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Summary
A new approach to computer modelling of neuronal stochastic activity is described. The output dynamic 
activity which depends on the types and the number of input synapses, weights of the synaptic efficacy, 
the absolute refractory phase duration and threshold level is evaluated on this model in some types of 
Gaussian input processes. The behaviour of this model for one excitatory and one inhibitory synapse is 
described in dependence on the changes of excitation weight. The neuronal behaviour presented 
depends on the number of interspike intervals and the excitation weight and interspike interval density 
distribution. A novel concept of the e-curve is being introduced, which shows the dependence of the 
number of output interspike intervals on the weight of excitation on a stable inhibition level, the 
absolute refractory phase value and the threshold level. The properties of e-curves are discussed. 
Furthermore, examples of transformations of input stochastic processes are mentioned from the aspect 
of density distribution changes of interspike intervals.
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Introduction

Current approaches to modelling of the 
dynamic properties of neurones often concentrate on 
the mathematical formulation of the problem. Its aim 
is to identify the transmission of information by a 
neuronal cell. Different approaches followed Stein’s 
description of neuronal stochastic activity (Stein 1965). 
His model has its shortcomings and therefore a 
number of authors have modified it (Tuckwell 1979, 
Lánský and Lánská 1987, Lánský and Musila 1992). In 
the above mentioned modifications, in order to solve 
this problem, input point processes with Poisson’s 
distribution are always presumed. Although based on 
Palm-Chinchin’s theorem (Sampath and Srinivasan 
1977) the influence of many input synapses is well 
modelled by such type of process, for the study of 
informative-transmitting qualities of a neurone is just 
one of the possible input variables. When analyzing the 
output action in a living neuronal cell, there appear 
processes that have other than a Poisson’s distribution 
of interspike intervals (Sampath and Srinivasan 1977).

On the basis of these facts, we mainly 
concentrated on the relations between input and output 
processes. These are influenced by the dynamic on the 
neuronal membrane and depend on a number of 
physiological processes. Some of them are modelled by 
the adjustable parameters of our model. The neurone 
is considered to be a dynamic system with discrete 
stochastic variables (point processes are led to the 
input synapse), continuous internal dynamics 
(processes on the membrane) and one discrete output 
variable (output point process in the axon). The 
realized model enables a simulation of actions 
corresponding to influences of a different number of 
synapses, with one synapse on the beginning up to 
multisynaptic inputs. In our work we observe dynamical 
actions caused by two input synapses, where stochastic 
point processes with Gaussian distribution of interspike 
intervals are loaded. The aim of this paper is a 
description of some phenomena, which are in relation 
to the activity of two synapses, just opposite type. Due 
to the changes of physiologically interpreted 
parameters, the input stochastic point processes ares
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markedly transformed into an output process. These 
transformations have also relation to the changes of 
other statistic parameters of the output process, 
including changes of an inner time structure. In many 
experimental situations we tried to do justice to an 
influence of changes of some, physiologically 
interpreted parameters to the space-temporal 
summation. This summation has been realized by the

one excitatory and one inhibitory synapse. The 
obtained results are able to supplement already known 
facts, which are related to the description of the space- 
temporal summation. At the same time there mean 
also an inspiration for the simulation of actions 
corresponding to multisynaptic inputs. To the dynamics 
of multisynaptic inputs and corresponding Poisson’s 
processes we pay attention in our next papers.

ARP

Fig. 1
A model o f neuronal stochastic activity. GSPP - the generator of the n-dimensional vector 1 o f input stochastic point 
processes. S -  models o f input synapses. PSP(t) -  the n-dimensional vector of post-synaptic potentials. W -  the n- 
dimensional vector o f weights o f efficiencies o f input synapses. The eventual potential u(t) is compared in the 
comparator C with the adjustable threshold level (THR). By the result, system GS generates an output spike with an 
adjustable absolute refractory phase duration (ARP). The tester T provides testing o f input (output) stochastic 
processes.

Methods

The block diagram of the proposed computer 
model is shown in Fig. 1. The model has a number of 
input synapses, where stochastic point processes of 
known properties can be loaded. The modelling of the 
space-temporal summation is proceeding from 
electrophysiological actions, which are presented on 
the membrane of a neurone. The time course of spikes 
and continuous changes of the post-synaptic membrane 
potential and changes of the threshold level were 
approximated by polynoms or spline functions. We 
selected samples from the work of Schmidt and Thews 
(1977). The insensitivity of the model to input 
stochastic processes during the absolute refractory 
phase is modelled by changes of the threshold level to 
infinity. Its recovery, which includes the relative 
refractory phase, is approximated by spline functions. 
The corresponding course of the threshold was also

taken from the work of Schmidt and Thews (1977). By 
the space-temporal summation the variable, which is 
modelling the membrane potential of a neurone is 
obtained. Its value is compared with the threshold level 
and on the basis of this comparison there is or is not 
generated the time course, modelling the output spike 
(Fig. 2). Individual synapses are either excitatory (E) or 
inhibitory (I) in character. When modelling the 
summation processes, each axo-somatic excitatory and 
inhibitory synapse is given the weight of its efficacy 
(WE, WI). This weight can, to a certain extent, imply 
the distance of the synapse from the axon hillock 
(Schmidt et al. 1978, Lánský et al. 1992). In accordance 
with transmission in the CNS, the weight of synaptic 
efficacy can be considered as one of the phenomena 
connected with neuronal plasticity (Kohonen 1984, 
Nakamura and Ichikawa 1990, Clothiaux et al. 1991). 
The model does not concern any of the known 
optimalisation algorithms that change the value of
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synaptic weight (Marko 1988, ¥  ¿nsch 1994). In our 
model, this weight is an exte? íal influence, when 
experimenting with a convertibl e parameter, which 
influences the dynamics of the testing processes. 
Further adjustable and physiologically interpreted 
parameters of the model include the threshold level, 
absolute refractory phase (ARP), the type and number 
of input synapses. The included feedback expresses the 
influence of afterhyperpolarization and facilitation that 
must be additionally treated in classical models of the 
Stein’s type (Lánský and Musila 1991, Lánský et al. 
1992). Our model has a high number of degrees of 
freedom and ensures a large spectrum of realizable 
experiments, such as the consequences of dynamic 
processes and also the dynamic performance of 
multisynaptic inputs. This model makes it possible to 
generate input stochastic point processes with a 
Gaussian (G), log-norm (LN), exponential (E), 
Weibull’s (W) and gamma (G) density distribution of 
interspike intervals. These distributions of ISIs were 
found in the output of living neuronal cells (Bishop et 
al. 1964). The multisynaptic input is modelled by a 
Poisson’s input process. The model enables the testing 
the statistical properties of output point processes.

j________ i
1 ms

Fig. 2
An example o f time course of stochastically changeable 
membrane potential u(t) and corresponding two spikes 
of the output stochastic process. The potential u(t) is a 
result of space-temporal summation of modelled post- 
synaptic potentials, which are generated in dependence 
on excitatory Ip  or inhibitory Ij events of an input 
stochastic point process. When threshold (THR) is 
reached, the spike time course and the time course of a 
threshold during absolute and relative refractory phase is 
simulated.

The described experiments are corresponding 
to two input synapses, one excitatory and the other 
inhibitory. An excitatory synapse of computer model 
generates the excitatory post-synaptic potential 
EPSP(t) and an inhibitory synapse generates the 
inhibitory post-synaptic potential IPSP(t). Both post 
synaptic potentials are meant as time-dependent 
functions. The adjusted excitatory and inhibitory weight 
(WE and WI) is applicable in the space-temporal

summation of these potentials. At every input synapse, 
we loaded the realization of input stochastic point 
processes with Gaussian distributions of ISIs (mean 
value E = 0.6 ms, variance * = 0.01 ms, the number of 
input ISIs equals 8000). Except the time of the lasting 
of a refractory phase, the threshold level was same for 
all experiments (THR = — 60 mV) and the level of 
resting membrane potential was -80  mV. The extreme 
values of post-synaptic potentials in unitary values of 
the weights were 3 mV for excitation and 2 mV for 
inhibition (Schmidt and Thews 1977). In this case, the 
model showed three degrees of freedom which 
corresponded to the change of excitatory weight WE, 
inhibitory weight WI and the duration of the absolute 
refractory phase (ARP). Every experiment was 
repeated five times with a different realisation of input 
processes.

Results

E-curves

The e-curve is designed as the graphical 
dependence of the number N of ISIs of the output 
stochastic process on the excitatory weight WE, in the 
presence of the constant inhibitory weight WI. The 
threshold level is the same during all the experiments 
(THR = -6 0  mV).

Fig. 3a shows the e-curve for the inhibition 
weight WI = 1 and the absolute refractory phase 
duration ARP = 2.4 ms. The e-curve shows the 
existence of a saturated state in which, for an 
increasing WE value, the number N of ISIs of the 
output stochastic process arrests its increase. For 
mutual comparing of the following experiments, we 
introduce a reference number of interspike intervals 
N(WE = 3000), for value of the excitatory weight 
WE = 3000. Around this value of excitatory weight, 
e-curves are flat in character and the chosen reference 
number of interspike intervals N(3000) allows to have 
an approximate estimation of the asymptotic character 
of the e-curve in every series of experiments. In 
Table 1, a series of experiments are shown which were 
carried out for the value of an absolute refractory 
phase ARP = 2.4 ms. E-curves shown in Fig. 3b 
correspond with these values. This proves that the 
e-curves, differing in their value of inhibitory weight 
WI, converge to the same limiting number of ISIs of 
the output point process. The speed of convergence is 
in a reverse proportion with the value of the weight of 
inhibition.

The above mentioned phenomenon also 
depends on the duration of the absolute refractory 
phase ARP. A review of experiments for obtaining the 
value of the absolute refractory phase ARP = 4.8 ms is 
shown in Table 1. Even in this case, we can find 
e-curves converging onto the same limiting number of 
ISIs in the output process (Fig. 4a). A twofold duration
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of the absolute refractory phase was demonstrated here 
by a marked decrease of the reference number 
N(3000). The relation between the value of the 
absolute refractory phase and the reference number

N(3000) is shown in Fig. 4b. As the course of e-curves 
shows, the dependence is almost invariable to the value 
of inhibitory weight WI.
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Fig. 3
a) The course o f e-curve for series of 
experiments la (WI = 1, ARP  = 2.4 
ms, TRH = -60 mV). On this 
curve, the value of excitatory weight 
WE = 3000 corresponds with the 
reference number o f ISIs 
N(3000) = 1588.
b) Detail o f the increasing parts o f e- 
curves in the area of values of 
excitatory weight WE e <0;200>. 
The curve la corresponds with the 
series o f experiments with the value 
of inhibitory weight WI = 1. The 
curve 2a analogously accords with 
the series of experiments with 
WI = 15 and the curve 3a 
corresponds with the series of 
experiments with WI = 25 (Tab. 1). 
These curves converge for the values 
of excitatory weight WE to the same 
limiting number o f ISIs.

Table 1
Survey of the presented parameters in the individual series of experiments

Series of experiments WI [l] ARP [ms] N(3000)

la 1 2.4 1588
2a 15 2.4 1586
3a 25 2.4 1587

lb 1 4.8 883
2b 15 4.8 883
3b 25 4.8 883

WI -  weight o f the efficiency of an inhibitory synapse; ARP -  duration of absolute 
refractory phase; N(3000) -  reference number o f ISIs o f output point processes for 
the value o f excitatory weight WE = 3000
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Mean values o f interspike intervals

Figs 5a,b show the course of changes of the 
mean value E of ISIs, according to the series of 
experiments a (ARP = 2.4 ms) and b (ARP = 4.8 ms). 
In both cases, together with the growing value of 
excitatory weight WE, the mean value of ISI converges 
to the magnitude of the absolute refractory phase ARP.

Density distributions of ISIs of output stochastic 
processes

A neurone has the ability to transform the 
density distribution of ISIs. All the above described 
experiments assumed Gaussian processes at the input 
of the model. In dependence of the changes of 
excitatory weight WE and at a constant level of other 
physiological parameters (WI, ARP, THR) different 
distributions of ISIs of output stochastic process were 
found.

Fig. 4
a) Detail o f the increasing parts of 
e-curves for the value ARP = 4.8 
ms. They correspond with the series 
o f experiments lb (WI = 1), 
2b (WI = 15) and 3b (WI = 25) 
(see Table 1). b) Dependence o f the 
number of ISIs on the duration of 
the value o f excitatory weight 
WE = 3000. This value WE 
corresponds with the reference 
number of ISIs N(3000).

a) WE [1]

b)

10 20 30 40 50
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For example, in the series of experiments la 
(WI = 1, ARP = 2.4 ms) in the range of values 
WE e < 0; 2.0 > the output process did not show any of 
the characteristic distributions of ISIs, which have been 
observed at the output of a living neuronal cell (i.e. 
Gaussian, log-norm, exponential, the WeibulFs and 
gamma distribution). In the range of values of 
excitatory weight WE e <2.1; 5.0 > a log-norm 
distribution of ISIs was found (Fig. 6a). Its significance 
reaches a maximum approximately in the middle of this 
interval and decreases in the direction to either side. 
When the excitatory weight WE (i.e. WE >5.0) is 
increasing, then in certain cases we find differently 
modified multimodal distributions of ISIs that have 
been observed at the output of a living neuronal cell 
(Bishop et al. 1964). Their high occurrence is 
increasing together with the rate of decrease of 
changes of the number of ISIs of the output point 
process.
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Fig. 5
a) Dependence o f the mean value E 
o f ISIs for the series of experiments
la, 2a, 3a in the area o f the
excitatory weight WE e <1;50>. For 
the values WE> >50, the course of 
the mean value o f E converges to the 
value ARP = 2.4 ms.
b) Dependence o f the mean value E 
o f ISIs for the series of experiments
lb, 2b, 3b in the area o f the
excitatory weight WE e <1;50>. For 
the values WE> >50, the course of 
the mean value o f E converges to the 
value ARP = 4.8 ms.

Fig. 6
a) An example o f ISIs density distribution of the output 
process with the log-norm character for the value of 
excitatory weight WE =2.8 (series o f experiments la; 
Table 1).
b) An example o f ISIs density distribution o f the output 
process exponential in character for the value of 
excitatory weight WE = 14.6 (series o f experiments lb; 
Table 1).
c) An example o f multimodal density distribution o f ISIs 
of the output process for the value o f excitatory weight 
WE = 3000 (series o f experiments la; Table 1).
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With increasing values of WI as a constant 
parameter, the above mentioned phenomenon 
becomes less marked. In the 2a experimental series 
(WI = 15, ARP = 2.4 ms), the exponential distribution 
of ISIs appeared in the range of values of the excitation 
weight WE e <14.0; 15.0> (Fig. 6b). The maximum of 
significance again corresponds roughly to the middle of 
this interval. With a further increase (WE >15.0) we 
mainly found a multimodal density distribution. In the 
series 3a (WI = 25, ARP = 2.4 ms) none of the above 
mentioned density distributions were observed. The 
occurrence of the multimodal distribution corresponds 
with the results mentioned in the previous paragraph 
(Fig. 6c).

The same phenomena were found in 
experiments with a twofold value of the absolute 
refractory phase. In the series of experiments lb 
(WI = 1, ARP = 4.8 ms) the log-norm distribution of 
ISIs appeared in the range of values WE e <2.0; 7.0 >. 
In series 2b (WI = 15, ARP = 4.8 ms), the exponential 
distribution appeared in the range of values WE 
e < 14.0; 14.6 >. Finally, in the series of experiments 3b 
(WI = 25, ARP = 4.8 ms), in accordance with our 
previous results, only areas of the multimodal 
distribution of ISIs were found.

It can thus be concluded that typical 
distributions of ISIs (log-norm or exponential) are to 
be found in the experiments the parameters of which 
correspond to the steep increasing areas of e-curves, 
and do not exhibit high values of inhibitory weight. In 
other cases only multimodal distributions of ISIs of the 
output point process are to be observed.

Conclusions

The presented simulation experiments have 
provided results which may serve as the starting point 
to the study of problems encountered with the 
described model. They have shown some typical 
phenomena, which accompany the dynamics of two 
input synapses one excitatory and the other 
inhibitory. In Gaussian input point processes we
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