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Summary
The effects of nitric oxide on evoked acetylcholine (ACh) release were studied at two identified 
cholinergic neuro-neuronal synapses of the nervous system of the mollusc Aplysia californica. The NO- 
donor, 3-morpholinosydnonimine (SIN-1), decreased the amplitude of evoked inhibitory postsynaptic 
currents (buccal ganglion) and potentiated that of evoked excitatory postsynaptic currents (abdominal 
ganglion). SIN-1 acted by modulating the number of ACh quanta released. 8Br-cGMP mimicked the 
effects of NO on ACh release in both types of synapses thus pointing to the involvement of a NO- 
sensitive guanylate cyclase. Presynaptic voltage-dependent Ca2+ and K+ (Ia and late outward rectifier) 
currents were not modified by SIN-1 suggesting another final target for NO/cGMP. The labelling of a 
NO-synthase by immunostaining in several neurones as well as the modulation of ACh release by 
L-arginine indicate that an endogenous NO-synthase is involved in the modulation of synaptic efficacy 
in both buccal and abdominal ganglia.
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Introduction

Nitric oxide, a free radical gas formed 
endogenously by several vertebrate cell types 
(Moncada et al. 1991) and probably by invertebrates 
(Jacklett and Gruhn 1994, Moroz et al. 1994), has been 
implicated as a diffusible intercellular messenger 
subserving use-dependent modifications of synaptic 
efficacy such as long-term potentiation and long-term 
depression in the central nervous system (Schuman and 
Madison 1994).

At the level of cholinergic transmission in 
vertebrate preparations, NO has been shown to exert a 
potentiating action at chick ciliary ganglia (Lin and 
Bennett 1994), in the basal forebrain of rat (Prast and 
Philippu 1992), in the rat striatum (Guevara-Guzman 
et al. 1994) as well as in neuroglioma PC-12 cells and in 
brain synaptosomes (Hirsh et al. 1993). NO has also a 
depressive action on ACh release as shown in guinea- 
pig myenteric plexus (Wiklund et al. 1993, Kilbinger 
and Wolf 1994). It thus appears that NO can produce 
opposite effects on cholinergic synapses efficacy

according to the preparation although all these effects 
might be cGMP-dependent. It is generally agreed that 
NO increases cGMP levels through the activation of 
the cytosolic form of guanylate cyclase. But the 
molecular target(s) on which the NO/cGMP pathway 
acts to modify transmitter release still remain 
unknown.

In the present study, we have focused on the 
mechanisms by which NO could modulate synaptic 
efficacy at two identified cholinergic neuro-neuronal 
synapses in the buccal ("inhibitory synapse") and the 
abdominal ("excitatory synapse") ganglia of Aplysia 
californica. For this purpose, we have studied the 
presynaptic effects of the exogenous NO-donor, 
3-morpholinosydnonimine, and of L-arginine, the 
substrate of NO-synthase, on transmitter release by 
measuring the number of evoked quanta released and 
we investigated a possible action of NO on presynaptic 
voltage-gated Ca2+ and K+ channels. In addition, using 
specific antibodies, we have sought to reveal the 
presence of a neuronal NO-synthase.
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Materials and Methods

All experiments were performed on buccal 
and abdominal nervous ganglia of Aplysia califomica 
adult specimens (Marinus Inc., Long Beach, 
California).

Electrophysiology
The desheathed ganglia were maintained at 

22 °C and continuously superfused with artificial sea 
water containing NaCl, 460 mM; KC1, 10 mM; CaCl2, 
11 mM; MgCl2, 25 mM; MgS04, 28 mM; Tris-HCl 
buffer pH 7.8, 10 mM to which drugs were added as 
appropriate. We used two preparations: the cholinergic 
"H-type" Cl “ -dependent inhibitory synapse in the 
buccal ganglion between B4 or B5 presynaptic neurone 
and B3 or B6 postsynaptic neurone and a "D-type" 
cationic Na +-dependent cholinergic excitatory synapse 
on the R15 abdominal neurone activated by threshold 
stimulation of the right pleuro-abdominal connective 
(Gerschenfeld et al 1967). Because of the low 
resistance of the electrodes used, Cl“ leakage from 
KC1 electrodes could result in shifts of the Eci- 
towards less negative voltages due to changes in 
intracellular Cl“ concentration. This problem was 
accounted for in our recordings by regularly

readjusting the reversal potential for postsynaptic 
responses. Therefore, the postsynaptic response was 
recorded as a current (I) and expressed as a 
conductance (G) by means of the following equation, G 
= I /  V -  Veq where V is the holding potential (-80  
mV or -70  mV) and Veq the equilibrium potential for 
Cl“ ions. The quantal analysis of transmitter release 
was performed in the inhibitory synapse using the 
described method of long-duration induced 
postsynaptic current (Baux et al. 1990, Fossier et al. 
1990, 1992) which allows the measurement of quantal 
evoked ACh release in the absence of spike generation.

Presynaptic Ca2 + currents were elicited by 
50 ms depolarizing steps to a variety of test potentials 
from a holding potential of —50 mV (Trudeau et al. 
1993). The bath solution contained tetrodotoxin 
(100 //M), tetraethylammonium (50 mM) and 
4-aminopyridine (4 mM) to eliminate Na+ and K + 
contamination of the Ca2+ current. The extracellular 
Ca2+ concentration was raised to 55 mM. I/V  curves 
were leakage subtracted. The early (Ia ) and delayed 
rectifier (Ik) potassium currents were elicited by 
100 ms depolarizing steps from a holding potential of 
— 50 mV in artificial sea water containing 100 ^M 
tetrodotoxin.
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Fig. 1
Opposite effects o f A) exogenous NO (NO-donor: SIN-l, 100 pM), and B) endogenous NO (L-arginine, L-ARG, as 
substrate o f NO-synthase) on the inhibitory (IPSC) (left column) and excitatory> (EPSC) (right column) postsynaptic 
currents in the buccal and abdominal ganglia, respectively.
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Fig. 2
Immunostaining of the neuronal NO-synthase. A ) buccal ganglion exhibits positive large and small cell bodies as well 
as processes in the neuropile. Higher magnification of positive neurones in the abdominal (B) and buccal (C) ganglia
indicates a cytoplasmic localization of NO-synthase.

Histology
Serial sections were prepared as previously 

reported (Meulemans et al. 1995). Immunocyto- 
chemistry for NO-synthase (NOS) was performed with 
a polyclonal rabbit antibody raised against the 
C-terminal 1415-1429 amino-acid sequence of rat

cerebellar NOS (Aim et al. 1993). Ganglion sections 
were dried for 15 min and then incubated in Tris-HCl 
buffer salt pH 7.6 containing 10 % horse serum and 
0.3 % triton X-100 for 60 min at room temperature. 
After rinsing in Tris-HCl buffer salt, sections were 
incubated with the NOS antiserum (1:2000) in a moist 
chamber at + 4 °C overnight. The sections were then
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washed in tris-HCl buffer salt and incubated with 
biotinylated donkey anti-rabbit immunoglobulins 
(1:2000, Jackson Immunoresearch Laboratories Inc) in 
a moist chamber at +4°C overnight. After thorough 
washing, sections were exposed to streptavidin- 
horseradish peroxidase (1:1000, streptavidin-POD 
conjugate, Boehringer) for 90 min. Staining was 
visualized by 0.02 % diaminobenzidine as chromogen 
(with nickel intensification) plus H2O2 at a final 
concentration of 0.0015 %.

Drugs
3-morpholinosydnonimine hydrochloride 

(SIN-1) was purchased from Biomol. L-Arginine and 
8Br-cGMP were obtained from Sigma.

Results

The NO-donor, SIN-1 (100 pM), decreased 
the amplitude of the inhibitory postsynaptic current 
(IPSC) evoked by a presynaptic action potential, by

40 -  50 % (Fig. 1A left graph) whereas it potentiated 
the amplitude of the excitatory postsynaptic current 
(EPSC) by 50-70 % (Fig. 1A right graph) after 30 — 40 
min application. The bath application of the substrate 
of NO-synthase, L-arginine (1 mM) induced, after a 
short delay, similar modifications of postsynaptic 
responses (Fig. IB). These results point to a 
modulatory role of endogenous NO on synaptic 
efficacy at both inhibitory and excitatory synapses. The 
next point attempted was to reveal the presence of NO- 
synthase in ganglion neurones.

NO-synthase immunoreactivity appeared in 
the cytoplasm of both small and large neurones in 
buccal (Fig. 2A,C) and abdominal (Fig. 2B) ganglia. 
Intensely stained fibres were also visualized in 
connectives and in the proximal part of the peripheral 
nerves in both ganglia (Fig. 2A). NADPH-diaphorase 
staining labelled the same neurones (not shown). The 
co-existence of NADPH-diaphorase activity and NO- 
synthase immunoreactivity argues for NO-synthase 
activity in Aplysia ganglia.
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Fig. 3
Presynaptic action of NO. The amplitude of the postsynaptic responses to ionophoretic ACh application was 
unmodified in the presence of SIN- / (100 pM) in the buccal (A) and abdominal (B) ganglia (horizontal bars :2  s). C) 
In the buccal ganglion, the amplitude of the postsynaptic response (upper traces) induced by a long depolarization (3 
s) o f the voltage-clamped presynaptic neurone (bottom traces) was decreased by SIN-1. The middle trace represents 
the high frequency component of the postsynaptic current, a, control; b, after 40 min SIN-1. Statistical analysis of this 
postsynaptic response permits to calculate the mean amplitude and the mean decay time of miniature postsynaptic 
currents which sum to build up this response. Because the amplitude of the calculated evoked miniature in this 
preparation decreases when the mean amplitude of the postsynaptic response increases (Baux and Tauc 1987), we 
compare normalized miniatures at a given postsynaptic response amplitude. Die amplitude of the calculated miniature 
was 0.42 nS (at a 400 nS postsynaptic response) and was unchanged in the presence of SIN-1. Die mean decay time of 
the miniatures also remained constant (16 ms).
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Fig. 4
8Br-cGMP (1 mM) mimicked the effects of SIN-1 on both IPSCs (left graph) and EPSCs (right graph).

Fig -5
I /V  curves for Ca2+ and K + currents. Application of SIN-1 ( 100 fiM) for 1 hour did not change the presynaptic Caz+ 
current (left graph). Recordings represent the peak Ca2+ current before and after SIN-1 application. Presynaptic I  a and 
Ik  potassium currents (right graphs) were unchanged after SIN-1 application for 1 hour (full circle -  control; open 
circle -  SIN-1).
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NO could act either at the pre- or postsynaptic 
level to modulate synaptic transmission. The amplitude 
of postsynaptic responses to ionophoretic application of 
ACh was not modified in the presence of SIN-1 
(Fig. 3A,B) indicating that the action of NO was 
presynaptic. Statistical analysis of the postsynaptic 
response evoked by long-duration depolarization of the 
voltage-clamped presynaptic neurone in the inhibitory 
synapse (Fig. 3C) showed that NO modulates synaptic 
transmission not by affecting the presynaptic spike but 
by modifying the number of quanta released by the 
presynaptic terminal. The mean amplitude and decay 
time of the calculated evoked miniatures which sum to 
build up the postsynaptic responses evoked by 
depolarization of the presynaptic neurone were 
unmodified (see legend of Figure 3) confirming that 
NO had no postsynaptic effect.

The cell-permeant and non-hydrolysable 
analog of cGMP, 8Br-cGMP, applied in 1 mM 
concentration, decreased the amplitude of IPSCs 
(Fig. 4, left graph) with a time course and an extent 
similar to that elicited by SIN-1. 8Br-cGMP had an 
opposite effect on the amplitude of EPSCs (Fig. 4, 
right graph). Statistical analysis of long duration- 
induced postsynaptic currents showed that the decrease 
of the inhibitory postsynaptic response by 8Br-cGMP 
was due, as for SIN-1, to a reduction in the number of 
evoked released quanta (not shown). As 8Br-cGMP 
mimics the modulatory effects of NO, we concluded 
that NO probably activates guanylate cyclase at both 
synapses.

The presynaptic terminal of the inhibitory 
synapse is easily maintained under voltage-clamp 
conditions and this allowed us to measure presynaptic 
voltage-gated Ca2+ and K+ currents in order to check 
whether they are the final target of the NO/cGMP 
pathway. The application of SIN-1 (100//M) did not 
induce any change of the presynaptic Ca2 + current, 
even after more than 1 hour of application (Fig. 5, left 
I/V  curve). In the same way, the fast outward K+ 
current, Ia and the late rectifier K+ current, Ik (Fig. 5) 
were unchanged.

Discussion

In this study we demonstrated that NO has 
opposite presynaptic effects on cholinergic 
transmission when it modulates an inhibitory or an
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