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Summary 
Macrophages are a specific group of cells found in all body 
tissues. They have specific characteristics in each of the tissues 
that correspond to the functional needs of the specific 
environment. These cells are involved in a wide range of 
processes, both pro-inflammatory and anti-inflammatory (“wound 
healing”). This is due to their specific capacity for so-called 
polarization, a phenotypic change that is, moreover, partially 
reversible compared to other differentiated cells of the human 
body. This promises a wide range of possibilities for its influence 
and thus therapeutic use. In this article, we therefore review the 
mechanisms that cause polarization, the basic classification of 
polarized macrophages, their characteristic markers and the 
effects that accompany these phenotypic changes. Since the 
study of pulmonary (and among them mainly alveolar) 
macrophages is currently the focus of scientific interest of many 
researchers and these macrophages are found in very specific 
environments, given mainly by the extremely high partial 
pressure of oxygen compared to other locations, which 
specifically affects their behavior, we will focus our review on this 
group. 
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Basic populations of macrophages 

 
Macrophages were first described in 1883 by 

Metchnikoff and were characterized as a population of 
phagocytic cells involved in the development of 
inflammation [1]. All macrophages and tissue-specific 
cells derived from them, belong to the monocytic 
phagocytic system. It includes cells circulating in the 
blood that are able to infiltrate various tissues on demand 
and differentiate into different forms depending on the 
local presence of various stimulating factors. These cells 
are also described as so-called exudative macrophages 
and their source are bone marrow haematopoietic 
progenitors in adulthood [2]. The second group is 
represented by the so-called resident macrophages. These 
are long-lived cells settled in various tissues (e.g. Kupffer 
cells in the liver, microglia in the brain, Langerhans cells 
in the epidermis) and have the ability to self-renew [3-5]. 
In the lung, these cells are localized directly in the tissue 
of pulmonary system (interstitial (IM) and pleural 
macrophages) or in the bronchoalveolar space (classified 
as alveolar macrophages (AM)). [6,7]. The environment 
of AMs is quite different compared to that of tissue 
macrophages in other locations, characterized primarily 
by a significantly higher partial pressure of oxygen, 
which may be one of the reasons for their quite different 
functional properties. Therefore, we will focus on this 
population and use interstitial macrophages as  
a representative of tissue macrophages to highlight their 
specifics. 

 
Origin of pulmonary macrophages 

 
The colonization of tissues by these resident 

macrophages starts already during early embryonic 
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development from yolk sac progenitor cells, later from 
the liver and from bone marrow in the fetal period [8-10]. 
It seems that further colonization by this type of cells 
arising from bone marrow cells is possible also 
postnatally. [2,11,12]. In the case of AM, the increase is 
highest in the early postnatal period. [13]. During 
senescence, there is usually a decrease in their number 
and the number of macrophages is compensated by newly 
recruited cells [14,15].  

In comparison with AM, IM arise mainly from 
blood and lung monocytes with a small portion of cells 
originating from the yolk sac (as demonstrated in mice) 
[16]. During life, they are slowly replaced by circulating 
monocytes [17,18]. The different origin of these 
macrophages may be the reason for their different 
representation in the lung tissue and their distinct 
characteristics, including their specific energy 
metabolism (see below). [19].  

Unfortunately, most of the knowledge on the 
development of tissue colonization is based mainly on 
murine experiments [20-27] due to the limited ability to 
obtain experimental samples from humans. Nevertheless, 
we can assume that the processes leading to the 
establishment and behavior of resident macrophage 
populations are similar in animal and human models. In 
the fetal and postnatal periods, colonization of tissues, 
including the lung, and macrophage differentiation occurs 
primarily under the influence of granulocyte-macrophage 
colony-stimulating factor. (GM-CSF), macrophage 
colony-stimulating factor (M-CSF), transforming growth 
factor β (TGF-β), and peroxisome proliferator-activated 
receptor γ (PPARγ) [24, 26, 28, 29]. While M-CSF 
probably plays a greater role in tissues, the key substance 
in AM differentiation appears to be GM-CSF, secreted by 
type II alveolar pneumocytes, where its production is 
under control of miR133a and b [30]. This molecule 
subsequently influences PPARγ expression and, through 
it, a number of other functions including control of lipid 
metabolism. TGF-β is formed directly by AM and not 
only promotes further tissue colonization, but is 
implicated in the maintenance of homeostasis in the lung 
by promoting immune tolerance. The effect of M-CSF is 
mediated primarily via colony-stimulating factor receptor 
1 and interleukin (Il)-34 [31-33], which, through 
transcription factors identical to those involved in the 
proliferation of pluripotent stem cells (c-MYC, Krüppel-
like factors (KLF) 2 and 4) [5,34,35] directly affects the 
proliferation and therefore self-renewal of these cells. 
Since GM-CSF is more important for AM homeostasis 

compared to other macrophage populations, where the 
key role is played by CSF receptor 1, stimulation of CSF 
receptor 2 is more important in the self-renewal process 
of this population. From the above, it is likely that  
a possible cause of the decline of resident macrophages, 
including AM, during aging is again the change in the 
activity of the above-mentioned transcription factors [15].  

 
Specifics of the macrophages populations in 
the lungs  

 
As we mentioned above we center our interest 

especially on macrophages populations in lungs. In the 
lungs, we distinguish two basic types of macrophages: 
alveolar and tissue (if we omit the macrophages present 
in the pulmonary circulation). Tissue macrophages are 
found directly in lung tissue (IM) but are also part of the 
pleural membrane (pleural macrophages, which are 
mainly involved in controlling the development of 
inflammation and neutrophil recruitment in the following 
situations [36]). Each of these types is settled in  
a different area of the lung tissue, perform various 
functions and exhibit different specific features. Although 
we will mainly focus on the properties of AM, it is 
necessary to highlight their specifics to mention some 
basic characteristics of pulmonary tissue macrophages. 

 
Interstitial macrophages 

 
IM are a population that is less studied due to 

their more complicated acquisition by tissue digestion 
[37]. IM have a shorter lifespan compared to AM 
(observed in rhesus macaques) [38]. The IM pool 
recovers faster after the depletion of both populations, 
(describted in mice) [17]. This is probably supported by 
the recruitment of monocytes from circulation that 
preferentially differentiate into IM under the influence of 
M-CSF.  

This population is characterized by the presence 
of high levels of CD11b [18,39,40]. Other features 
characterizing this group have also been described in 
human tissue: human leukocyte antigen – DR isotype 
(HLA-DR)+, CD36+ cells with lacking CD169 [17]. 
However, the IM population is not completely compact, 
comprising multiple subsets settled in various parts of 
pulmonary tissue. These subpopulations can also be 
characterized by specific features such as the presence of 
mannose receptor (CD206) or main histocompatibility 
complex II (MHCII). Cells with different combinations of 
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these features are then found in typical locations. For 
example, CD206–MHCII+ IM can be detected in vicinity 
of nerves, whereas CD206+, MHCII– cells can be found 
in a perivascular space [17]. They produce IL-10 under 
physiological conditions [41,42]. Thus, they are not only 
a second line of defence against foreign agents, but 
participate in immunoregulatory processes modulating  
T cell activity provided through this factor. In their native 
environment, they are unlike AM in contact with the 
extracellular matrix, which, according to observations of 
Laskin et al. [43], may also be affecting their basic 
settings. Last but not least a specific feature of IM is their 
energy metabolism, dependent on glycolysis, which 
differs from the metabolic pathways used mainly in the 
resting state in AM [44, 45]. 

 
Alveolar macrophages 

 
As for AM, it is a very specific group of cells 

that exhibits a number of differences from other tissue-
localized macrophages and is one of the best studied 
macrophage populations due to the relative ease with 
which they can be collected by bronchoalveolar lavage. 
Airway macrophages represent a distinct subgroup of 
AM. They occur in an environment with a similar partial 
pressure of oxygen as alveolar macrophages, but their 
environment lacks the presence of surfactant. Their main 
function is to balance the pro-inflammatory and anti-
inflammatory immunological response to foreign 
substances entering the bronchial space of the lung, 
thereby preventing the acceleration of the development of 
pulmonary inflammation. Like other macrophage types, 
they regulate this activity through their phenotypic 
change - polarization. They are mainly involved in the 
regulation of inflammation in mucobstructive lung 
disease, where changes in their function are related to 
their epigenetic reprogramming [46]. This review article 
will focus mainly on the specificities of macrophages 
residing directly in the alveolar space. The specific 
characteristics of macrophages in the alveolar space are 
likely to result from the specific environment in which 
AMs are found compared to other tissue macrophages. 
Both direct factors related to the specificities of the 
alveolar space (e.g. high oxygen concentration, presence 
of pulmonary surfactant - see below) and changes in 
histone modifications (probably mediated through 
regulation of toll-like receptor (TLR) 4 [47]), i.e. the 
epigenetic environment that controls the expression of 
alveolar macrophage-specific genes, are at work here 

[13,48]. Epigenetic modification of macrophages has 
been demonstrated in AM patients with chronic 
obstructive pulmonary disease and asthma. Increased 
expression of inflammatory markers in these patients may 
be due to increased histone acetylation in the promoter 
regions of inflammatory genes and/or increased 
enzymatic activity of histone acetylation enzymes, 
leading to increased transcription of inflammatory genes 
[46]. Immediately after delivery, there is a large increase 
in the partial pressure of oxygen in the alveolar space and 
local macrophages are placed in conditions quite different 
from other tissue locations. 

 Adaptation of alveolar macrophages to 
increased oxygen concentration is associated with activity 
of Von Hippel-Lindau protein, which directly affects 
their maturation and function. Thus responses different 
from the behavior of other groups of macrophages, 
resulting from this special setting of AM, will be 
manifested especially in situations associated with  
a change in oxygen tension in the alveolar environment 
[49,50]. In a normal situation, AMs show a rather 
immunosuppressive, inflammation-suppressing 
phenotype (see below) [51]. However, under specific 
conditions, they are also capable of changing to a type 
that promotes inflammation.  

Exposure to other foreign agents during life, 
including bacterial and viral particles, can trigger further 
recruitment of monocytes, which can differentiate into 
so-called recruited AM. These cells differentiate in 
response to the original stimulus that caused their 
recruitment, primarily into macrophages that promote 
inflammation (see below). Over time, however, these 
monocyte-derived alveolar macrophages may persist in 
the lung and/or replace the original resident AM [13].  

AM are characterized by the presence of the 
markers CD11c, SiglecF and CD169 [18,39,40] and, as 
mentioned above, while the energy metabolism of IM is 
dependent on glycolysis, alveolar macrophages primarily 
use fatty acid oxidation [28,44]. This is especially true in 
the resting state, when the anti-inflammatory phenotype 
predominates. If they become part of the inflammatory 
response, their phenotypic change involves a change in 
their energy metabolism via glycolysis [52].  

AM also interact with a number of other cells – 
e.g. epithelial cells - through their products. Through 
regulation of ion and fluid transport [51,53] and  
AM-derived fibronectin may act as a proliferative factor 
for airway epithelial cells [54]. Vesicles containing 
suppressor of cytokine signaling (SOCS) released from 
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AM can regulate epithelial reactivity to, for example, 
TLR ligands [55,56]. AMs also interact with various 
other cells, including vascular wall cells, immune cells or 
fibroblasts, and thus participate in processes in lung 
tissue related to changes in the activity of these cells 
(including response to the presence of pathogens, 
inflammatory responses induced by arbitrary stimuli, 
tissue remodeling, etc.) [8,57-61].  

 
Macrophage plasticity – polarization  

 
If macrophages are in a resting, non-polarized 

state, we talk about the so-called M0 type, which is 
characterized by the presence of only markers common to 
all types of macrophages (including monocytes) – CD11, 
CD68 and also HLA-DR [62-64]. However, their specific 
feature is the ability of phenotypic change. They are able 
to switch into the M1 (“classically-activated”,  
“pro-inflammarory”) or M2 (“alternatively activated”, 
“anti-inflammatory”, “wound healing”) macrophages. 
This classification was introduced by Mills 2000 based 
on differences in arginine metabolism [65]. This 
classification was based on the fact that M1 macrophages 
express the enzyme nitric oxide synthase, which 
metabolizes arginine to nitric oxide and citrulline. 
According to this classification, M2 macrophages are 
characterized by the expression of the enzyme arginase, 
which hydrolyzes arginine to ornithine and urea [66]. In 
the following years, other subtypes of M2 macrophages 
have been recognized: M2a, M2b, M2c and M2d [67,68]. 
Polarization changes can be induced in vivo and in vitro 
by exposure to various stimuli, often released from  
T-cells. M1 polarization is mainly promoted by helper  
T-cells (specifically Th1 cells), M2 polarization is 
promoted by helper T-cells (Th2 for M2 and 
macrophages) and regulatory T-cells. The polarization is 
also reversible unlike other terminally differentiated body 
cells [69]. The type M2b is able to convert back to other 
M2 macrophage subtypes while inhibiting the 
polarization of other cells from M0 to M1 [70]. However 
it remains unclear whether newly recruited cells are also 
subject to this change.  

 
General classification of polarized 
macrophages, their markers and typical 
products 

 
 This section, concerning the classification of 

macrophage polarization, was mainly based on  

[67, 71-73]. Each type can be characterized by the typical 
presence of surface markers, intracellular features 
(including increased activity of enzymes such as 
inducible nitric oxide synthase and cyclooxygenase 
(COX) 2) and secreted products (summarized in Table 1).  

 
M1 macrophages 

 
Polarization to M1 type typically occurs after 

stimulation with bacterial products (e.g. lipopoly-
saccharide) or pro-inflammatory cytokines such as 
interferon γ or tumor necrosis factor (TNF) [74,75]). It is 
also supported by the GM-CSF [76], whose expression is 
under the influence of miR-133a and miR-133b in mice 
[30]. This polarization is mediated primarily via the 
interferon γ receptor and activation of signal transducer 
and activator of transcription protein (STAT) 1 or TLR4 
causing increased production of pro-inflammatory 
cytokines via interferon regulatory factor (IRF) 5 and 
nuclear factor-kappa B (NFκB) signaling pathways 
[77,78]. These processes result in increased expression of 
surface receptors molecules CD80, CD86, CD16, CD32, 
CD64 [79-85], CD40, CD64, CD68, HLA-DR [86, 87] 
and MHCII molecules and in transcription of a set of 
genes coding expression of pro-inflammatory substances 
[67, 71, 88], including increased expression of TLR4, 
which is also part of several activation pathways and high 
levels of MHCII. This way polarized macrophages 
produce interleukins-1, 6, 12, 23, TNFα, high 
concentrations of reactive nitrogen and oxygen 
compounds [71,77,78], a number of other chemokines 
(CCL2, 3, 4, 5 [89]), and intracellular protein SOCS3, 
which suppresses the tendency to polarize to the M2 type. 
Macrophage polarization to the M1 type supports the 
activation of Th1 cells and further development of 
inflammation, which is mainly mediated by CD80 and 86 
[90].  

 
M2 macrophages 

 
The group of M2 macrophages is more 

heterogeneous. This type of polarization is promoted by 
M-CSF [91], compared to M1 macrophages, for which 
the main growth factor is GM-CSF (as mentioned above). 
Its receptor may also be the target of other molecules 
such as miR-22, miR-34a, and miR-155, as demonstrated 
in mice, substances that can modulate its activity [92]. 
However, which growth factor is used is not entirely 
relevant to the differences in final gene expression 
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between these two main groups of polarized macrophages 
[76]. M2 polarization is also associated with increased 
expression of for example miR-146a, miR-511-3p,  
miR-223 and let-7c [93-95]. “Alternatively activated” 
macrophages are generally formed by the action of IL-4 
and IL-13 [73] and produce high IL-10, low IL-12 and 
IL-23 and low levels of reactive oxygen species (ROS) 
[96]. M2 polarization triggered by its typical activators 
IL-4 and IL-13 results in both mice and humans to 
stimulation of transcription factors KLF4 and STAT6, 
which in turn leads to stimulation of PPARγ. The latter 
regulates aerobic fatty acid metabolism, one of the 
hallmarks of this cell type [97-100]. These cells are 
generally considered to be proliferation-promoting cells 
in the tissue (not only during diseases leading primarily 
to the development of pulmonary fibrosis, but also 
inappropriate fibrosis as a secondary complication of 
healing inflammation). This is promoted by their products 
(tissue inhibitors of metalloproteinases and fibronectin) 
as well as, the capability to switch into fibrocyte-like 
cells that express collagen [101-104]. Their pro-
proliferative effects are probably also associated with the 
expression of arginase-1 (Arg1) and resistin-like-α 
(Fizz1) [105]. However, this group is subdivided into 
other subtypes, differing in their specific characteristics. 

 
M2a macrophages 

 
M2a arise under the influence of IL-4 and 13. 

They suppress the expression of genes for the production 
of pro-inflammatory mediators and molecules producing 
reactive oxygen and nitrogen compounds. These 
substances further regulate the activity and presence of 
beta2 integrins, MHCII molecules, metalloproteinase 1 
and tissue-type plasminogen activator [106-109]. The 
presence of CD163, CD206 and 209 and CXCR 1 and 2 
is typical for this group [110]. They produce IL-10,  
TGF-β and chemokines CCL 17, 22, 24. Intracellularly, 
high arginase activity [67] and increased expression of 
IRF4, PPARγ and STAT6 proteins can be detected, 
molecules having a part in signaling pathways supporting 
the increased expression of genes typical for M2 
polarized macrophages [111]. Their activation further 
mediates the activation of Th2 cells [112]. 

 
M2b macrophages 

 
M2b macrophages also affect Th2 activity and 

participate in immunomodulatory processes. Therefore, 

they arise primarily under the influence of immune 
complexes and Il-1 R or TLR agonists [113]. They 
express the surface markers as CD80 and CD86, typical 
of M1 macrophages. In the M2 macrophage  
group, however, its presence is characteristic of  
M2b macrophages, and also CD14. These molecules 
participate further in the activation of Th cells, and 
MHCII and Il-4R alpha [67,70,71,114,115]. They release 
high levels of IL-10, the production of which is the most 
massive among all M2 types in M2b macrophages 
[113,116], followed by IL-1 and 6 [117,118] and TNFα 
[119] and compared to other types of macrophages high 
levels of CCL1 [120].  

Increased COX2 and IRF3 and 4 activity can be 
detected intracellularly, limiting polarization of cells to 
M1 type [111,121,122]. The increase in SOCS3, which is 
more typically found in M1 macrophages, leads here 
through STAT3 inhibition to modulation of the 
expression of the aforementioned Il-4Rs and 
consequently to a reduction in arginase activity, which 
according to the original classification should be typical 
for M2 cells, but is not present in this type [70].  

 
M2c macrophages 

 
M2c, involved not only in immunomodulatory 

processes, but especially in processes resulting in tissue 
remodeling associated with proliferation of both cellular 
components and extracellular matrix (including e.g. 
tumor growth), are again polarized under the influence of 
IL-10, but also TGF-β or glucocorticoids [123]. TGF-β 
induces M2c polarization via SNAIL (transcription 
factor)-mediated suppression of the switch to  
a pro-inflammatory phenotype [124]. Since the source of 
both IL-10 and TGF-β may be M2c macrophages 
themselves, this may potentiate the polarization of 
macrophages present on M2c and significantly promote 
proliferative activity in the tissue. This stimulation results 
in, among other things, an increase in arginase activity. 
Although this property should be typical of  
M2 macrophages in general, not only does it not appear 
in M2b type, but as mentioned above, an increase in 
arginase activity was not observed even when 
polarization to M2c type was induced by another possible 
stimulator, glucocorticoids [125]. However, they share  
a number of common features with other M2-type 
macrophages. They show the presence of CD163 and 
206, TLR1, IL-4R. The presence of CCL2 receptor is 
specific to them. They other important products include 
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versican and alpha-antitrypsin are probably involved in 
extracellular matrix remodeling [67]. Regarding 
intracellular features, they again show similar 
representation as the other M2 types: high IRF4 and 
SOCS3 positivity.  

 
M2d macrophages 

 
M2d macrophages are mainly found in the 

environment of tumours. Their polarization occurs under 
the influence of stimulation by TLR1, IL-6 and adenosine 
and/or tumor-associated factors and they express high 
levets of CD14 and CD163 [126,127]. In contrast, they 
do not express to a large extent the features that are 
generally considered typical of M2 polarization - M2d 
macrophages do not express Fizz1, CD206, chiti- 

nase 3-like 3 (Ym1) and the adenosine-dependent 
angiogenic switch of macrophages to an M2-like 
phenotype is independent of interleukin-4 receptor α 
signaling [127]. 

M2d macrophages secrete low levels of IL-12, 
and high levels of IL-10. Another important product 
characteristic of this type of macrophage is vascular 
endothelial growth factor. This substance is involved in 
the promotion of angiogenesis, a process that 
accompanies tumour growth, in which this type of 
macrophage plays an important role. [127, 128].  

Both groups of lung macrophages are capable of 
polarization into the above-mentioned types, and 
therefore alveolar and interstitial macrophages may share 
some common features (e.g. CD206, CD169 – see 
[17,45]).  

 
 

Table 1. Basic activators, markers and products characterizing macrophage subtypes in general. 
 

Type Stimulator Marker Product 

M1 GM-CSF INF γ, TNF CD80, CD86, CD16, CD32, 
CD40, CD64, CD68, HLA-

DR+, MHCII+ 

IL-1, 6, 12, 23, 
TNFα, ROS, NOS 

M2 M2a IL-4, 13 CD163, CD206, CD209, CXCR 
1, CXCR2, Arg-1 

IL-10, TGF-β CCL 
17, 22, 24 

M2b immune complexes, IL-1 
R or TLR agonists 

CD14, CD80, CD86 IL-1, 6, 10, TNFα, 
CCL1 

M2c IL-10,TGF-β, 
glucocorticoids 

CCL2, CD163, 206, TLR1,  
IL-4R, Arg-1 

IL-10, TGF-β 

M2d TLR1 agonists, IL-6, 
adenosine 

CD14, CD163, VEGF IL-10, VEGF 

 
 

Epigenetic regulations involved in 
macrophage polarization 

 
However, polarization to the M1/M2 type leads 

not only to the expression of genes mediated by the 
aforementioned mediators (e.g. IL-4) along with the 
direct activation or inhibition of their signaling pathways, 
but also by epigenetic regulation of the expression of 
genes involved in the production of their specific 
markers. Changing the activity of factors of these 
signaling pathways is able to affect the expression of 
demethylases, which ultimately leads to a change in 
histone methylation and, therefore, in the transcriptional 
activity of M2 marker genes [129]. An second area that 
has been extensively studied recently is epigenetic 

modification of RNA itself. In the context of macrophage 
polarization, attention has focused mainly on  
N6-methyladenosine methylation, as one of the most 
prevalent post-transcriptional mRNA modifications. This 
is evidenced by the rapid increase in the number of recent 
works focusing on this topic [130,131]. However, one of 
the most studied and described epigenetic regulations 
involved in macrophage polarization is the role of 
miRNAs.miRNAs are mainly involved in the control of 
transcription factor activity, resulting in differential 
expression of macrophage markers and their cytokine 
production. These molecules play a role as potent 
regulators of the inflammatory response [132], their other 
forms, in turn, participate in its suppression and M2 
polarization [133]. For example, the proinflammatory 
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state associated with the M1 polarization is characterized 
by an increase in expression of miR-155 and miR-125b. 
In addition, miR-155 is able to repolarize M2 back to 
M1-type. Contrary miRNAs such as miR-16, miR-124, 
miR-133a/b or miR-142-3p are able to attenuate 
polarization towards M1 type. The other group of 
miRNAs, e.g. miR-146a and miR-511 promotes M2 [134, 
135]. The principle of their action is the down-regulation 
of genes involved in pro-inflammatory pathways. The 
amount and activity of transcription factors, especially 
NfκB, AP-1, hypoxia inducible factor (HIF)-1α or STAT, 
play a key role in modulating the pro- and anti-
inflammatory state and thus macrophage polarization. 
These factors are themselves under the control of  
a number of miRNAs, but they also influence the 
expression of other miRNAs, which are then directly 
involved in changes in the expression of the final 
products (surface markers, cytokines, etc.) For  
an overview of these signaling pathways, see [136]. At 
the same time, it must be acknowledged that there is no 
sharp boundary between macrophage membership in M1 
or M2 type according to the detection of the above-
mentioned features, because under in vivo conditions, 
genes constituting both M1 and M2 type markers can be 
expressed simultaneously [137].  

 
Specifics of AM polarization 

 
AMs are in constant contact with the external 

environment and therefore represent the first line of 
defense of the respiratory system. Their second most 
important function is to ensure surfactant homeostasis. 
One of their specific functions is to catabolize lung 
surfactant [138]. On the other hand surfactant regulates 
their immunomodulatory activity - the binding of 
surfactant proteins A and D to AM surface receptors is 
able to inhibit macrophage activation and phagocytosis 
[49,139-142]. The modulation of AM activity can be also 
mediated by the binding of free fatty acids of surfactant 
to PPARγ receptors of AM [143, 144]. It results in the 
blunting of the respiratory burst in these cells [145,146]. 
This occurs in cooperation with dendritic and T-cells, 
whose activity they are able to regulate e.g. via TGF-β 
release [147-149]. These functions are mainly provided 
by the resident macrophages population. Conversely, 
recruited monocytes tend to express number of 
proinflammatory and profibrotic genes [150]. Their ratio 
depends on the primary cause of recruitment, in the case 
of acute inflammation the polarization of these cells is 

predominantly M1, in later stages rather M2 type. They 
may upregulate MHCII, making them capable of 
activating effector T-cells through antigen presentation 
[151,152], thus participating to a greater extent in the 
organism's defence responses. 

 In summary, the balance between AM 
polarization to M1 and different M2 cell subtypes is 
crucial for lung tissue homeostasis. An inappropriate pro-
inflammatory response of AM, as well as  
an inappropriate activation of wound healing processes 
that potentially result in lung fibrosis, can lead to 
consequences that are difficult to reverse. In addition, the 
appropriate timing of onset is important in these 
processes. Of note here is the importance of AM in one of 
the most serious disorders of the respiratory system, the 
adult respiratory distress syndrome (ARDS), which 
accompanies many infectious and non-infectious lung 
diseases. The role of macrophages in the development of 
this syndrome is summarized in [153]. Briefly, in the first 
phase, there is primarily an overall massive increase in 
the number of M1 AM. On the one hand, there is  
a phenotypic change in resident AMs, which release 
factors that promote the recruitment of circulating cells. 
These newly recruited cells are also transformed into M1 
AM and participate in the removal of pathogens and 
inflammatory debris. Although this pro-inflammatory 
function of AM is absolutely necessary to eliminate the 
primary cause, its inadequate level can unfortunately 
result in severe lung tissue damage with fatal 
consequences already at this early stage of the disease. 
The second phase of the disease is characterized by  
a change in AM from M1 to M2, which probably occurs 
mainly under the influence of regulatory T cells and  
a subset of CD4+ lymphocytes, [154,155], leading to  
a change in AM polarization through activation of the 
pathways mentioned above. However, this excessive 
“wound healing” reaction of AM may result in the 
development of pulmonary fibrosis characterized by 
collagen deposition mediated by TGF-β and Arg-1 
pathways in the late stages of the disease [156,157]. This 
syndrome, like many other pulmonary and 
extrapulmonary diseases, especially those accompanied 
by pulmonary edema, is also associated with hypoxia. 
The latter is itself is also capable of altering the 
functional state of AM and promotes polarization to  
M2 type [49,105]. Which subtypes are induced by 
hypoxia has not yet been determined, although it can be 
assumed that polarization to M2c or M2a type is likely, 
given that macrophages exposed to hypoxia show higher 
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expression of surface marker CD206 or Arg-1 [49,58]. 
Hypoxia-induced polarization to the M2 type likely 
promotes proliferation of pulmonary artery smooth 
muscle cells, thereby promoting the development of 
hypoxia-induced pulmonary hypertension. This 
mechanism is supported by our observations, where we 
observed a massive increase in M2 AMs during hypoxia 
exposure, the elimination of which subsequently reduced 
the development of this pulmonary vascular disease 
[49,58].  

 
Redox state and role of ROS 

 
Macrophage polarization seems to be related to  

a change in the redox state of AM. However, the role of 
redox balance as a key factor determining macrophage 
polarization during hypoxia remains controversial. It is 
known that hypoxia is associated with an increase in 
tissue ROS generation [158] and that hypoxia promotes 
polarization to M2. However, this polarization is  
(as mentioned above) in macrophages associated 
inversely with a decrease in their ROS production. The 
decrease in ROS production in this type of macrophage is 
associated with inhibition of NADPH oxidase-2 activity 
[159]. However, the initial stages of hypoxia are in 
contrast associated with an increase in ROS production 
by this molecule [160]. This is also consistent with our 
experimental results where early exposure to hypoxia 
resulted in increased ROS production from AM. It seems 
that their production is reduced only in later stages, when 
M2 cells starts to predominate (our preliminary, 
unpublished data are consistent with this). However, the 
redox state and thus the polarization of macrophages may 
also be influenced by ROS from other sources - mainly 
from mitochondria. Here, the electron transport chain 
(ETC) and the monoamine oxidase system (MAO) [161] 
are the main players. MAO increases its activity mainly 
under the influence of pro-inflammatory stimulators and 
is thus more involved in polarization to M1 [162-164]. As 
Wiese et al. demonstrated, ETCs also exert significant 
effects during hypoxia via alteration of ROS release. 
Thus, ETC activity may be significantly involved in 
changes in macrophage activity and thus macrophage 
polarization [165]. However, not only ROS sources and 
their levels, but also their further processing by the cell 
play an important role in ROS signaling and subsequent 
polarization. The activity of Cu,Zn-superoxide dismutase 
(Cu,Zn-SOD) seems to be the key element here. 
Regardless of which source is behind the increased 

superoxide charge, an excessive increase in Cu,Zn-SOD 
activity leads to an increase in H2O2 production, which 
promotes M2 polarization via activation of STAT6 [166]. 

 
Role of HIF 

 
The next key factor influencing the change in 

polarization under hypoxic conditions is probably the 
increased concentration of HIF. Under normal 
circumstances, one of its subunits is destabilized by post-
translational hydroxylation by prolyl-hydroxylase [167]. 
In conditions of hypoxia (for review see [168], 
degradation is reduced. This can be caused by a reduced 
activity of the enzyme, an increase in the "oxidation" of 
this molecule due to the increased presence of ROS,  
a phenomenon typical of tissue hypoxia. The subunit 
undergoing this degradation can be represented in two 
different forms (HIF-1α or HIF-2α). Unfortunately, only 
a minority of papers distinguish between the influence of 
these different subunits on macrophage function, 
moreover in association with hypoxia (for review see 
[169]). When these mechanisms are described in detail, 
they are mostly related to tumor growth (accompanied by 
tumor tissue hypoxia) and the function of tumor-
associated macrophages. In the lung, HIF-2 appears to be 
a critical factor underlying the development of changes 
associated with exposure to hypoxia. Their source, 
determining the amount of HIF-2α in the result, can be 
not only macrophages themselves, but also other cells of 
the surrounding tissue. This substance has been shown to 
affect monocyte recruitment and vascular cell 
proliferation in the early stages and the overall 
development of hypoxic pulmonary hypertension in the 
later stages [170]. However, the extent to which these 
effects are mediated by the influence of this HIF-2α on 
the function of lung macrophages or other cells present in 
lung tissue remains unclear. If we focus on the effect of 
HIF-2α in macrophages, it seems to support the 
polarization of macrophages to the M2 type via activation 
of STAT3 pathway [171]. Another accompanying 
phenomenon of tissue hypoxia is an increased amount of 
lactate. It has been proven that this substance also 
increases the expression of HIF-2α, which results in  
an increase in the expression of features typical for 
polarization to the M2 type [172]. A second form of this 
molecule, HIF-1α, also affects the polarization state of 
alveolar macrophages. Changes in its activation (together 
with changes in the activation of the transcription factor 
STAT3) occur e.g. under the influence of IL-6 released 
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from fibroblasts during the development of many 
inflammatory lung diseases. As a result, AM shifts to the 
M1 pattern [173]. Moreover, as Woods et al. 
demonstrated HIF-1α provides also the metabolic 
reprograming of AM [174]. Whereas M1 macrophages 
express high levels of glycolytic enzymes, M2 
macrophages oxidative phosphorylation [175]. 

Hypoxia undoubtedly induces also epigenetic 
changes in AM. Hypoxia induces changes in microRNA 
expression in AM, which varies depending on the specific 
location of the lung [176]. However, their effects have 
not yet been sufficiently studied. Therefore, we will not 
go into detail in this review. 

 
Effects o hyperoxia 

 
Not only hypoxia but also hyperoxia 

significantly affects AM function. Since administration of 
high oxygen is one of the most common therapeutic 
interventions in critical care in both adults and children, 
including neonates, attention should be paid to the 
changes induced by this mechanism. 

Exposure to high concentrations of O2 (up to 
95 %) induces a change in the production of a number of 
cytokines in AM (e.g. decrease of TNFα, IL-1 beta, IL-6, 
increase of IL-8). Moreover, this phenomenon was 
observed both in samples collected from patients and by 
induction under in vitro conditions. However, these 
changes in cytokine production are not the same during 
the entire period of hyperoxia. While the changes 
described above occur within a few days, early phases of 
exposure, on the order of hours, can have quite the 
opposite effect [177]. These are accompanied by changes 
in the expression of markers determining the  
AM phenotype. Exposure to several days of hyperoxia 
promotes an increase in the proportion of CD206-positive 
cells (a marker representing polarization to the  
M2 phenotype) in the bronchoalveolar lavage [178] as 
well as an increase in the number of CD68, CD44, 
CD11c and CD205-positive cells [179]. Hyperoxia does 
not only affect the state of resident AMs, but also 
promotes the influx of newly recruited cells into the 
bronchoalveolar space [178]. 

In addition, hyperoxia higher than 40 % oxygen 
in the early postnatal phase also limits the colonization of 
the alveolar space by macrophages. The lower number of 
AMs is a direct consequence of their reduced 
proliferation in a given space; the question remains 
whether a higher oxygen percentage also results in  

an immediate limitation of their recruitment [180]. 
However, hypoxia or hyperoxia may not only affect 
macrophage polarity per se, but also through changes in 
the composition of the tissue environment that 
accompany it. AM are normally found in the presence of 
surfactant which significantly affects their activity as 
mentioned above.  

Surfactant proteins A and D are known to bind 
to signal regulator protein alpha on the surface of 
macrophages and thereby inhibit macrophage activation 
and phagocytosis. Given that the composition of 
surfactant is modified by hypoxic exposure [181],  
AM-surfactant interaction may play a central role in 
disease pathophysiology is in the setting of not only 
ARDS but other lung diseases associated with hypoxia 
[182]. This is where M2 polarization provides not only 
positive effects, but may result in significant adverse 
development of tissue fibrosis [183,184].  

The potential possibility of reprogramming the 
macrophage phenotype thus seems to be a very 
interesting possibility in the future to influence the rate of 
various, not only pulmonary, but also other inflammatory, 
immunomodulatory and fibrotic processes. Basically, this 
involves inducing or inhibiting M1 and M2 polarization 
or affecting the recruitment of circulating cells. A number 
of agents that may affect macrophage polarization are 
currently being studied. However, most studies have 
focused on the effect of macrophage polarization mainly 
on tumor growth [185]. Whether these strategies could be 
used to influence the function of lung macrophages 
remains unclear, given the aforementioned specificities of 
this cell population. Surface structures, whose stimulators 
and inhibitors have already been used for other purposes, 
subunits of intracellular pathways and directly miRNAs 
are offered as general potential targets [134,186]. 
Therefore, further research into the principles of these 
cell functions and the possibility of influencing them 
certainly deserves attention and has the potential for 
broad clinical application in the treatment of a wide range 
of lung diseases. 
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transcription factor; CCL1, small inducible cytokine A1; 
CCL2, chemokine (C-C motif) ligand 2, also referred to 
as monocyte chemoattractant protein 1; CCL3, 
chemokine (C-C motif) ligand 3, macrophage 
inflammatory protein-1α; CCL4, macrophage 
inflammatory protein (MIP-1β); CCL5, chemokine  
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receptors; ETC, the electron transport chain; Fizz1, found 
in inflammatory zone 1; GM-CSF, granulocyte 
macrophage colony stimulation factor; HIF, hypoxia 
inducible factor; HLA-DR, human leukocyte antigen – 

DR isotype; IL – interleukin; IM, interstitial macrophage; 
INF, interferon; IRF, interferon regulatory factor; KLF, 
Krüppel-like factor; M-CSF, macrophage colony 
stimulation factor; MAO, monoamine oxidase system; 
MHC – main histocompatibility system; miRNA (miR), 
microRNA; NFκB, nuclear factor-kappa B; NOS, nitric 
oxygen species; PPARγ, peroxisome proliferator-
activated receptor γ; ROS, reactive oxygen species; 
SOCS, suppressor of cytokine signaling; STAT, signal 
transducer and activator of transcription protein family; 
TGF-β, tumor growth factor β; Th, helper T-cells; TLR, 
toll-like receptor; TNF, tumor necrosis factor; Ym1, 
Chitinase 3-like 3.  
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