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Summary
Ectopcptidases are widely distributed among various cell systems. Their expression on an appropriate 
cell type is finely regulated, reflecting the specific functional cell implications and engagement in 
defined physiological pathways. Protein turnover, ontogeny, inflammation, tissue remodelling, cell 
migration and tumor invasion arc among the many physiological and pathological events in which cell- 
surface proteases play a crucial role, both as effector as well as regulatory molecules. It has recently 
become clear that also non-catalytic effects of membrane-bound proteases are of great importance in 
some biological regulations. They may generate specific signal transduction intracellularly, after 
reacting with certain target molecules. They may also play a pivotal role in cell-cell and cell-virus 
contact and recognition, as well as in binding to the extracellular matrix. This short review provides 
some insight into the multifunctional mechanisms attributed to cell membrane-bound proteases.
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I. Introduction

The importance of proteolytic enzymes in 
multiple functions of mammalian cells is widely 
recognized. The structure-function relationship of 
ectopeptidases has been attracting the interest of 
biochemists, biophysicists, physiologists and cell 
biologists for years. Cell surface membrane-bound 
proteases play a key role in protein turnover, in renal 
and intestinal processing of peptides, ontogenesis, cell 
migration, inflammation, hormonal regulation, 
immunity, oncogenesis, tumor metastasis and virus 
infection. Three main extracellularly functioning 
proteolytic systems are coordinated in various aspects 
of proteases and their biological functions (Chen 1992): 
a) secreted proteases and their inhibitors; b) cell-

surface protease receptors that bind secreted 
proteases; c) integral membrane proteases.

Like other membrane integral proteins, 
membrane-bound proteases are anchored to the 
plasma membrane either through a 
glycosylphosphatidylinositol moiety or by a 
hydrophobic transmembrane peptide domain (Kenny 
and Hooper 1991, Moss 1994). In the latter case, the 
cell membrane-bound proteases belong either to 
transmembrane type I or type II glycoproteins, 
characterized by a large globular extracellular domain, 
a unique transmembrane domain, and a short 
cytoplasmic region (Table 1).

In this review, we will be focusing on general 
features of cell membrane-bound (integral) protease 
functions.
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Membrane-bound proteases are widely 
distributed in various organs and cells (Krepela et al. 
1985, Bauvois and Laouar 1993, McDermott and 
Gibson 1995, Sedo and Revoltella 1995). They 
frequently exhibit specific expression patterns and 
characteristics that are unique for a particular tissue, 
cell type and even cell compartment or domain, 
depending on the functional cell status (Bond 1991, 
Mari and Auberger 1995). Soluble forms or analogous 
counterparts of some ectopeptidases have been found 
in extracellular fluids, including blood plasma. For 
instance, membrane-bound and soluble forms of 
dipeptidylpeptidase IV (DPP-IV) and aminopeptidase 
N (AP-N) have revealed some differences in their 
amino acid primary sequences and in the composition 
of their carbohydrate chains (Watanabe et al. 1995, 
Duke-Cohan et al. 1995). The origin of these structural

differences is still unclear. In the case of AP-N, the 
likely explanation is that the two enzyme forms, 
encoded by a single gene, may arise as a result of 
differential post-translational processing and transport. 
On the contrary, a functional soluble DPP-IV found in 
the blood plasma is believed to represent either a 
product of a single gene, perhaps allowing alternative 
splicing, or a product of a second DPP-IV gene. 
Angiotensin-I-converting enzyme (ACE) is probably 
secreted by regulated proteolytic conversion of a 
plasma membrane-bound enzyme form 
(Ramachandran et al. 1994). The significance of this 
dualism is not known. Evidence suggests that both cell 
membrane-bound and soluble blood plasma forms 
cooperate in the regulation of one particular 
physiological function (Tanaka et al. 1993).

Table 1
Typical cell membrane-bound proteases

Enzyme EC Class Membrane N-C References
number anchor3 topology5

Exopeptidases
aminopeptidase A 3.4.11.7 métallo HP type II 1
aminopeptidase N 3.4.11.2 métallo HP type II 1,2
aminopeptidase P 3.4.11.9 métallo GPI - 1,3
dipeptidyl-peptidase IV 3.4.15.5 serine HP, GPI type II 1-4
carboxypeptidase M 3.4.17.12 métallo GPI - 1,5
peptidyl-dipeptidase Ac 3.4.15.1 métallo HP type I 1,2,6
pyroglutamyl-peptidase II 3.4.19.6 métallo ? ? 7
y-glutamyltransferased 2.3.2.2 ? HP type I 1,2,8
X-Pro-dipeptidase 3.4.13.9 ? GPI — 1,3,9

Endopeptidases
neutral endopeptidase 3.4.24.11 métallo HP, GPIe type II 1,2,10,11
meprin 3.4.24.18 métallo HP type I 12

a HP = transmembranous hydrophobic polypeptide domain, GPI = glycosylphosphatidylinositol moiety. 
b It applies only for the enzymes anchored by their transmembranous hydrophobic polypeptide domain. Type I 
membrane-bound enzymes: the N- and C-terminal amino acids of the membrane-bound enzyme (subunit) polypeptide 
sequence located extra- and intracellularly, respectively. Type II membrane-bound enzymes: the N- and C-terminal 
amino acids o f the membrane-bound enzyme (subunit) polypeptide sequence located intra- and extracellularly, 
respectively.
c Generally known as angiotensin-I converting enzyme.
d Besides the transferase activity, the enzyme has also a y-glutamyl-peptide bond hydrolytic activity. 
e Reported for a chimeric enzyme construct (Howell et al. 1994).
References: 1) Turner et al. 1991; 2) Kenny and Hooper 1991; 3) Orawski and Simmons 1995; 4) Hartel et al. 1988; 5) 
Rehli et al. 1995; 6) Ramachandran et al. 1994; 7) O’Leary and O’Connor 1995; 8) Heisterkamp et al. 1991; 9) Prévis 
et al. 1995; 10) Mari et al. 1992; 11) Howell et al. 1994; 12) Johnson and Hersh 1994
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II. Modes of action

Three general modes of membrane-bound 
ectopeptidase action have been postulated (Bauvois et 
al. 1991).

Proteases functioning as molecules for signal 
transduction

Dipeptidylpcptidase IV, aminopeptidase N, 
neutral endopeptidase and aminopeptidase A have 
been shown to be identical with differentiation antigens 
CD26, CD 13, CD 10 and BP-l/gp60, respectively (Ship 
and Look 1993). In T-lymphocytes, CD26/DPP-IV 
participates in the regulation of IL-2 secretion, cell 
proliferation, activation of several cell functions, 
including cytotoxic activity, and stimulation of 
monocyte macrophage colony formation, probably by 
its involvement in specific cytokine-mediated events 
induced after appropriate signal transduction (Shipp 
and Look 1993, Sedo and Kraml 1994). Similarly, 
thymocyte Ala-aminopeptidase is involved in antigen- 
dependent T-cell activation (Naquet et al. 1989). 
Gamma-glutamyltranspeptidase (yGT) seems to 
participate in monocyte to macrophage differentiation 
(Bauvois et al. 1995) and also in cell apoptosis, at least 
in certain cell lines (Graber and Losa 1995).

The complex cascade of molecular and 
biochemical events activated by stimulation of cell- 
surface membrane-bound proteases and the induction 
of appropriate signal transduction events, mainly in the 
haematopoietic and immune cell systems, are attracting 
increasing attention (Ansorge et al. 1991, Bauvois and 
Laouar 1993, Fleischer 1994).

The functional and morphological association 
of DPP-IV with either CD45 protein tyrosine 
phosphatase or with the adenosine deamidase binding 
protein (Torimoto et al. 1991, Kameoka et al. 1993) is 
believed to be critical for activating CD26-mediated 
T-cell signalling. Recently, Mittrücker et al. (1995) 
described in detail a DPP-IV/CD26 activation pathway 
for T lymphocytes, requiring co-expression of the 
TcR/CD3 complex.

Taken together, at least some membrane- 
bound proteases can be considered to date as 
receptors, transmitting specific "signals" through the 
plasma membrane intracellularly.

Proteases functioning as molecules for cell-cell and cell- 
virus contacts, specific cell recognition and cell binding 
to the extracellular matrix

As integrins are involved in extracellular 
matrix-dependent cell activation and signal 
transduction (Juliano, 1994), a possible functional 
analogy has been proposed to occur when cell- 
substratum adhesion mediated by ectoproteases 
triggers modulation of intracellular signal transduction

(Hanski et al. 1985, Piazza et al. 1989, Bauvois and 
Laouar 1993). In this context, the ability of certain 
ectoproteases to interact with components of the 
extracellular matrix (where many cytokines and growth 
factors are likely to be immobilized) and to potentially 
process the latter could cause a variety of endocrine, 
paracrine and autocrine effects.

This model has been proposed as a good 
illustration of several protease-mediated cross-talk 
mechanisms in a variety of complex regulations.

Johnson and coworkers (1993) proposed a role 
for the endothelial DPP-IV in the initial occurrence of 
site-specific tumour métastasés. The endothelial 
surface DPP-IV is apparently selectively recognized by 
certain circulating cancer cells in the course of 
metastasis formation. Inhibition of AP-N and DPP-IV 
activities has been suggested as a new potential 
approach for suppression of human renal cell 
carcinoma and renal tubular epithelial cell spreading 
(Riemann et al. 1995).

CD13/AP-N acts as a major receptor for 
coronaviruses (Yeager et al. 1992, Delmas et al. 1994).

Recently, the participation of DPP-IV in HIV 
infection has been widely discussed. It was originally 
hypothesized that DPP-IV is an essential cofactor for 
HIV entry into target cells (Callebaut et al. 1993). This 
hypothesis was not confirmed by others (Lazaro et al. 
1994) and subsequent results suggest that the catalytic 
activity of DPP-IV may decrease the efficiency of HIV- 
1 infection (Morimoto et al. 1994). In contrast, more 
recent observations suggest that the involvement of 
DPP-IV in AIDS pathogenesis (Dianzani et al. 1995) 
and in HIV-related immunosuppression (Gutheil et al. 
1994) is highly probable (Oravecz et al. 1995).

Proteolytic functions

Lifetime regulation of the biologically active 
peptides and proteins, the turnover of the extracellular 
matrix and structural modifications of cell membrane 
components, all together affect the survival and 
functional activity of resident cells. The proteolytic 
effects of cell membrane-bound ectopeptidases can be 
"endocrine"; i.e. these peptidases may exert their 
activity distant from the action of their processed 
peptides (see for example angiotensin I-converting 
enzyme of the endothelial surface) (Ryan 1989). On 
the other hand, membrane-bound proteases may exert 
"autocrine" and "paracrine" effects, in their immediate 
pericellular microenvironment. Thus, soluble peptides 
(neuropetides, cytokines, growth factors, vasoactive 
peptides) exert their potent action locally because they 
are rapidly inactivated by specific inhibitors in the 
vicinity of cells or because they are directly cleaved by 
specific enzyme(s) expressed on the surface of their 
target cells (Nadel 1992). A large number of bioactive 
peptides and proteins grouped by their functional 
properties, has been described as the substrate of
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specific membrane-bound proteases. They nclude 
pleotropic cytokines (IL-1/?, IL-6 and TNF-a), 
vasoactive peptides (VIP, substance P), 
neuroendocrine hormones (endorphins, enkephalins, 
somatostatin, angiotensin). Furthermore, proteolytic 
mechanisms can lead to release of growth factors and 
cytokine receptors (TNF-a, nerve growth factor, CSF- 
1, IL-1, IL-2 and IFN-y) as well as leukocyte antigens 
(FcRIII/CD16, FcRII/CD23, CD8, Mel 14) and, 
interestingly, also ectoenzymes themselves 
(cholineesterase, sialyltransferase/CD75, NEP, DPP- 
IV, AP-N and ACE) (Aoyama and Chen 1990, Chen 
1992, Bauvois and Laouar 1993, Hoffmann et al. 1993, 
Yavelow et al. 1993, Laouar et al. 1994, Lucius et al. 
1995).

It is also possible that in order to regulate 
larger hormones, several different peptidases are 
involved in a more complex cooperation by sequential 
cleavage of the peptides (Saint-Vis et al. 1995). 
Similarly, the proteolytic activation/inactivation 
sequence of events affecting biologically active peptides 
may turn out to play an important regulative role in cell 
differentiation and/or proliferation. Furthermore, T 
cell derived cytokines, such as IL-1/?, IL-4, IL-13, IFN- 
y, TGF-1/? and TNF-a are known to regulate cell 
surface protease expression, probably on the 
transcriptional level (Riemann et al. 1995).

Various membrane-bound protease activities 
are known to be altered in tumour tissues when 
compared with the adjacent matched tissue (Šedo et al. 
1991b, Procházka et al. 1991, Schlagenhauff et al. 1992, 
Asada et al. 1993). Direct involvement of ectoproteases 
in dynamic interactions between tumour epithelium 
and the adjacent connective tissue and their role in 
tumour progression has been investigated (Vassalli and 
Pepper 1994). In some cases, specific enzyme 
distribution at the subcellular level and distinct 
molecular form patterns of a particular protease have 
been observed in tumours as well as in their adjacent 
normal counterparts (Šedo et al. 1991a).

III. Non-enzymatic functions

Although peptide-bond cleavage still remains 
the best-known action of proteases, the particular 
proteolytic activity may (Tanaka et al. 1993, Kurachi et 
al. 1994, Reinhold et al. 1994, Kahne et al. 1995, Bristol 
et al. 1995), or may not (Delmas et al. 1994, Kurachi et 
al. 1994, Steeg et al. 1995, Yeager et al. 1992), be 
essential for the particular physiological function of an 
enzyme.
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Surprisingly, a family of dipeptidyl peptidase 
IV-like proteins with high amino acid sequence 
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IV. Conclusions

Recent evidence suggests that at least some 
cell-surface membrane-bound ectoproteases are 
multifunctional proteins. A single protease could exert 
one or more of the above reviewed modes of action to 
perform its particular physiological function(s). The 
latter form may, however, differ in distinct organs or 
cell types, and be controlled by different, site-specific 
mechanisms (Bauvois and Laouar 1993, Shipp and 
Look 1993).

Expression patterns, mechanisms of
regulation, as well as the physiological role(s) of 
various cell membrane-bound ectoproteases are only 
partially understood up to now. Perhaps, the recent 
findings that at least certain cell membrane-bound 
proteases function differently in normal and
transformed cells may raise the possibility that such 
enzyme will become part of future diagnostic, 
prognostic as well as therapeutic applications 
(Kasafirek et al. 1992, Shipp and Look 1993, Chen et al. 
1994, Vassalli and Pepper 1994).
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