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Summary 
Body fat content is controlled, at least in part, by energy charge of adipocytes. In vitro studies indicated that lipogenesis 
as well as lipolysis depend on cellular ATP levels. Respiratory uncoupling may, through the depression of ATP 
synthesis, control lipid metabolism of adipose cells. Expression of some uncoupling proteins (UCP2 and UCP5) as well 
as other protonophoric transporters can be detected in the adipose tissue. Expression of other UCPs (UCP1 and UCP3) 
can be induced by pharmacological treatments that reduce adiposity. A negative correlation between the accumulation 
of fat and the expression of UCP2 in adipocytes was also found. Ectopic expression of UCP1 in the white fat of aP2-
Ucp1 transgenic mice mitigated obesity induced by genetic or dietary factors. In these mice, changes in lipid 
metabolism of adipocytes were associated with the depression of intracellular energy charge. Recent data show that 
AMP-activated protein kinase may be involved in the complex changes elicited by respiratory uncoupling in adipocytes. 
Changes in energy metabolism of adipose tissue may mediate effects of treatments directed against adiposity, 
dyslipidemia, and insulin resistance.  
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Introduction 
 
 Excessive accumulation of adipose tissue – 
obesity – implies a health risk. Even though obesity per 
se is not a disease, it leads to various chronic morbidities, 
including type II diabetes, dyslipidemia, cardiovascular 
disease (together designated as metabolic syndrome), and 
certain forms of cancer. Prevalence of obesity has taken 
on epidemic proportions and the economic costs of 
obesity range from 2 to 7 % of total health-care budget in 
industrialized countries (Kopelman 2000). In order to 

preserve energy stores of body fat during periods of 
negative energy balance, various regulatory mechanisms 
have evolved, i.e. central control of behavior and 
thermogenesis mediated by neuroendocrine system, 
control of fluxes of metabolites among organs, and 
control of energy metabolism within individual tissues. 
Due to the complex nature of the control of body fat 
content and numerous compensatory mechanisms 
involved in this control, the treatment of obesity is very 
difficult.  
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 Many pieces of evidence suggest that body fat 
content is controlled, at least partially, by the metabolism 
of adipose tissue itself. First, most of the candidate genes 
for obesity have important roles in adipocytes (Arner 
2000). Second, mice that are prone or resistant to obesity 
were created by transgenic modification of adipose tissue 
(for review see Kopecký et al. 2001). In these transgenic 
models, metabolic changes in white but not in brown 
adipose tissue are mostly responsible for the altered 
accretion of body fat, highlighting the importance of lipid 
metabolism in adipocytes of the white fat. Evidently, 
treatment strategies for obesity and metabolic syndrome 
should include specific modifications of the metabolism 
of white adipose tissue.  
 The characteristic feature associated with obesity 
and the pivotal factor in the pathogenesis of type II 
diabetes is insulin resistance. Reduced ability of 
peripheral tissues, in particular skeletal muscle and liver, 
to respond to insulin stimulation may be detected many 
years before the clinical onset of hyperglycemia. In obese 
subjects, insulin resistance most likely results from 
increased accumulation of lipids in peripheral tissues due 
to enhanced release of fatty acid (FA) from hypertrophic 
fat cells (Perseghin et al. 2003). In fact, hypertrophic 
adipocytes themselves become resistant to insulin, which 
results in lower clearance of plasma triacylglycerols and 
higher FA release from the adipose tissue. Interestingly, it 
was observed that insulin resistance also develops as a 
consequence of the lack of white adipose tissue 
(Gavrilova et al. 2000, Moitra et al. 1998). Under these 
circumstances, levels of circulating FA are elevated due 
to insufficient “buffering” capacity of adipocytes for FA. 
In consequence, excess lipids are deposited in other 
organs. In addition to FA, also various adipocyte-secreted 
proteins, like leptin, adiponectin, tumor necrosis factor α, 
and interleukin-6 modulate sensitivity of other tissues to 
insulin and may be involved in the induction of systemic 
insulin resistance (Fasshauer and Paschke 2003). 
Impaired insulin sensitivity associated with the excess of 
lipids in the liver, skeletal muscle, and pancreas has the 
consequences typical for the metabolic syndrome (Frayn 
and Summers 1998). Thus, metabolism of adipose tissue 
together with adipocyte-derived factors is involved in the 
control of systemic insulin sensitivity. 
 Only few laboratories have focused their 
research effort on the links between energy and lipid 
metabolism in cells of white adipose tissue. Department 
of Adipose Tissue Biology at the Institute of Physiology 
of the Academy of Sciences of the Czech Republic 

represents one of the laboratories in this field, namely due 
to studies on the mechanism by which mitochondrial 
uncoupling protein 1 (UCP1), expressed in white fat of 
transgenic mice (aP2-Ucp1), protects against obesity. 
These studies clarified several aspects of the modulation 
of adipose tissue metabolism by the intracellular energy 
charge, as well as the role of AMP-activated protein 
kinase (AMPK) in the integration of various signals 
affecting metabolism of white fat. The results are relevant 
for developing novel strategies for prevention and 
treatment of obesity based on the links between energy 
and lipid metabolism in adipocytes. 
 
Links between energy and lipid metabolism 
in adipocytes 
  
 As in other tissues, mitochondria represent the 
main source of ATP in the white fat. Efficiency of ATP 
synthesis during oxidative phosphorylation and hence the 
rate of ATP synthesis depends on the proton leak through 
the inner mitochondrial membrane. Experiments of Brand 
and colleagues (1999) suggest a general occurrence of 
basal proton leak in mitochondria in vivo. Several 
candidate genes encoding for proteins that could enable a 
regulatable proton leak are expressed in adipocytes, 
namely the genes for uncoupling proteins. In the brown 
fat, UCP1, UCP2, UCP3, and UCP5 genes are expressed. 
In the white fat, only UCP2 and UCP5 genes are 
normally active (Pecqueur et al. 2001, Ricquier and 
Bouillaud 2000). Similarly to UCP1, UCP2 and UCP3 
might also enhance the proton leak, induce respiratory 
uncoupling, and decrease ATP synthesis (Echtay et al. 
2001, Ricquier and Bouillaud 2000). It is well known that 
UCP1-mediated respiratory uncoupling in brown fat is 
involved in thermogenesis and in the control of energy 
balance (Ricquier and Bouillaud 2000). On the other 
hand, the physiological role of respiratory uncoupling and 
UCPs in the white fat requires further clarification. It may 
be hypothesized that uncoupling in white fat would 
increase energy expenditure and thermogenesis. 
However, the effect on energy balance may be relatively 
small, because contribution of the white fat to resting 
metabolic rate in humans is only about 5 % (Bottcher and 
Furst 1997). Alternatively, depression of ATP synthesis 
due to respiratory uncoupling in the white fat with the 
consequent rise in ADP and AMP levels may result in 
allosteric effects on the activities of key regulatory 
enzymes of carbohydrate and lipid metabolism or in 
modulation of intracellular regulatory pathways (see 
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below). In vitro experiments support the inhibition of FA 
synthesis and enhancement of glycolysis due to 
respiratory uncoupling in adipocytes (Rognstad and Katz 
1969). Oxidation of FA in mitochondria is expected to 
increase due to removal of the inhibition of FA transport 
to mitochondria by malonyl-CoA (the first committed 
intermediate in FA synthesis) (Saggerson and Carpenter 
1983) and also due to the activation of mitochondrial 
biogenesis (Li et al. 1999). Lipolysis may be depressed 
(Fassina et al. 1974). Without complementary evidence 
from in vivo studies, significance of the above findings in 
the link between energy and lipid metabolism in 
adipocytes would be limited. Therefore, the following 
paragraphs will focus on the relevant studies in humans 
and experimental animals. The main focus will be on 
understanding the role of mitochondria, respiratory 
uncoupling, and intracellular energy charge in the control 
of lipid metabolism in adipocytes and in the mitigation of 
obesity. 
 
Reduced accumulation of fat due to 
respiratory uncoupling in white adipose 
tissue of aP2-Ucp1 transgenic mice 
  
 The mechanism by which respiratory uncoupling 
may reduce accumulation of fat can be analyzed in the 
aP2-Ucp1 transgenic mice, in which the UCP1 gene is 
driven by the fat-specific aP2 promoter to achieve 
enhanced expression in both brown and white fat 
(Kopecký et al. 1995). This transgenic mouse model was 
constructed well before the discoveries of UCP2 and 
UCP3. The animals are partially resistant to obesity 
related to age, induced by genetic background (Kopecký 
et al. 1995) or by a high-fat diet (Kopecký et al. 1996a,b). 
The resistance to obesity reflects lower accumulation of 
triacylglycerols in all fat depots, except for gonadal fat, 
which becomes relatively large (Kopecký et al. 1995, 
1996a,b). Interestingly, reduction in total body weight 
becomes apparent only under obesity-promoting 
conditions such as feeding the high-fat diet (Kopecký et 
al. 1995, 1996a,b), similarly to other models of obesity 
resistance induced by transgenic modifications of adipose 
tissue or skeletal muscle. Transgenic UCP1 is present in 
both brown and white fat, however, the expression of 
endogenous UCP1 in brown fat is greatly reduced 
(Kopecký et al. 1995). Importantly, obesity resistance of 
the aP2-Ucp1 mice results from the transgenic 
modification of white fat only (Kopecký et al. 2001), 

since brown fat of the transgenic mice is greatly atrophied 
(Štefl et al. 1998). The origin of this atrophy is not clear. 
 Consequences of the expression of transgenic 
UCP1 in the white fat have been studied in great detail. 
Transgenic UCP1 is contained in all unilocular 
adipocytes (Kopecký et al. 1995, 2002). Expression of 
the transgene differs in various fat depots with gonadal 
fat showing a relatively low expression (Rossmeisl et al. 
2000). This may explain in part the lack of effect of the 
transgene on lipid accumulation in gonadal fat (see 
above). However, even in gonadal fat transgenic UCP1 is 
capable of decreasing mitochondrial membrane potential 
in adipocytes (Baumruk et al. 1999) and elevating oxygen 
consumption two-fold (Kopecký et al. 1996b). UCP1 also 
induces mitochondrial biogenesis in unilocular 
adipocytes, probably due to up-regulation of the 
transcription factor NRF-1 (Rossmeisl et al. 2002). In 
adult mice, the total content of transgenic UCP1 in white 
fat does not exceed 2 % of the total UCP1 found in 
interscapular brown fat (Kopecký et al. 1995). 
Apparently, only minute amounts of ectopic UCP1 in 
unilocular adipocytes of white fat can uncouple oxidative 
phosphorylation (Baumruk et al. 1999, Xu et al. 1991) 
and reduce the accumulation of fat. 
 In agreement with the low oxidative capacity of 
white fat, the two-fold increase in oxygen consumption 
brought about by transgenic UCP1 (see above) results in 
only a marginal stimulation of the resting metabolic rate 
in the transgenic mice (Štefl et al. 1998). This suggests 
that in addition to increased energy expenditure there 
must be another way how transgenic UCP1 reduces 
adiposity. Indeed, a strong diminution of FA synthesis 
was found in greatly reduced subcutaneous fat depots of 
transgenic mice, while the changes in gonadal fat were 
less obvious (Rossmeisl et al. 2000). It likely reflects the 
magnitude of UCP1 expression, which was the highest in 
subcutaneous fat (Kopecký et al. 1995, Rossmeisl et al. 
2000), as well as the drop in ATP/ADP ratio. The latter 
was observed only in the subcutaneous and not in 
gonadal fat of transgenic mice (Flachs et al. 2002). The 
decrease in FA synthesis was accompanied by down-
regulation of acetyl-CoA carboxylase, fatty acid synthase 
(Rossmeisl et al. 2000), and peroxisome proliferator-
activated receptor γ (Kopecký et al., unpublished results) 
in the white fat. Transgenic UCP1 lowered FA synthesis 
by means of respiratory uncoupling, as confirmed by in 
vitro experiments (Rognstad and Katz 1969, Rossmeisl et 
al. 2000). Ectopic UCP1 in the white fat also affected 
lipolysis and activity of adipose tissue lipoprotein lipase 
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(LPL). Maximum lipolytic effect of noradrenaline was 
suppressed by 50 % in the subcutaneous but not gonadal 
fat of the transgenics. In parallel, UCP1 transgene caused 
down-regulation of the expression of hormone-sensitive 
lipase, lowered its activity and altered the expression of 
G-proteins in adipocytes (Flachs et al. 2002). Activity of 
LPL was higher in transgenic than in control mice, 
especially when the animals were fed a high-fat diet. 
These data suggest that respiratory uncoupling in 
adipocytes stimulates LPL-mediated clearance of 
triacylglycerols by adipose tissue. In agreement with this, 
it was found that plasma triacylglycerol levels were also 
lower in transgenic than in control mice (Kopecký et al. 
1996a) with a clear-cut dose-dependent effect of the 
transgene. Plasma nonesterified FA followed a similar 
trend as triacylglycerols (Rossmeisl et al., unpublished 
results). The phenotype of the aP2-Ucp1 mice suggests 
that the main function of respiratory uncoupling and 
UCPs in the white fat might be the modulation of 
lipogenesis, oxidation of substrates, lipolysis, and 
hormonal control of lipid metabolism.  
 
AMP-activated protein kinase   
  
 The broad range of effects of the ectopic UCP1 
on the metabolic properties of white adipose tissue is 
difficult to explain and requires further clarification. In 
the white fat, as in other tissues, lipid and carbohydrate 
metabolism is modulated by AMP-activated protein 
kinase (AMPK), which serves as a metabolic master 
switch (Winder and Hardie 1999). In response to the fall 
in the intracellular ATP/AMP ratio, AMPK becomes 
activated through phosphorylation of its α-subunit by an 
upstream kinase. Activated AMPK then phosphorylates 
and inactivates a number of enzymes involved in 
biosynthetic pathways, thus preventing further ATP 
utilization (for review see Winder and Hardie 1999). In 
the skeletal muscle, AMPK also up-regulates NRF-1, 
which induces mitochondrial biogenesis (Bergeron et al. 
2001). In adipocytes, AMPK is known to inhibit both 
lipolysis and lipogenesis by regulating directly enzymes 
engaged in lipid metabolism (Sullivan et al. 1994). In the 
liver, the inhibitory effect of AMPK on lipogenesis is 
indirect, being mediated by transcription factor SREBP-1 
(Zhou et al. 2001), which up-regulates genes engaged in 
lipogenesis (Kim et al. 1998). All the effects of 
transgenic UCP1 on biochemical properties of the white 
fat in the aP2-Ucp1 mice are in accordance with the 
activation of AMPK (see above). Indeed, it was observed 

that UCP1-induced depression of the ATP/ADP ratio in 
subcutaneous white fat of the aP2-Ucp1 mice (Flachs et 
al. 2002) was associated with reduction in the ATP/AMP 
ratio and increased activity of AMPK. No such changes 
were observed in the gonadal fat (Šponarová et al., 
unpublished results). Other studies indicate that leptin can 
affect lipid metabolism of skeletal muscle through the 
activation of AMPK (Minokoshi et al. 2002) and that 
mutual links between AMPK activity and UCP3 
expression exist in this tissue (Pedersen et al. 2001, Zhou 
et al. 2000). Therefore, some effects of leptin on tissue 
metabolism may involve respiratory uncoupling and 
AMPK may represent the link between respiratory 
uncoupling and lipid metabolism (see below).  
 
Physiological relevance of energy metabolism 
in white adipocytes and new perspectives for 
the treatment of obesity and metabolic 
syndrome 
  
 Substantial amount of evidence indicates the 
involvement of mitochondrial UCPs, and presumably 
intracellular energy charge, in white adipocytes in the 
control of adiposity. Even in adult humans, relatively low 
levels of the UCP1 transcript can be detected in various 
fat depots. In abdominal fat, UCP1 mRNA levels are 
inversely related to the level of obesity (Oberkofler et al. 
1997), similarly to UCP2 (Oberkofler et al. 1998). A 
common polymorphism in the promoter region of the 
UCP2 gene is associated with a decreased risk of obesity 
in the middle-aged humans (Esterbauer et al. 2001). A 
negative correlation between heat production in 
adipocytes and body fat content has also been found 
(Bottcher and Furst 1997). 
 It is necessary to assess whether the changes in 
energy metabolism and intracellular energy charge occur 
in adipocytes during treatments that affect adiposity, 
insulin resistance and other components of the metabolic 
syndrome. The effects of several typical treatments like 
administration of leptin (Ceddia et al. 2000, Rustan et al. 
1998, Soukas et al. 2000, Zhou et al. 1999), bezafibrate 
(Cabrero et al. 1999, 2001), adrenoreceptor agonists 
(Angel et al. 1971, Gong et al. 1997, Himms-Hagen et al. 
2000, Ho et al. 1970, Pontecorvi and Robbins 1986, 
Yoshitomi et al. 1998), dietary n-3 polyunsaturated fatty 
acids (PUFAs) (Benhizia et al. 1994, Clarke 2001, Hun et 
al. 1999) or fasting (Ho et al. 1970, Iritani et al. 1996, 
Kalderon et al. 2000, Millet et al. 1997) can be compared 
with the phenotype of aP2-Ucp1 transgenic mice 
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(Kopecký et al. 1996a,b, Rossmeisl et al. 2000). In all 
these situations, fat accumulation is reduced and 
disturbances related to the metabolic syndrome are 
improved. In most cases, expression of various UCPs is 
up-regulated, FA oxidation is increased, in situ 
lipogenesis is suppressed, and LPL-mediated clearance of 
triacylglycerols in the white fat is augmented. Opposite 
changes in the activity of FA oxidation and lipogenesis 
probably reflect the elimination of inhibitory effect of 
malonyl-CoA on the transport of FA into mitochondrial 
matrix mediated by carnitine palmitoyl transferase-1 
(Saggerson and Carpenter 1983). Due to the low activity 
of this transferase in the white fat, oxidation of FA is 
relatively slow and FA are directed towards esterification 
(Martin and Denton 1970), unless the oxidation is 
activated by leptin (Wang et al. 1999) or perhaps by 
respiratory uncoupling. The alteration of energy charge in 
adipocytes, as revealed by changes in the intracellular 
content of ATP and/or ATP/ADP and ATP/AMP ratios, 
was detected not only in the aP2-Ucp1 mice (Flachs et al. 
2002) but also during fasting (Ho et al. 1970) and after 
the administration of adrenergic agonists (Angel et al. 
1971, Ho et al. 1970). Experiments in the aP2-Ucp1 mice 
(see above) thus strongly support the role of AMPK in 
adipocytes under the conditions reducing adiposity. The 
involvement of AMPK in the effects of leptin on lipid 
metabolism in the skeletal muscle has recently been 
found (see above). Antidiabetic drugs such as 
thiazolidinediones stimulate glucose uptake and insulin 
sensitivity in adipocytes. Under these conditions, parallel 
induction of glycerol kinase (Guan et al. 2002) and 
PEPCK (Tordjman et al. 2003) presumably leads to futile 
cycling of FA in adipocytes. In the skeletal muscle cells, 
thiazolidinediones stimulate AMPK by decreasing 
ATP/AMP ratio (Fryer et al. 2002). Therefore, it is 
essential to learn whether AMPK activity in adipocytes 
could also be modulated by thiazolidinediones. In support 
of this idea, adipocyte-derived hormone adiponectin with 
insulin-sensitizing properties increases glucose uptake 

into adipocytes by inducing AMPK (Wu et al. 2003). It is 
also assumed that changes in energy metabolism of 
adipocytes may affect secretion of biologically active 
substances from adipose tissue (e.g. leptin and other 
adipokines) and, hence, systemic insulin sensitivity. 
 
Conclusions 
  
 Metabolism of adipose tissue as well as its 
secretory functions are deeply involved in the patho-
physiology of the metabolic syndrome. It is becoming 
apparent that the intracellular energy charge of fat cells 
has a major role in controlling metabolism of adipose 
tissue. Therefore, energy metabolism of adipocytes is 
becoming a promising target for the treatment strategies 
in obesity and metabolic syndrome, including dietary 
manipulations and pharmacological approaches. Future 
studies should further elucidate how adipocytes respond 
to the above treatments with respect to changes in their 
intracellular energy charge and the mechanism of their 
metabolic adaptations.  
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