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Summary 
Non-alcoholic fatty liver disease (NAFLD) is linked to type 2 
diabetes mellitus (T2DM), obesity, and insulin resistance. The 
Rho/ROCK pathway had been involved in the pathophysiology of 
diabetic complications. This study was designed to assess the 
possible protective impacts of the Rho/Rho-associated coiled-coil 
containing protein kinase (Rho/ROCK) inhibitor fasudil against 
NAFLD in T2DM rats trying to elucidate the underlying 
mechanisms. Animals were assigned into control rats, non-
treated diabetic rats with NAFLD, and diabetic rats with NAFLD 
that received fasudil treatment (10 mg/kg per day) for 6 weeks. 
The anthropometric measures and biochemical analyses were 
performed to assess metabolic and liver function changes. The 
inflammatory and oxidative stress markers and the 
histopathology of rat liver tissues were also investigated. Groups 
with T2DM showed increased body weight, serum glucose, and 
insulin resistance. They exhibited disturbed lipid profile, 
enhancement of inflammatory cytokines, and deterioration of 
liver function. Fasudil administration reduced body weight, insulin 
resistance, and raised liver enzymes. It improved the disturbed 
lipid profile and attenuated liver inflammation. Moreover, it 
slowed down the progression of high fat diet (HFD)-induced liver 

injury and reduced the caspase-3 expression. The present study 
demonstrated beneficial amelioration effect of fasudil on NAFLD 
in T2DM. The mechanisms underlying these impacts are 
improving dyslipidemia, attenuating oxidative stress, 
downregulated inflammation, improving mitochondrial 
architecture, and inhibiting apoptosis. 
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Introduction 
 

Diabetes mellitus induces derangement in 
metabolism of carbohydrate, lipid, and protein, resulting 
in major problems such as blindness, renal failure, 
hepatic damage, nerve injury, and atherosclerosis [1]. 
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NAFLD is a set of hepatic abnormalities that range from 
basic hepatic steatosis to fulminant symptoms including 
inflammation and hepatic damage, known as 
nonalcoholic steatohepatitis (NASH), which can result in 
cirrhosis, hepatic carcinoma, and eventually hepatic 
failure [2-4]. Many patients with T2DM develop NAFLD 
with its inflammatory complication, NASH [5]. Insulin 
resistance, lipid peroxidation, mitochondrial dysfunction, 
and oxidative stress are all implicated in the 
pathophysiology of NAFLD [6,7]. 

Rho-kinase has been considered one of the 
responsive proteins of the guanosine triphosphate  
(GTP)-binding protein; RhoA. RhoA/Rho-kinase 
pathway has a major role in many cellular physiological 
functions, like contraction of smooth muscles, motility, 
and cell adhesion [8]. Hepatic ROCK1 is significantly 
increased in individuals with hepatosteatosis and is 
associated with some risk factors that cluster around 
resistance to insulin and NAFLD. It was also stated that 
liver ROCK1 inhibit AMP-activated kinase (AMPK) 
activity; a crucial molecule of metabolism [9]. 
Additionally, AMPK enhances the uptake of glucose, 
oxidation of lipid, and mitochondrial bio-formation in 
skeletal muscles, while in liver, it suppresses glucose 
output and synthesis of lipid and enhances lipid oxidation 
[10]. Rho-kinases have been assembled to several 
diabetes-induced pathophysiological signals and were 
stated as hopeful molecular targets for reno-protective 
therapy [11]. While the influence of Rho-kinase signaling 
in diabetic hepatic injury has been scarcely explored. 
Therefore, in the current work, we explored the predictive 
liver protective impacts of fasudil, the Rho/ROCK 
inhibitor in T2DM rat model with NAFLD. 
 
Methods 
 
Animals and protocol 

Twenty-four Wistar healthy adult rats, weighing 
150-180 g were procured from the animal house at the 
faculty of Veterinary Medicine, Zagazig University, 
Egypt. Under hygienic conditions, animals were housed 
in steel wire cages (3-4/cage) at room temperature, on  
a natural light/dark cycle with access to water freely and 
adapted to the new environment for one week before the 
beginning of the experiments. Following acclimatization, 
animals were divided randomly to have a standardized 
diet (57 % carbohydrate, 25 % protein, and 18 % fat) as 
a control group (n=8) or a high-fat diet (n=16) with high 

amounts of corn oil, containing >98 % ω-6 poly 
unsaturated fat acid (PUFA) (HFD, 50 % fat, 38 % 
carbohydrate containing mainly fructose, and 12 % 
protein) for 6 weeks to induce obesity (the diets were 
purchased from Faculty of Agriculture, Zagazig 
University). A single low dose of streptozotocin (STZ) 
(30 mg/kg BW) (Sigma Aldrich Co., USA) dissolved in 
citrate buffer (pH 3.5) was intraperitoneally injected to 
rats within 20 min of preparation (at the end of the fifth 
week) [12,13]. Glucose levels were checked using 
a portable glucometer (Accu-Chek Active, Roche 
Diagnostics Limited, Germany) after 1 week of 
STZ injection in blood samples withdrawn from the tail 
vein. Rats with plasma glucose levels of ≥11.10 mmol/l 
were included in the study for the subsequent 6 weeks. 
Diabetic rats were randomly allocated to HFD+T2DM 
rats, (n=8); and HFD+T2DM+Fasudil rats (n=8) that 
received hydrochloride fasudil (10 mg/kg per day, 
intraperitoneal injection) (Tianjin Hongri Company, 
Tianjin, China) every day for another 6 weeks. The dose 
of fasudil was applied in accordance with previous study 
[12]. The control and HFD+T2DM groups received 
intraperitoneal injections of a sterile vehicle every day 
until the end of the experiment. 
 
Measurement of anthropometric parameters 

Body weight was measured in accordance with 
Nascimento et al. [14]. Rat length, abdominal 
circumference (AC) (the largest zone of the rat abdomen), 
and thoracic circumference (TC) (directly posterior to the 
foreleg) were assessed as described by Novelli et al. [15]. 
Body mass index (BMI): body weight (g)/length2 (cm2) 
and AC/TC ratio (representing an index of abdominal 
obesity) were calculated [15,16]. 
 
Blood biochemical analyses and liver lipid’s extract for 
triglyceride (TG) 

After an overnight fasting, serum was collected 
from retro-orbital blood samples after centrifugation at 
1500×g for 20 min, and kept at -20 °C [17] to be 
processed for biochemical analysis. Serum glucose level 
(mmol/l) was determined colorimetrically using glucose 
colorimetric detection kit (Biosource Europe 
S.A. Belgium, Cat. No. EIAGLUC) as described by 
Ebrahim et al. [18], and serum insulin level (pmol/l) was 
assessed by rat insulin Enzyme-linked Immunosorbent 
Assay (ELISA) Kits (Sigma-Aldrich, Cairo, Egypt, Cat. 
No. EZRMI) as described by Sabir et al. [19]. The 
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standard curve range for insulin was 1.5-48 mIU/l with 
sensitivity of 0.1 mIU/l. By adding acidic solution, the 
reaction was terminated, and absorbance readings were 
noted at 450 nm on a multimode microplate reader 
(Synergy, USA). HOMA-IR (homeostasis model 
assessment-insulin resistance) index was applied to assess 
(HOMA-IR) according to the equation used by Bonora  
et al. [20]: HOMA-IR = fasting serum glucose (mg/dl) × 
fasting serum insulin (μIU/ml)/405. Serum total 
cholesterol (TC) and triglycerides (TG) levels were 
assessed by an enzymatic colorimetric method using 
specific cholesterol and triglycerides kits (Spinreact 
Spain, Cat. No. CHOD-POD and Cat. No. GPO-POD. 
respectively) and analyzed by a spectrophotometer with 
the absorbance was measured at 510 nm with  
a sample/reagent volume ratio as low as 1:150 as 
described by Fossati and Prencipe [21]. High-density 
lipoprotein-cholesterol (HDL-c) level was assessed  
by an enzymatic colorimetric method using HDL 
cholesterol assay kit (Biodiagnostic®, Cairo, Egypt, Cat. 
No. CH 12 30) with the absorbance was measured at 
500 nm as described by Nauck et al. [22]. Serum low-
density lipoprotein-cholesterol (LDL-c) level was 
assessed by using the Friedewald formula [23] as follows: 
LDL-c = TC - HDL - TG/5. Hepatic triglyceride (TG) 
level was assessed in accordance with Foster and Dunn 
[24] after tissue lipids extraction according to the method 
of Folch et al. [25]. A hepatic mixture of 25 mg frozen 
liver tissue, and 100 μl phosphate buffer saline (PBS) 
(w/v, pH 7.4), was added to 500 μl of an extracting 
solvent (chloroform and methanol; 2:1 ratio) for 
homogenization followed by centrifugation at 2500 rpm 
for 5 min at 4 °C. The supernatant was collected followed 
by washing of the mixture with 100 μl of 0.9 % normal 
saline (NS) at room temperature (RT), which was left for 
separation of its components into layers. The lipid lower 
layer was shifted to another test tube, and subjected to 
evaporation at 70 °C using a water bath. After drying, 
10 μl of the mixture was added to 100 μl of PBS to 
measure TGs content using the conventional TGs kits 
(Sigma-Aldrich, Cairo, Egypt, Cat. No. MAK266) on 
biosystems bioanalyzer, the absorbance was measured at 
570 nm and the unit was expressed as mg/g liver. 

Alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) activity in the serum were 
assessed by sandwich enzyme-linked immunosorbent 
assay (ELISA) system. They were measured via a Rat 
ALT ELISA kit (Kamiya Biomedical Company,  

KT-6104, Gateway Drive, Seattle) and a Rat AST ELISA 
kit (Sunred Biological Technology, 201-11-0595, China), 
respectively, by the method of Vassault [26]. Serum 
albumin was assessed by using bromocresol green 
according to the method described by Wack and 
Warmolts [27]. Serum tumor necrosis factor α (TNF-α) 
concentration was assessed by TNF-α (Rat) ELISA kits 
purchased from ALPCO (45-TNFRT-E01.1). The 
standard curve range for TNF-α was 10-320 pg/ml with 
a 1.0 pg/ml sensitivity. By adding acidic solution, the 
reaction was terminated, and absorbance readings were 
noted at 450 nm on a multimode microplate reader 
(Synergy, USA). The high sensitivity C-reactive protein 
(hs-CRP) level was assessed using ELISA kit  
(Cat. No. ERC1021-1; ASSAYPRO, USA) according to 
manufacturer-provided standards and protocols [28]. 
 
Hepatic Oxidative Stress (OS) markers 

Liver tissues were processed to obtain a 10 % 
homogenate (w/v) in a 20 mM cold aminomethane 
(hydroxymethyl) buffer (pH 7.4). Supernatants were 
collected after centrifugation of homogenates at 1,500× g 
for 30 min at 4 °C to estimate oxidative stress markers. 
Malondialdehyde (MDA) as a lipid peroxidation indicator 
was measured using bio diagnostic kit according to 
Varshey and Kale [29]. Hepatic superoxide dismutase 
(SOD) was assessed using phenazine methosulfate (PMS) 
depending on nitro-blue tetrazolium inhibition as 
described by Misra and Fridovich [30]. According to 
Rajurkar et al. [31], the activity of glutathione  
S-transferase (GST) was estimated with the help of  
1-chloro-2,4-dinitrochlorobenzene. A GST unit is defined 
as l mol of CDNB-GSH conjugate formed/min/mg 
protein. Glutathione Peroxidase (GPx) activity assay of 
liver extract was assessed in accordance with the method 
applied by Paglia and Valentine [32] with partial 
modification. Simply, the method was based on peroxides 
reduction at 340 nm in the existence of nicotinamide 
adenine dinucleotide phosphate (NADPH). One unit (U) 
of GPx activity was defined as the quantity of enzyme 
needed to catalyze the oxidation of 1 nM NADPH  
for one minute. Kits for MDA (Cat. No. MAK085), SOD 
(Cat. No. 19160), GST (Cat. No. MAK453), and  
GPx (Cat. No. MAK437) were bought from Spectrum 
Co. (Sigma-Aldrich, Cairo, Egypt). 
 
Histopathological evaluation of liver tissue 

Fresh livers were excised and weighed to 
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estimate liver index (% = liver weight/body weight 
× 100) then processed for histopathological examinations. 
10 % buffered formalin was used to fix liver specimens 
for 48-60 h followed by processing in ethyl alcohol and 
xylene series to prepare paraffin blocks. Hematoxylin and 
eosin (H&E) stained sections (5 µm thick) of hepatic 
tissue were prepared to examine the hepatic architectural 
changes [33]. The pathologist assessed and scored the 
stained specimens blindly using an optical microscope 
with attached camera. NAFLD histological scoring was 
based on the NAFLD Activity Score (NAS) nominated 
by The Pathological Committee of the NASH Clinical 
Research Network [34]. The scores were the summation 
of the following scores: Steatosis (0=<5 %, 1=5-33 %, 
2=34-66 %, 3=>66 %), lobular inflammation (0=no foci, 
1=<2 foci per 200× field, 2=2-4 foci per 200× field, 
3=>4 foci per 200× field), and ballooning (0=none, 
1=rare or few, 2=many or prominent). A NAS score ≥5 
was defined as NASH; 2<NAS<5 was defined as 
borderline NASH, and NAS≤2 was simple steatosis [35]. 
Evaluation of Liver fibrosis was conducted using Sirius 
red stained liver sections. Slides were incubated 
overnight with 0.1 % Sirius red (Sigma-Aldrich, UK), 
treated with 0.01 M hydrochloric acid and followed by 
dehydration in serial ethanol concentrations without 
water. The Image J software was used to measure the area 
percentage of fibrosis in Sirius red-stained hepatic 
sections. The fibrosis score was also done using  
a five-point scale (0 no fibrosis, 1 fibrosis encircling 
portal area with no septa, 2 few septa, 3 multiple septa 
with no cirrhosis, 4 cirrhosis), which was discussed by 
previous research work [36]. 
 
Immunohistochemical staining with anti-caspase-3 antibody 

Apoptotic areas were demonstrated in anti-
caspase-3 antibody immunostained liver slides  
(Cat. No. ab4051, Abcam, USA). Phosphate-buffered 
saline was applied for deparaffinized section after 
incubation with 3 % hydrogen peroxide at room 
temperature for 10 min to mask the endogenous 
peroxidase activity. A primary antibody (biotinylated 
goat anti-rabbit antibody diluted 1:200 at room 
temperature for one hour) was incubated with liver 
sections overnight to detect the presence of apoptosis 
markers. Lastly, liver slides were counterstained with 
hematoxylin and dehydrated in ethanol then eventually 
mounted with DPX [37]. Microscopically, positive 
immunoreactivity for caspase-3 staining was recognized 

by observing the brownish coloration of the 
immunoreactive cells [38]. 

The immunoreactivity of caspase-3 was 
subsequently measured by quantitative morphometric 
assay of mean area percentage in immuno-stained liver 
sections. It was measured in five high-power different 
fields from six rats using “Leica Qwin 500” 
(Microsystems Imaging Solutions Ltd, Cambridge, 
United Kingdom) as an image analyzer computer system. 
Then, data were statistically analyzed. 
 
Transmission electron microscopy (TEM) 

Fixing the freshly sliced liver tissues was done 
by 3 % glutaraldehyde (pH 7.4) in phosphate buffer 
followed by 2 % osmium tetroxide in phosphate buffer. 
Tissues were processed in increasing ethanol 
concentrations before being immersed in araldite resin. 
Staining of ultrathin liver slices was performed using 
uranyl acetate saturated in 70 % ethanol and lead citrate 
[39]. The preparation was performed in the Faculty of 
Science, Zagazig University and examined using a JEOL 
transmission electron microscope JEM-100, CX, Japan. 
 
Statistical analysis 

Results were presented as mean ± SD by using 
SPSS program version 26 (SPSS Inc. Chicago, IL, USA). 
Shapiro-Wilk’s test was used to test Quantitative data 
normality. Normally distributed data was considered if 
P>0.05. One-way analysis of variance (ANOVA) was 
used to assign differences in quantitative data among 
groups of the research, followed by post hoc least 
significant differences (LSD) test. The significance of 
statistically analyzed data was depicted, when the P-value 
is less than 0.05. 
 
Results 
 
Effect of fasudil on anthropometric parameters 

At the beginning of the study, there were no 
significant variations in body weight across the groups. 
When comparing the HFD+T2DM group to the control 
group, marked body weight gain and significant increases 
in BMI, AC, and AC/TC ratio were detected at the end of 
the study duration (after 12 weeks). In contrast to the 
HFD+T2DM group, rats in the HFD+T2DM+Fasudil 
group showed significant reductions in all indicators of 
obesity when compared to the HFD+T2DM group 
(Table 1). 
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Effect of fasudil on liver weight and liver index 
In compared to the control group, the 

HFD+T2DM group had a dramatic increase in liver 
weight and liver index. Conversely, fasudil treatment led 
to a considerable drop in liver weight and liver index in 
the HFD+T2DM+Fasudil group relative to HFD+T2DM 
group (Table 1). 

 
Effect of fasudil on serum glucose, lipid and metabolic 
profiles 

The HFD+T2DM group, showed marked rise in 
serum glucose, insulin, HOMA-IR, TC, TG, LDL, and 
hepatic TG levels in addition to significant reduction in 
HDL compared to normal control group. In the 
HFD+T2DM+Fasudil group, fasudil treatment 
significantly lowered serum glucose, insulin, HOMA-IR, 
TC, TG, LDL, and hepatic TG levels while significantly 
elevated HDL level compared to the HFD+T2DM group 
(Table 2). 
 
Effect of fasudil on liver enzymes, albumin, hepatic 
inflammatory markers 

The impact of fasudil on liver function, 
inflammatory marker alterations, and hepatic TG was 
evaluated. In comparison to the normal control group, the 
HFD+T2DM group exhibited a significant rise in the 
levels of ALT, AST, TNF-α, hs-CRP, and liver TG and 
significant reduction in the levels of albumin. In the 
HFD+T2DM+Fasudil group, daily injections of fasudil 
significantly lowered ALT, AST, TNF-, and CRP levels, 
but significantly raised albumin levels when compared to 
the HFD+T2DM group (Table 2). 
 
Effect of fasudil on hepatic oxidant/antioxidant markers 

We evaluated the MDA levels as an oxidative 
stress marker and the antioxidant enzymatic activity of 
SOD, GST, and GPx levels were evaluated to assess how 
fasudil influenced markers of hepatic oxidative stress. 
When comparing the HFD+T2DM group to the  
normal control group, it was reported that hepatic MDA 
levels were significantly higher, while SOD, GST,  
and GPx activities were significantly lower. In 
HFD+T2DM+Fasudil rats, daily injection of fasudil for 
6 weeks drastically improved these alterations (Table 3). 
 
Histopathological results of liver tissue 

In the control group, hepatic H&E histopatho-
logy revealed normal hepatic architecture, showing 

a normal hepatocyte grouped around a central vein in the 
form of cords spaced by blood sinusoids (Fig. 1A).  
HFD induced non-alcoholic steatohepatitis with marked 
micro and macro steatosis in hepatocytes (steatosis 
score 3) with ballooning degeneration and lobular 
inflammatory infiltrate with the congested dilated central 
vein in HFD+T2DM group, NASH score from 5 to 6 
(Fig. 1B). Moreover, HFD+T2DM+Fasudil group 
revealed a significant amelioration in hepatic lesions with 
mildly dilated central veins and partially restoring the 
normal architecture of the liver where most hepatocytes 
show normal vesicular nuclei, but still showing mild fatty 
changes in the form of macrosteatosis in hepatocytes and 
hydroid degeneration in comparison to HFD+T2DM 
group (Fig. 1C). Sirius red stained sections were examine 
and scored for hepatic fibrosis showing strong deposition 
of coarse collagen fibers around the portal areas 
extending to few hepatic lobular septa (score 2) in 
HFD+T2DM group (Fig. 2B) compared to control 
(Fig. 2A), which showed no fibrosis (score 0) except for 
fine scarce collagen around some portal areas and central 
vein. Whereas, HFD+T2DM+Fasudil group revealed 
marked reduction in collagen deposition around portal 
areas (Fig. 2C) and central vein (score 1) (Table 4). 
Furthermore, collagen deposition (mean area %) was 
significantly (P<0.001) less in HFD+T2DM+Fasudil 
group compared to HFD+T2DM as showed by the 
quantitative analysis using Image J software (Fig. 2D). 
 
Caspase-3 immuno- staining 

The control group had negligible positive 
reacted cells (Fig. 3A), according to immunohisto-
chemical staining of liver tissue. The immunoreactivity of 
other experimental groups to caspase-3 was shown in 
(Fig. 3B-D) revealing an apparently positive brown 
cytoplasmic reactivity in a majority of cells in 
HFD+T2DM group sections (Fig. 3B). Oppositely, the 
tissue of the HFD+T2DM+Fasudil group, showed just  
a few scattered positive brown cytoplasmic reactive cells 
(Fig. 3C). The % area of caspase-3 immuno-expression in 
the HFD+T2DM group, demonstrated a considerable 
increased expression of caspase-3 relative to the control 
rats. These effects in the HFD+T2DM+Fasudil group 
show a significant decrease confirming the microscopic 
observations as illustrated in (Fig. 3D), (Table 5). 
 
Transmission electron microscopy examination 

Normal hepatic structure was observed in 
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TEM examined liver sections of the control group 
(hepatocytes revealed typical nucleoplasm with spherical 
nuclei surrounded by an apparent nuclear envelop with 
fine granular chromatin). The cytoplasm showed 
mitochondria, rough endoplasmic reticulum, glycogen 
inclusions (Fig. 4A, B). In HFD+T2DM, abnormal 
hepatocytes with large aberrant lipid droplets, glycogen 
inclusions depletion, and swollen mitochondria were 
detected in addition to reduced junctional complexes in 
the cytoplasm of hepatocytes, and wide sinusoidal spaces 

(Fig. 5A, B, C, D). However, as compared to the 
HFD+T2DM group, the HFD+T2DM+Fasudil group 
demonstrated improvement in the context of fewer lipid 
droplets, normal nucleoplasm in the hepatocytes, with 
spherical nuclei surrounded by an evident nuclear 
envelop and fine granular chromatin. Mitochondria, 
rough endoplasmic reticulum, glycogen inclusions 
reappeared, and Mallory bodies were all seen in the 
cytoplasm signifying a change in hepatocyte morphology 
with fasudil treatment (Fig. 6). 

 
 
Table 1. Anthropometric parameters, liver weight and liver index in all studied groups. 
 

Parameters Control HFD+T2DM HFD+T2DM+Fasudil 

Initial body weight (g) 161.11 ± 13.33 163.32 ± 5.63 160.62 ± 9.61 
Final body weight (g) 202.32 ± 17.81 329.21 ± 13.12a*** 284.30 ± 26.62a***, b** 
Final BMI (g/cm2) 0.57 ± 0.06 0.86 ± 0.08a*** 0.66 ± 0.09a**, b** 
AC (cm) 16.75 ± 1.10 22.03 ± 1.67a*** 20.6 ± 1.15a*** 
AC/TC ratio 1.07 ± 0.02 1.16 ± 0.05a*** 1.11 ± 0.03a*, b* 
Liver weight (g) 6.08 ± 0.87 12.85 ± 1.74a*** 9.77 ± 1.53a***, b** 
Liver index (%) 2.99 ± 0.21 4.14 ± 0.23a*** 3.54 ± 0.20a***, b** 

 
Data are expressed as mean ± SD. P value by one-way ANOVA, followed by post hoc test “LSD”; a vs. Control group; b vs. HFD+T2DM 
group. P<0.05 is considered statistically significant. * P<0.05, ** P<0.01, *** P<0.001. Abbreviations: BMI: body mass index;  
AC: abdominal circumference; TC: thoracic circumference. 
 
 
Table 2. Serum biochemical parameters and TG in liver homogenate in all studied groups. 
 

Parameters Control HFD+T2DM HFD+T2DM+Fasudil 

Glucose (mmol/l) 4.79 ± 0.62 11.18 ± 1.76a*** 9.41 ± 1.02a***, b* 
Insulin (pmol/l) 1399.31 ± 220.42 175.35± 34.24a*** 132.15 ± 27.57a**, b* 
HOMA-IR index 2.47 ± 0.83 12.85 ± 4.27a*** 8.11 ± 2.44a**, b** 
Cholesterol (mmol/l) 2.91 ± 0.22 4.73 ± 1.12a*** 4.00 ± 0.42a** 
Triglycerides (mmol/l) 0.84 ± 0.16 1.60 ± 0.33a*** 1.21 ± 0.33a*, b* 
HDL-c (mmol/l) 1.25 ± 0.23 0.61 ± 0.22a*** 0.87 ± 0.17a**, b* 
LDL-c (mmol/l) 1.22 ± 0.25 2.42 ± 0.55a*** 1.81 ± 0.50a*, b* 
Albumin (µmol/l) 568.76 ± 48.15 448.39 ± 55.67a*** 511.59 ± 31.60a*, b* 
ALT (µkat/l) 0.69 ± 0.07 1.49 ± 0.20a*** 0.94 ± 0.18a**, b*** 
AST (µkat/l) 1.34 ± 0.15 2.00 ± 0.20a*** 1.59 ± 0.25a*, b** 
TNF-α (pg/ml) 15.25 ± 3.81 44.16 ± 9.41a*** 32.83 ± 8.54a***, b* 
hs-CRP (nmol/l) 0.42 ± 0.17 1.11 ± 0.35a*** 0.76 ± 0.22a*, b* 
Hepatic TG (mg/g) 8.86 ± 0.69 15.29 ± 0.95 12.00 ± 0.81 

 
Data are expressed as mean ± SD. P value by one-way ANOVA, followed by post hoc test “LSD”; a vs. Control group; b vs. HFD+T2DM 
group. P<0.05 is considered statistically significant. * P<0.05, ** P<0.01, *** P<0.001. Abbreviations: HOMA-IR index: Homeostatic 
Model Assessment-Insulin Resistance index; HDL-c: high density lipoprotein-cholesterol; LDL-c: low density lipoprotein-cholesterol;  
ALT: Alanine aminotransferase, AST: Aspartate aminotransferase; TNF-α: Tumor necrosis factor α; CRP: C-reactive protein;  
TG: triglyceride. 
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Table 3. Oxidative stress markers in all studied groups. 
 

Parameters Control HFD+T2DM HFD+T2DM+Fasudil 

MDA (nmol/g protein) 2.04 ± 0.35 4.13 ± 1.28a** 3.13 ± 1.06a* 
SOD (U/mg protein) 74.52 ± 16.16 25.00 ± 10.43a*** 48.8 ± 15.53a**, b* 
GST activity (U/mg protein) 11.88 ± 1.85 5.58 ± 2.03a*** 9.25 ± 1.14a*, b** 
GPx activity (U/mg protein) 1.88 ± 0.14 0.52 ± 0.15a*** 1.33 ± 0.12a***, b*** 

 
Data are expressed as mean ± SD. P value by one-way ANOVA, followed by post hoc test “LSD”; a vs. Control group; b vs. HFD+T2DM 
group. P<0.05 is considered statistically significant. * P<0.05, ** P<0.01, *** P<0.001. Abbreviations: MDA: malondialdehyde;  
SOD: superoxide dismutase; GST: Glutathione S-transferase; GPx: Glutathione Peroxidase. 
 
 
Table 4. Histopathological scoring of liver injury induced by HFD. 
 

Parameter Control HFD+T2DM HFD+T2DM+Fasudil 

NAS 0 ± 0 6.08 ± 1.42a*** 2.33 ± 0.82a***, b*** 
 
Data are expressed as mean ± SD. P value by one-way ANOVA, followed by post hoc test “LSD”; a vs. Control group; b vs. HFD+T2DM 
group. P<0.05 is considered statistically significant. *** P<0.001. Abbreviations NAS: NAFLD activity scoring. 
 
 
Table 5. Immunohistochemical expression of caspase -3 in the three studied groups. 
 

Parameter Control HFD+T2DM HFD+T2DM+Fasudil 

Caspase-3 expression 0.78 ± 0.18 2.67 ± 0.79a*** 1.83 ± 0.46a**, b* 
 
Data are expressed as mean ± SD. P value by one-way ANOVA, followed by post hoc test “LSD”; a vs. Control group; b vs. HFD+T2DM 
group. P<0.05 is considered statistically significant. * P<0.05, ** P<0.01, *** P<0.001. 
 
 

 
 
Fig. 1. representative photomicrograph of H&E stain of liver tissue of normal control group (A): showing central vein (cv) surrounded 
with normal hepatocytes (arrow head) arranged in cords and separated by blood sinusoids (s); HFD+T2DM group (B): liver tissue 
showing dilated central veins (CV), NASH with marked micro (wavy arrow) and macro (bifid arrow) -steatosis in hepatocytes with 
ballooning degeneration (short arrow) along with inflammatory cellular infiltration (if); HFD+T2DM+Fasudil group (C): showing mildly 
dilated central veins (cv) and partially restoring the normal architecture of the liver where most hepatocytes show normal vesicular 
nuclei (arrow head), but still showing mild fatty changes in the form of macrosteatosis in hepatocytes (bifid arrow) and hydrobic 
degeneration (short arrow) (H&E ×400). 
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Fig. 2. Representative image of Sirius red stained liver tissue collected from all rats’ groups; (A) Control (B) HFD+T2DM group  
(C) HFD+T2DM+Fasudil group. Arrows in (A) point to the fine collagen deposition in the portal area (P) and surrounding the central 
vein (V), arrows and arrow head in (B) point to the heavy collagen deposition encircling the portal region (P) and extending in the 
septa. Whereas, arrows in (C) point to the fine collagen deposition around both portal area (P) and central vein (V). Magnification, 
×200. (D) Represents a quantitative analysis of liver fibrosis determined by % collagen deposition calculation from Sirius red stain. Data 
are displayed as mean ± SD. *** P<0.001 vs. control group and ### P<0.001 vs. HFD+T2DM group. 
 

 
 
Fig. 3. Representative image of immunohistochemical staining of liver sections with anti-caspase-3 antibody from various studied 
groups (A) Control (B) HFD+T2DM group (C) HFD+T2DM+Fasudil group. Arrowhead points to the brown coloration of the immuno-
positive cells. (D) Histogram shows the % area of immuno- positive cells from the various experimental groups. HFD+T2DM group 
showed significant increase in caspase-3 immunostaining compared to other groups. HFD+T2DM+Fasudil group revealed weakly 
positive immunostaining. 
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Fig. 4. TEM representative of the liver tissue of normal control rats. (A) Revealed normal hepatocytes as well as normal sinusoids with 
no abnormal features. The hepatocytes showed normal nucleoplasm with round nuclei surrounded by obvious nuclear envelop with fine 
granular chromatin. The cytoplasm showed mitochondria (M), rough endoplasmic reticulum (RER). (B) Revealed normal hepatocytes 
with normal nucleoplasm with round nuclei and nuclear envelop. The cytoplasm showed mitochondria (M), glycogen inclusions (GL). 
 
 

 
 
Fig. 5. TEM examination of the liver tissue of HFD+T2DM group. (A) Showed abnormal hepatocytes with wide sinusoids, marked fat 
droplets infiltration (L) with glycogen inclusions depletion. (B) Abnormal hepatocytes with wide sinusoids, marked fat droplets 
infiltration (L). (C) Abnormal hepatocytes with wide sinusoids swollen mitochondria (M), marked fat droplets infiltration (L) with 
infrequent glycogen inclusions. (D) The abnormal hepatocytes with abnormal nuclear chromatin distribution (N), significant fat droplets 
infiltration (L). 
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Fig. 6. TEM examination of the liver tissue of HFD+T2DM+Fasudil group, revealed improved hepatocytes appearance. The hepatocytes 
showed normal nucleoplasm with round nuclei surrounded by obvious nuclear envelop with fine granular chromatin. The cytoplasm 
showed mitochondria (M), rough endoplasmic reticulum (RER), reappearance of glycogen inclusions (GL), and Mallory body (MB). 
 
 
Discussion 
 

Several studies [40,42] have proven a link 
between NAFLD, type 2 diabetic patients, and obesity. 
NAFLD poses a serious threat because it has been 
identified as a trigger for subacute liver failure, cirrhosis, 
and hepatoma [43]. Furthermore, there were metabolic 
problems associated with it, such as hyperglycemia, 
insulin resistance, and hyperlipidemias [44], which were 
linked to inflammation and oxidative stress [45]. 

The rat model of NAFLD was effectively 
constructed in the current study. Insulin resistance was 
created from a single STZ injection (30 mg/kg) to 
generate an evident hyperglycemia, followed by the 
HFD feeding regimen [46]. 

The metabolic syndrome induced by obesity was 
found to be related to Rho-associated coiled-coil-
containing kinase (ROCK) [47,48], a serine/threonine 
protein kinase identified as a guanosine triphosphate 
(GTP)-Rho-binding protein, which induce insulin 
resistance through influencing the insulin receptor 

substrate-1 (IRS-1) phosphorylation [49]. Fasudil was 
documented as an inhibitor of the ROCK pathway, which 
interfere with both ROCK1 and ROCK2 kinase activity 
[50]. Therefore, we built our hypothesis upon the 
previously mentioned documentations and investigated 
the impact of fasudil on NAFLD in type 2 diabetic rats. 
Figure 7 summarizes the anti-NAFLD mechanistic 
activity of fasudil. 

The model group (HFD+T2DM) showed marked 
body weight gain, increased BMI, and AC/TC ratio in 
relation to control group, as previously reported by 
Gaballah et al. [51]. Moreover, histopathological 
examination of extracted liver tissue from rats of 
HFD+T2DM group showed the typical picture of 
NAFLD-related initial portal fibrosis. Figure 1B, which 
was discussed by earlier studies [52,53], in addition to the 
microstructural changes revealed by TEM pictures 
showing early stage of mitochondrial degeneration 
(Fig. 5A-D). Also, there was an accompanying 
hyperglycemia, hyperinsulinemia, dyslipidemia, and 
deterioration of hepatic functions with elevation of 
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hepatic oxidative stress and proapoptotic markers 
expression. Whereas, fasudil-treated group showed 
amelioration of all hepatic structural (Fig. 1C, 6) and 
functional alterations together with improved metabolic 

changes primarily insulin resistance and glucose 
dysregulation, which are greatly involved in T2DM and 
NAFLD [54,55]. 

 
 

 
 

Fig. 7. A summarized graph of the anti-NAFLD mechanistic activity of fasudil. 
 
 

The improved structural and functional 
deteriorations of liver with fasudil treatment was 
supported by Kuroda et al. [56] who reported enhanced 
hepatic blood flow in rat steatotic livers after hepatic 
ischemia-reperfusion injury with the use of Rho-kinase 
inhibitors, which induced direct relaxation of hepatic 
stellate cells concomitant with nitric oxide synthase 
activation in sinusoidal endothelial cells, and suppression 
of neutrophil infiltration [57,58]. Moreover, fasudil 
administration reduced liver fibrosis in type 2 diabetics 
by suppressing transforming growth factor-β1 
(TGFβ1)/connective tissue growth factor (CTGF) 
pathway and α-smooth muscle actin (α-SMA) expression, 
according to a prior study [12], which is consistent with 
our findings of reduced collagen deposition around portal 
areas and central vein in Sirius red stained liver sections. 

The correlation between the ROCK activity, 
T2DM, obesity, fatty liver, and insulin resistance was 
reported after observing an elevated hepatic ROCK 
receptors expression concomitant with marked hepatic 
damage in obese diabetic animal models [9]. The Rho 
kinase inhibition impact on obesity and insulin resistance 
was attributed to its impact in adjusting the obese rats’ 
uncoupling protein 1 (UCP-1) levels [59], which 

consequently reflects on the AMPK [60] resulting in 
enhanced insulin sensitivity and body weight reduction 
[61]. This is in agreement with our observations in 
HFD+T2DM+Fasudil group, which showed improve-
ments in glucose dysregulation, insulin resistance, and 
body weight loss. 

NAFLD was linked with high total cholesterol, 
TG, LDL-c, and low HDL-c serum levels as previously 
reported [37,62], all of which improved with fasudil 
treatment in the current study. This improvement can be 
explained by controlled fatty acid oxidation, and 
mitochondrial energy production [61] through 
peroxisome proliferator-activated receptor (PPAR)-α 
activation [63], which modulates dyslipidemia and arrests 
the NAFLD progression in obese diabetic rats. 

Increased serum TNF-α protein, IL-6, IL-1β, and 
CRP levels have been assigned as contributory factors of 
NAFLD development with prolonged HFD consumption 
[64] and linked to activation of Kupffer cells in the liver 
[65]. Many studies have reported ROCK Inhibitors as 
anti-inflammatory [66,67] emphasizing their role against 
TNF-α induced inflammation in diabetes [68]. The 
mitigating effect of fasudil on serum TNF-α, IL-6, and 
CRP levels in HFD-fed rats is mediated by ROCK 
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pathway inhibition [69] distorting the axis of  
TNF-α/NADPH oxidase-dependent reactive oxygen 
species (ROS) generation [68], this is in consistent with 
our observations, which showed a significantly 
suppressed activity of hepatic SOD and GST, and higher 
MDA levels concomitant with lower hepatic 
inflammatory markers expression. 

NAFLD has been linked to increased 
mitochondrial ROS levels and inhibited ROS detoxifying 
mechanisms in different studies, which were carried in 
vitro or in vivo [70-72]. This mitochondrial dysfunction 
had significant role in emergence of insulin resistance 
and T2DM as reported previously by Urbanova et al. 
[73]. The potential antioxidant effect of fasudil is related 
nuclear translocation of nuclear factor-like 2 activation 
[74]. Moreover, using fasudil, improved mitochondrial 
structure in HFD/STZ diabetic rats with subsequent 
attenuation of oxidative stress [75], which is consistent 
with our findings regarding improved mitochondrial 
architecture in hepatocytes as shown by transmission 
electron microscopy. 

Hepatocellular apoptosis and excessive lipid 
buildup were discovered to have a significant link, with 
free fatty acids being the primary inducers of 
“lipoapoptosis” [76]. The level of cytochrome c in 
mitochondria has been distinguished as the most striking 
feature of NAFLD in majority of animal models, and was 
linked to the disease severity [77]. Accordingly, fasudil 
effect on the caspase-3 hepatic expression was analyzed 
showing a marked attenuation in HFD+T2DM+Fasudil 
group compared to HFD+T2DM group. This is consistent 
with findings of Thorlacius et al. [78], who reported 
reduction of hepatic levels of caspase-3 with fasudil in 
septic liver injury due to direct inhibition hepatic 
infiltration of leukocytes and TNF-α production. 
Furthermore, Ikeda et al. [79] demonstrated that Rho-

kinase inhibitors reduce apoptosis in cultured hepatocytes 
by lowering the caspase-3 activity and stimulating the 
Akt (protein kinase B), which disrupts the 
phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. 

Our findings revealed that fasudil treatment 
resulted in a noteworthy decrement in the hepatic lesions, 
as well as a partial restoration of the liver's natural 
architecture and function. Our findings further show that 
fasudil may have a hepatoprotective impact in the liver by 
preserving hepatic mitochondria and having an anti-
apoptotic effect. This new pathway could be added to 
existing ones such as anti-inflammatory, anti-oxidative, 
and insulin resistance reduction. 
 
Conclusions 
 

The present study emphasizes the beneficial 
ameliorating effect of fasudil on NAFLD and the 
underlying mechanisms including improved 
dyslipidemia, attenuated oxidative stress, downregulated 
inflammation, improved mitochondrial architecture, and 
apoptosis. Taken together, these data shed light on fasudil 
use as a potential promising protective agent against liver 
injury in HFD fed rats and other therapeutic purposes. 
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