Effect of Systemic Hypoxia and Reoxygenation on Electrical Stability of the Rat Myocardium: Chronophysiological Study

P. ŠVORC, R. BEŇAČKA, D. PETRÁŠOVÁ, I. BRAČOKOVÁ, Š. KUJANÍK

Department of Physiology, Department of Pathophysiology, Department of Experimental Medicine, Medical Faculty Šafárik University, Košice, Slovak Republic

Received February 6, 2004
Accepted July 13, 2004
On-line available December 9, 2004

Summary
The aim of the study was to determine the dependence of changes in the electrical stability of the heart on the light-dark cycle (LD cycle) in disorders of pulmonary ventilation. The ventricular arrhythmia threshold (VAT) was measured in female Wistar rats (adaptation to the light regime 12:12 h, ketamine/xylazine anesthesia 100 mg/15 mg/kg, i.m., open chest experiments). The conditions of the normal artificial ventilation and reoxygenation were $V_T = 1$ ml/100 g, respiratory rate 40 breaths/min, hypoventilation $V_T = 0.5$ ml/100 g, respiratory rate 20 breaths/min. The animals (n=11 light group; n=19 dark group) were subjected to 20 min hypoventilation followed by 20 min reoxygenation. The control prehypoventilatory VAT differences were not found between the light (1.90±0.84 mA) and dark (1.88±0.87 mA) part of the day. Artificial hypoventilation changed the VAT values in light and dark part of the day differently. While during the light period, the average VAT values in most animals (90.9 %) were significantly decreased (1.29±0.59 vs. 1.90±0.84 mA control, p<0.05), during the dark part these values showed either significant increase (63.2 %) (2.23±0.77 vs. 1.48±0.39 mA, p<0.005) or a slight non-significant decrease (36.8 %) (2.18±0.89 vs. 2.54±0.99 mA). Reoxygenation returned the VAT values to the level before hypoventilation by an increase of the VAT (81.8 %) in the light part of day and by decrease of the VAT (68.4 %) in the dark part of the day. It is concluded that 1) in hypoventilation/reoxygenation model, the significant higher average VAT values are in the dark part of the day vs. the light one, 2) rat hearts are more resistant to systemic hypoxia and reoxygenation in the dark part of day, and 3) proarrhythmogenic effect of the systemic hypoxia is only seen in the light part of the day.

Key words
Electrical stability of the heart • LD cycle • Hypoventilation • Rat

Introduction
Most physiological functions of the living organism, especially those of the cardiovascular system, show a marked circadian rhythmicity (Henry et al. 1990). The circadian fluctuations concern both blood pressure and heart rate, but also the incidence of ventricular dysrrhythmias, onset of cardiovascular symptoms and manifestations of cardiovascular diseases. The onset and development of ventricular arrhythmias depends on many factors to which some disorders of pulmonary ventilation also belong. The
effect of systemic hypoxia, hypercapnia and acidosis (consequences of hypoventilation) were studied not only in animal experiments (Kujaník et al. 1984, 1985, Tomori et al. 1997, 2000, Švorc et al. 2003) but also in clinical trials (Guilleminault et al. 1983, Peter 1990, Kujaník et al. 2000a, 2000b). Surprisingly, there are few reports describing the daytime of the experiment running or synchronization of animals to the LD cycle. Papers, studying factors responsible for the onset and development of ventricular arrhythmias, have mainly focused on the temporally current mechanical and metabolic changes in the myocardial cells, often irrespective of the circadian dependence. This can be a problem, because the LD cycle is one of the strongest circadian synchronizers of the animal endogenous rhythms. For this reason, the circadian variability should be considered as an important factor especially in the cardiovascular studies.

In animal experiments, the link between disorders of pulmonary ventilation and incidence of ventricular arrhythmias was also demonstrated in circadian dependence (Otsuka and Watanabe 1990, Švorc et al. 1997, 2000a). Using the 24 h chronogram Otsuka and Watanabe (1990) found that the hourly distribution of the apnoe index coincided with the highest incidence of bradyarrhythmias in rats. In the hypoventilation-reoxygenation rat model under pentobarbital anesthesia, hypoventilation decreased the VAT and circadian rhythm acquired a moderate biphasic character (Švorc et al. 1997). Reoxygenation changed the VAT circadian rhythm to inverse against a monophasic one during normal ventilation (Švorc et al. 2000a). It means that the LD cycle can play a role in the development of hypoxia/reoxygenation induced ventricular arrhythmias and can belong to the group of predisposing factors.

The question remains whether vulnerability of the ventricles to arrhythmias is primarily changed only by the factors resulting from the changed ventilation, or if there are factors, as anesthesia, or also natural factors (LD cycle), which can influence the followed parameter. The aim of our study was to evaluate the effect of the LD cycle on the electrical stability of the rat heart under ketamine/xylazine anesthesia under the conditions of the changed ventilation.

Methods

Experimental animals and conditions of adaptation

The experimental procedures were performed in accordance with the Helsinki Declaration for scientific experimentation on animals. The experiments were performed on anesthetized (ketamine/xylazine anesthesia, ketamine 100 mg/kg Narkamon SPOFA Prague + xylazine 15 mg/kg Rometar SPOFA Prague, i.m.) female Wistar rats (3-4 months old). The rats were adapted to a light and climate-controlled room (relative moisture from 40 % to 60 %, temperature 24 °C in the cages) for 4 weeks. The rats were kept in the cages (3 animals/cage) and had free access to food and water.

Experimental groups and protocol

The effect of the light period (n=11; light group) was followed after adaptation to LD cycle of 12:12 h, with the dark part of day from 18:00 to 06:00 h. The VAT measurements were performed twice (the first animal between 09:00-10:00 and the second one between 12:00-13:00 h). The effect of the dark period (n=19, dark group) was followed after inverse setting of LD cycle, with the dark period from 06:00 to 18:00 h, with the times of measurement as in the first case (see scheme in Fig. 1). The experiments were performed during the whole year and the results were averaged independently of the season.

The heating of animals was performed before the surgical interventions (tracheotomy and thoracotomy) to the value of the rectal temperature measured before the anesthetic application. After tracheotomy and thoracotomy, animals were ventilated for 5 min at normal ventilation (see "Conditions of ventilation") and then they were subjected to 20-min hypoventilation followed by 20-min reoxygenation.

Conditions of ventilation

The pulmonary ventilation was sustained through a tracheal cannula connected to an artificial respirator. The parameters of normal ventilation and reoxygenation were as follows: respiratory rate 40 breaths/min, tidal volume 1 ml/100 g of body weight. The respiratory rate for hypoventilation was 20 breaths/min, tidal volume 0.5 ml/100 g of body weight. The analysis of the blood gases and acid-base balance by ASTRUP method was used for the monitoring of the respiratory effect of ventilation. The changes in the blood gases and acid-base balance were detected from blood samples taken from the femoral artery after 5 min stabilization (pH 7.44±0.11, paO2 10.8±1.7 kPa, paCO2 3.22±1.3 kPa, O2 saturation 91.6±9.9 %), at the end of 20-min hypoventilation (pH 7.15±0.07, paO2 7.3±1.7
kPa and \( \text{paCO}_2 7.3 \pm 1.3 \text{ kPa, O}_2 \text{ saturation 68.2} \pm 13.7 \% \)
and 20-min reoxygenation (\( \text{pH} 7.37 \pm 0.06, \text{paO}_2 9.46 \pm 1.85 \text{ kPa and paCO}_2 4.62 \pm 0.71 \text{ kPa, O}_2 \text{ saturation 93.3} \pm 3.6 \% \)), respectively. Whereas the average values

\( \text{paO}_2, \text{paCO}_2 \) a \( \text{pH} \) between light and dark part of the day were practically identical, the above mentioned average values are common for both light parts.

The light phase of experiment (light group)

![Light Phase Diagram]

The dark phase of experiment (dark group)

![Dark Phase Diagram]

**Fig. 1.** Scheme of adaptation of the animals on LD cycle 12: 12 hours. Empty bar - light part of rat regime day (in the light group from 06.00 to 18.00 o'clock, in the dark group from 18.00 to 06.00 o'clock), full bar - dark part of rat regime day (in the light group from 18.00 to 06.00 o'clock, in the dark group from 06.00 to 18.00 o'clock). Arrows - the time of experiments.

**Fig. 2.** Representative ECG records (limb leads I, II, III) of ventricular arrhythmia induced by the train of electrical stimulation of right ventricle.

**Measurement of VAT**

The control VAT values were measured after the surgical interventions (tracheotomy and thoracotomy) and a 5-min period of stabilization with the parameters of the normal pulmonary ventilation. The effect of hypoventilation and reoxygenation on the VAT was followed after 5, 10, 15 and 20 min of ventilation. The VAT was measured directly by electrical stimulation of the heart. The stimulating electrodes (diameter 1 mm and 5 mm distance between electrodes) were fixed at the base of the right ventricle in the supine position. Cardiac stimulation (rectangular pulses with a frequency 30 Hz, 10 ms impulse length, and duration of stimulation 400 ms) was triggered by the initial pulse of the R wave. The current intensity was increased progressively by steps of 0.2 mA until ventricular arrhythmias were obtained. The onset and course of the ventricular arrhythmias was evaluated visually by monitoring of ECG from bipolar limb leads using computer system ECG Practic Veterinary (Fig. 2). Resuscitation was spontaneous, 4-5 min after termination of the ventricular arrhythmias.

**Statistical analysis**

The data are presented as means ± S.D. Statistical levels \( p<0.05 \) were considered to be significant by non-parametric tests. The effect of LD cycle on the VAT changes was tested by the \( \chi^2 \)-test.

**Results**

No significant differences in control VAT values (measured during normal artificial ventilation for 5 min) were found between the light and dark part of the day
Artificial hypoventilation changed the VAT values differently in the light and dark part of the day. While during the light part, the average VAT value was significantly decreased (1.29±0.59 mA hypo vs. 1.90±0.84 mA control, p<0.05), during the dark part the VAT value showed non-significant increase (Fig. 3). The data collected in intervals through the hypoventilation (20 min) showed that the VAT values were significantly higher in dark part of day as compared to the light part of the day (Fig. 4).

Reoxygenation returned the VAT values to the level prior to hypoventilation in a different manner during the light and dark part of the day (Fig. 3). Recovery was reached by an increase of VAT in the light part of the day (1.74±0.72 mA reoxy vs. 1.29±0.59 mA hypo vs. 1.90±0.84 mA control) and by the decrease of VAT in the dark (1.99±0.92 mA reoxy vs. 2.16±1.07 mA hypo vs. 1.88±0.87 mA control). In the dark part of day, reoxygenation further caused profound alterations in the VAT gained by hypoventilatory hypoxia (Fig. 4).
Although VAT was attained by a different route, the average VAT values were not significantly different between light and dark part of the day.

Hyperventilation as well as recovery of ventilation did not produce the same myocardial response to electrical stimulation in individual animals. The reactions of animals to electrical stimulation under different ventilation in the both light parts of day are shown in Table 1. $\chi^2$-test was performed on the basis of these individual responses in the aspect of previous threshold values for evaluating the effect on the LD cycle. The significant effect of the LD cycle on the VAT changes was confirmed for prolonged periods of hyperventilation ($p<0.05$) as well as reoxygenation ($p<0.01$), respectively.

**Table 1.** Individual responses of animals to electrical stimulation. Numerator - number of animals with VAT changes against the previous VAT measurement, denominator - number of animals in experimental group.

<table>
<thead>
<tr>
<th>Hypoventilation vs. control value</th>
<th>Reoxygenation vs. hypoventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>VAT decrease</strong></td>
<td><strong>VAT increase</strong></td>
</tr>
<tr>
<td>Light</td>
<td>Dark</td>
</tr>
<tr>
<td>10/11 (90.9 %)</td>
<td>7/19 (36.8 %)</td>
</tr>
<tr>
<td>1/11 (9.1 %)</td>
<td>12/19 (63.2 %)</td>
</tr>
</tbody>
</table>

**Discussion**

The individual VAT values, measured during experiments, showed wide inter- as well as intraindividual variability. The explanation of such a variability can be due to production of spontaneous unpredictable alterations in the electrical stability of the heart induced by anesthesia or hormonal and homeostatic reflexes operating only in intact animals (Lubbe et al. 1975). It can be a limitation of this study that there is no uniform and predictive reaction of animals to anesthesia or to changed ventilation.

The electrical stability of the myocardium is mainly influenced by changes of ion distribution. Although the effect of the LD cycle on ion concentrations was not the aim of our work, the studies of other authors (Stoynev et al. 1986, Poulis et al. 1989, Lausson et al. 1985, Roelfsema 1987) refer to circadian variability of ion concentrations under normal ventilatory conditions. Thus LD changes in the electrical stability of the heart might reflect the LD changes in ion concentrations. The mean values of control VAT measurements, however, show that there are no differences between the light and dark part of the day. Loss of VAT dependence on the LD cycle refer to the fact that ketamine/xylazine anesthesia probably minimizes or disturbs the effect of the LD cycle on rat myocardial vulnerability under the conditions of the normal pulmonary ventilation. Our results are consistent with results of Bruguerolle's group, who demonstrated the perturbations of daily rhythm of heart rate, locomotor activity and body temperature in rats under ketamine anesthesia (Prudian et al. 1997). Almost 10 days were needed to detect a significant daily rhythm for above mentioned parameters (Pelissier et al. 1998).

Systemic hypoxia induced by hyperventilation changed the electrical stability of the rat heart in dependence on the LD cycle. Although the VAT decreased concomitantly in both light parts of the day during 20-min hyperventilation, it was demonstrated that: 1) the significantly higher average VAT values were in the dark part of day (active phase) against the light one (sleep phase), 2) the rat hearts are more resistant against the systemic hypoxia in the dark part of day, and 3) the significant decrease of the VAT refers to the proarrhythmogenic effect of the systemic hypoxia only in the light part of day. These differences probably result from the changed myocardial reactivity to electrical stimulation in dependence on the LD cycle. An important and still open question remains, whether the mechanisms responsible for the changed myocardial vulnerability are mobilized mainly by hyperventilation-induced systemic hypoxia, hypercapnia and acidosis with the additive effect of the LD cycle, or whether they are mobilized by the factors oscillating in the circadian dependence and with an additive effect of hyperventilation. This question is important because some reports describe disruptive effect of hypoxia on circadian rhythms, for example, on body temperature and locomotor activity in rats (Bishop et al. 2000, 2001, Mortola and Seifert 2000) and in golden hamsters (Jarsky and Stephenson 2000). Hyperventilation induced systemic hypoxia has non-unequivocal influence on changes of the P, R and T
amplitudes of ECG (Štimmelová et al. 2004) but significantly influences the PQ, QT and QTc durations in dependence on the light and dark phase of the rat regime day (Štimmelová et al. 2002).

Although reoxygenation returned the VAT to control values in both light and dark part of the day, the problem remains that the VAT was increased compared to hypoventilatory value only in the light part of day. A contrary tendency was found in the dark part of the day. The decrease in the dark part of day can probably signalizes the larger extent of reoxygenation injury of the myocardium in the dark (active) part of day. This fact is supported by our previous results in the rats under pentobarbital anesthesia. During reoxygenation after hypoventilation, the highest myocardial vulnerability was found between 24:00 and 3:00 h (after adaptation on LD cycle 12:12 h, dark part of the day from 18:00 to 6:00 h), but at the normal artificial pulmonary ventilation, the minimal vulnerability was exactly the same during this period (Švorc et al. 2000b).

It is concluded that although the electrical stability of the rat heart under ketamine/xylazine anesthesia does not show a dependence on the LD cycle during normal pulmonary ventilation (probably due to the effect of ketamine/xylazine anesthesia), hypoventilation and reoxygenation change myocardial vulnerability in the dependence on LD cycle. It seems that rat myocardium is probably more sensitive to hypoventilation induced by systemic hypoxia mainly in the light (non-active) part of day. The conclusions of this study show that the time of the experiment or synchronization to the LD cycle and the circadian rhythmicity in the rat myocardial sensitivity to hypoxia should be considered as important factors, which can influence the results in experimental cardiology. Information about the circadian changes of myocardial sensitivity to hypoxia extend our knowledge about the mechanisms, which are responsible for the effect of systemic hypoxia on the myocardium.

Acknowledgements
Supported by VEGA grant No. 1/0512/03.

References


Reprint requests
Pavol Švorc, Department od Physiology, Medical Faculty, P.J. Šafarik University, tr. SNP 1, 040 66 Košice, Slovak Republic, e-mail: psvorc@central.medic.upjs.sk