca2+ uptake were normalized (Bupha-Intr et al. 
2009) and it was concluded that exercise would be 
expected to improve SR Ca2+ uptake due to the relief of 
the inhibitory effects of PLN. On the other hand, the 
enhancement in SERCA2a activity due to exercise was 
shown to occur by post-translational modifications when 
mice were subjected to exercise for 6 weeks and a 
significant reduction in cellular O-GlcNAcylation was 
noted (Bennett et al. 2013, Belke 2011). Upon comparing 
mice selected for a high running capacity to those with 
low running capacity, a decrease in O-GlcNAcylated 
SERCA2a to total SERCA2a ratio was reported (Johnsen 
et al. 2013). Such effect was facilitated by SP1 
transcription factor, an O-GlcNAcylation target, which is 
known to alter the activity of some cardiac genes (Belke, 
2011). It emphasized that the role of other 
posttranslational modifications, such as acetylation, 
glutathionylation and sumoylation in the overexpression 
of SERCA2a due to exercise remains to be investigated. 

 
Concluding Remarks 

 
From the foregoing discussion, it is evident that 

SR plays a critical role not only in determining the status 
of heart function but also in maintaining the intracellular 
concentration of Ca2+ at a low level. Such functions of SR 
are carried out by the presence of Ca2+-cycling proteins, 
ryanodine receptors and Ca2+-pump ATPase (SERCA2a), 
which are directly involved in Ca2+-release and  
Ca2+-accumulation for the occurrence of cardiac 
contraction and relaxation, respectively. Furthermore, the 
regulation of SR Ca2+-transport activities is carried out by 
different Ca2+-regulatory proteins such as phospholamban 
(mainly) and InsP3R as well as different phospholipids. 
In addition to several structural proteins, some  
Ca2+-binding and Ca2+-buffering proteins such as 
calsequestrin and SAR have been demonstrated to 
determine the SR function. Extensive work has revealed 
that phosphorylation of phospholamban by protein kinase 
A or CaM Kinase relieves its inhibitory effect on  
Ca2+-cycling proteins in the SR membrane, promotes 
Ca2+-transport activities and augments cardiac function. 
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On the other hand, activation of different proteases and 
phospholipases as well as changes in gene expression 
results in depressing the Ca2+-release and Ca2+-pump 
activities, induce myocardial cell damage and impair 
cardiac performance. The functions of SR Ca2+-cycling 
and Ca2+-regulatory proteins are also markedly altered by 
several post-translational modifications involving various 
reactions such as oxidation, nitrosylation, acetylation, 
lipidation and glycosylation; these alterations are 
associate with cardiac dysfunction. It should be 
emphasized that the occurrence of oxidative stress and 
Ca2+-handling abnormalities are now known to result in 
the development of SR defects and subsequent 
myocardial derangements. Thus different components of 
the SR membrane as well as several processes involved in 
the modification of their functions are considered to be 
excellent targets for drug development to improve heart 
function under a wide variety of pathophysiological 
conditions.  
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