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Summary 
Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear receptor superfamily of ligand-activated 
transcription factors. PPAR-α, first of its three subtypes (α, β, γ) has traditionally been considered an important 
regulator of lipid metabolism while its role in the regulation of insulin sensitivity has not been recognized until recently. 
Here we summarize the experimental and clinical studies focusing on the role of PPAR-α in the regulation of insulin 
sensitivity. In most of the experimental studies the activation of PPAR-α in rodents leads to improvement of insulin 
sensitivity by multiple mechanisms including improvement of insulin signaling due to a decrease of ectopic lipids in 
non-adipose tissues and decrease of circulating fatty acids and triglycerides. In contrast, the effect of PPAR-α agonist in 
humans is much less pronounced probably due to a lower expression of PPAR-α relative to rodents and possibly other 
mechanisms. Further clinical studies using more potent PPAR-α agonists on a larger population need to be performed to 
evaluate the possible role of PPAR-α in the regulation of insulin sensitivity in humans. 
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Introduction 

 
Peroxisome proliferator-activated receptors 

(PPAR) belong to the nuclear receptor superfamily of 
ligand-activated transcription factors. These receptors 
have been implicated in diverse metabolic pathways such 
as lipid and glucose homeostasis, control of cellular 
proliferation and differentiation etc. PPARs, similarly to 
other nuclear receptors, interact with a number of nuclear 
proteins known as co-activators and co-repressors and 
subsequently heterodimerize with retinoid-receptors X 

(RXR) to form PPAR-RXR complex. This complex binds 
to cognate DNA elements called PPAR response 
elements and leads to activation and repression of 
numerous genes involved in the above mentioned 
metabolic pathways. 

The name of PPAR has been derived from its 
ability to stimulate the proliferation of peroxisomes – 
organelles involved in the β-oxidation of long chain fatty 
acids – in rodents (Kersten et al. 2000). The proliferation 
of peroxisomes in rodents is accompanied by marked 
hepatomegaly and increases the transcription of genes 
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involved in both peroxisomal and microsomal oxidation 
of fatty acids (Anderson et al. 2001). While this is true 
for rodents, peroxisome proliferation does not occur in 
humans.  

To date, three different PPAR subtypes have 
been identified: PPAR-α, PPAR-β/δ and PPAR-γ. While 
PPAR-α has traditionally been recognized for its 
involvement in the regulation of lipid oxidation (Fruchart 
et al. 2001), PPAR-β/δ plays a role in the development, 
embryo implantation, myelinization of corpus callosum, 
epidermal cell proliferation and lipid metabolism (Peters 
et al. 2000). On the contrary, PPAR-γ is an essential 
regulator of adipocyte differentiation, regulating thus 
indirectly glucose and lipid homeostasis (Kubota et al. 
1999). Moreover, activation of PPAR-γ in the liver and 
muscle tissues can according to some studies directly 
affect lipid handling and glucose metabolism (Matsusue 
et al. 2003). In addition to the above mentioned effects 
numerous other potential functions of PPARs have been 
described including those in the regulation of tumor 
growth, inflammation and others (Mueller et al. 1998, Su 
et al. 1999, Vamecq and Latruffe 1999). 

 
Adipose tissue and insulin resistance: the 
potential of PPAR-α agonist to improve 
insulin sensitivity 

 
The prevalence of obesity, insulin resistance, 

type 2 diabetes and related complication referred to as 
Reaven or Metabolic syndrome is increasing in virtually 
all developed countries of western world (O'Rahilly 
1997). Over the last fifteen years considerable progress 
has been reached in understanding molecular mechanism 
of insulin resistance – a central defect in the 
etiopathogenesis of the metabolic syndrome. It has been 
found that adipose tissue plays a very important role in 
the onset and development of insulin resistance by 
several distinct mechanisms (Shulman 2000). The most 
important one is based upon the spillover of triglycerides 
and/or other lipid metabolites into non-adipose tissues 
such as muscles, liver and pancreas as a result of chronic 
energy overload of adipocytes in obese subjects (Saltiel 
2001). This ectopic lipid deposition significantly 
interferes with intracellular insulin signaling cascade in 
the muscle and liver, thus directly inducing insulin 
resistance. Increased lipid content in the pancreatic islets 
of Langerhans impairs insulin secretion through the 
induction of β-cell apoptosis and numerous other 
mechanisms (Unger and Zhou 2001). A second 

mechanism connecting adipose tissue to insulin resistance 
is the increased release of free fatty acids into the 
circulation that in turn may induce insulin resistance in 
the muscle and possibly in the liver (Boden and Shulman 
2002, Roden et al. 2000). Numerous studies have shown 
that increased free fatty acids can give rise to insulin 
resistance by several mechanisms that may or may not 
occur simultaneously. The original hypothesis of Randle 
et al. (1963) explaining decreased glucose metabolization 
by substrate competition with free fatty acids has been 
partially revised (Cline et al. 1999) because the defect 
already occurs at the levels of glucose transport inside 
cells rather than on the level of its intracellular 
metabolization as originally suggested. In some studies, 
direct effect of increased free fatty acids on the key 
enzymes involved in glucose metabolism such as 
glycogen synthase, glucokinase, hexokinase and others 
have been suggested (Perseghin et al. 2003).  

Finally, adipose tissue produces several 
hormones that regulate energy homeostasis, lipid and 
glucose metabolism such as leptin, adiponectin, resistin, 
tumor necrosis factor-α and others (Hotamisligil et al. 
1993, Havel 2002, Haluzík et al. 2004c). Disturbances in 
the production of these factors may contribute to the 
development of insulin resistance or impaired insulin 
secretion in patients with type 2 diabetes. 

Numerous experimental and clinical studies have 
shown a close correlation between insulin sensitivity and 
ectopic lipid storage in the muscle and liver (Ravussin 
and Smith 2002). Therefore, the decreasing ectopic lipid 
content in non-adipose tissues by promoting its tissue 
oxidation would represent a logical approach to improve 
insulin sensitivity.  

 
PPAR-α and insulin sensitivity: experimental 
studies 

 
Although PPAR-α is a key regulator of lipid 

oxidation and as such could indirectly influence glucose 
metabolism, its effects on insulin sensitivity have not 
been extensively studied until recently. Exogenous 
PPAR-α agonists (fibrates) have been traditionally used 
as hypolipidemic agents with most prominent effects on 
circulating triglyceride levels (de Faire et al. 1996). 
Guerre-Millo et al. (2000) were the first investigators 
who demonstrated that the treatment of obese rodents 
(leptin-deficient ob/ob mice and Zucker diabetic rats) 
with PPAR-α agonist decreased body fat, blood glucose 
and insulin levels suggesting an improvement of insulin 
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sensitivity. The mechanism of the PPAR-α agonist 
effects has not been elucidated in this study, but these 
authors proposed that increased lipid oxidation with 
subsequent reduction of ectopic lipid storage may have 
been involved. 

We have used the euglycemic-hyperinsulinemic 
clamp to differentiate the tissue specificity of insulin-
sensitizing effects of PPAR-α agonists in two mouse 
models of insulin-resistance: lipoatrophic A-ZIP/F-1 
mice and MKR mice overexpressing the dominant-
negative IGF-1 receptor isoform in the skeletal muscle 
(Chou et al. 2002, Kim et al. 2003). 

Transgenic lipoatrophic A-ZIP/F-1 mice have 
virtually a complete lack of white adipose tissue leading 
to markedly elevated circulating triglycerides and free 
fatty acids, severe insulin resistance and diabetes due to 
excessive ectopic lipid deposition in non-adipose tissues 
(Moitra et al. 1998). Two-weeks treatment of A-ZIP mice 
with PPAR-α agonist WY-14643 completely normalized 
their circulating free fatty acids and triglyceride levels 
and decreased blood glucose concentrations with no 
change in serum insulin levels (Chou et al. 2002). The 
activation of PPAR-α also markedly stimulated the 
muscle expression of two key enzymes involved in lipid 
oxidation, namely carnitin-palmitoyl transferase and acyl-
CoA oxidase. Moreover, the liver and muscle tissue 
triglyceride content was significantly reduced after  
WY-14643 treatment suggesting that decreased ectopic 
lipid storage due to its increased oxidation may have been 
the leading mechanism of WY-14643 action. The 
euglycemic-hyperinsulinemic clamp demonstrated 
marked improvement in the liver insulin sensitivity and a 
borderline increase in the whole body insulin sensitivity.  

The effect of PPAR-α activation in MKR 
transgenic mice was very similar to that in A-ZIP 
lipoatrophic mice (Kim et al. 2003). MKR mice 
overexpress the dominant negative form of IGF-1 
receptor in skeletal muscles and their diabetes is due to 
severely impaired muscle insulin sensitivity at the 
younger age with subsequent deterioration of liver and 
adipose tissue insulin sensitivity at the older age 
(Fernandez et al. 2001). Treatment with PPAR-α agonist 
again stimulated the expression of the enzymes involved 
in lipid oxidation leading to a concomitant decrease of 
muscle and liver triglyceride levels (Kim et al. 2003). 
Consequently, blood glucose and insulin concentrations 
dropped remarkably indicating an improvement in the 
insulin sensitivity which was further demonstrated by the 
euglycemic-hyperinsulinemic clamp. Moreover, studies 

on isolated pancreatic islets showed an improvement in 
insulin secretion after PPAR-α agonist treatment. 

In addition to PPAR-α agonists, the effect of 
combined PPAR-α/γ agonist ragaglitazar have been 
tested by Ye et al. (2003). Ragaglitazar completely 
eliminated high-fat feeding-induced liver triglyceride 
accumulation and visceral adiposity similarly to PPAR-α 
agonist WY-14643 but without causing hepatomegaly. It 
also lowered circulating triglyceride levels and muscle 
long-chain acyl-CoAs. The ability of ragaglitazar to 
suppress the hepatic glucose output was significantly 
greater relative to WY-14643 which may have been due 
to a threefold increase in plasma levels of insulin-
sensitizing hormone adiponectin. 

While most of the studies demonstrated reduced 
adiposity and improved insulin sensitivity after PPAR-α 
activation, this may not be true for all rodent models of 
the metabolic syndrome. Šedová et al. (2004) recently 
found that two-weeks fenofibrate administration in fact 
deteriorated insulin sensitivity in a genetic model of 
insulin resistance syndrome of polydactylous (PD/Cub) 
rat strain. Interesting data about PPAR-α and insulin 
sensitivity were obtained by studying glucose metabolism 
in transgenic PPAR-α knockout mice. Guerre-Millo et al. 
(2001) and Tordjman et al. (2001) demonstrated that the 
lack of PPAR-α protects against the development of 
insulin resistance induced by a high-fat diet feeding as 
measured by the glucose tolerance test and euglycemic-
hyperinsulinemic clamp, respectively, in fasted mice. We 
measured insulin sensitivity of PPAR-α knockout mice 
fed high-fat diet using euglycemic-hyperinsulinemic 
clamp in the non-fasted state and found no protection 
against the development of insulin resistance relative to 
wild type mice (Haluzík et al. 2004b). The possible 
explanation of this contradiction could be in the defective 
response to fasting in PPAR-α knockout mice. The lack 
of PPAR-α leads to their inability to oxidize fatty acids 
with preferential use of glycogen stores as a fuel during 
fasting. As a result, the glycogen stores in PPAR-α 
knockout animals are depleted more quickly than in 
normal mice which can subsequently affect glucose 
uptake during an oral glucose tolerance test or glucose 
clamp. 

Taken together, the above described data show 
that PPAR-α activation in most of the rodents models of 
obesity and insulin resistance/diabetes markedly 
improves insulin sensitivity mostly due to decreased 
ectopic lipid storage in non-adipose tissues. Moreover, 
improved insulin secretion after long term PPAR-α 
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agonist treatment may contribute to the overall 
improvement of the diabetic phenotype.  

 
Adipose tissue hormones and PPAR-α effects 
on insulin sensitivity 

 
Although PPAR-α activation in rodents induces 

marked changes in the adiposity, only few studies were 
focused on the influence of PPAR-α stimulation on the 
endocrine function of adipose tissue. Leptin levels 
normally positively correlate with body adiposity and 
decrease with body weight reduction in both humans and 
rodents (Maffei et al. 1995, Haluzík et al. 1999). The 
same was true for studies with PPAR-α agonists where 
reduction of body weight in mice or rats was 
accompanied by decreased leptin levels thus excluding 
the possible role of leptin in the mediation of PPAR-α 
effects (Lee et al. 2002).  

Another adipose tissue-derived hormone, resistin 
was originally discovered as a potential mediator of 
obesity-induced insulin resistance increased in obese 
mice and rats and antagonizing insulin action (Steppan et 
al. 2001). Later studies did not fully support its causal 
role in the etiopathogenesis of insulin resistance but 
confirmed its role in the regulation of hepatic glucose 
production (Savage et al. 2001, Way et al. 2001, Banerjee 
et al. 2004, Haluzík et al. 2004a). Reports on the changes 
of resistin gene expression and/or serum levels after 
PPAR-α activation are limited. Fukui and Motojima 
(2002) found that PPAR-α knockout mice have 
significantly decreased constitutive resistin expression in 
the adipose tissue relative to control animals indicating a 
regulatory role of PPAR-α in the resistin expression 
(Fukui and Motojima 2002). In our study, circulating 
resistin levels were significantly increased after three 
weeks of fenofibrate treatment of C57BL/6J mice fed by 
either normal chow or a high-carbohydrate diet despite 
the improvement of insulin sensitivity (Haluzík MM and 
Haluzík M, unpublished results). In another study, 
resistin gene expression was increased in human 
subcutaneous adipose tissue after eight weeks of 
fenofibrate treatment relative to placebo group (Jove et 
al. 2003). Thus, similarly to leptin, the changes of resistin 
levels are not involved in PPAR-α insulin-sensitizing 
effects. 

Adiponectin is a protein hormone produced 
exclusively by adipocytes with significant insulin-
sensitizing and anti-atherosclerotic effects (Haluzík et al. 
2004c). Its serum concentrations are inversely related to 

body adiposity and insulin sensitivity (Hotta et al. 2000). 
In contrast to resistin, adiponectin levels do not appear to 
be directly regulated by PPAR-α (Haluzík et al. 2004b). 
In our study, the treatment with PPAR-α agonist 
increased serum adiponectin levels in C57BL/6J mice on 
chow diet but not in mice on high-carbohydrate diet 
(Haluzík MM and Haluzík M, unpublished results). The 
changes in adiponectin levels therefore do not appear to 
mediate insulin sensitizing effects of PPAR-α activation.  

 
PPAR-α and insulin sensitivity: clinical 
studies 

 
PPAR-α agonists fibrates have been traditionally 

used in clinical practice in the treatment of combined 
hyperlipidemia and/or isolated hypertriglyceridemia. 
Numerous clinical studies showed that fibrates were very 
effective in decreasing triglyceride levels and increasing 
HDL cholesterol levels with subsequent reduction of both 
cardiovascular morbidity and mortality (de Faire et al. 
1996). None of those studies, however, was directly 
focused on the changes of insulin sensitivity and in most 
of them neither the insulin levels nor other parameters of 
glucose tolerance/insulin sensitivity were measured. On 
the other hand, the major drawbacks of the studies testing 
the effect of PPAR-α agonists on the insulin sensitivity 
are very small number of patients and the fact that most 
of them were open-labeled and non-randomized. Here we 
briefly discuss the most important studies focusing on the 
effect of fibrates on the glucose tolerance/insulin 
sensitivity in humans (Table 1).  

In the first study, Ferrari et al. (1977) tested the 
effect of one-week clofibrate treatment on the insulin 
sensitivity of 18 patients with hypertriglyceridemia 
without type 2 diabetes mellitus and 28 patients with 
hypertriglyceridemia with type 2 diabetes mellitus 
respectively. Even such short-term treatment improved 
glucose tolerance (measured by the glucose tolerance 
test) and decreased basal serum insulin levels.  

Another clofibrate study on 15 patients with type 
2 diabetes mellitus was performed by Murakami et al. 
(1984). Four weeks of clofibrate treatment significantly 
improved glucose tolerance and insulin sensitivity as 
measured by glucose and insulin tolerance tests, 
respectively. Kobayashi et al. (1988) published the results 
of double-blind randomized study of 70 patients with 
type 2 diabetes. The patients were treated with clofibrate 
for 12 weeks. This treatment significantly improved 
glucose tolerance and decreased basal glucose levels. 
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Table 1. Summary of selected clinical studies that tested the effect of PPAR-α agonist treatment on insulin sensitivity.  
 

Study Fibrate and treatment 
interval (in weeks) 

Number of patients, 
disease 

Change of insulin 
sensitivity/glucose tolerance

Ferrari et al. (1977) clofibrate, 1 week 18, T2 DM  ⇑ insulin sensitivity 
Murakami et al. (1984) clofibrate, 4 weeks 15, T2 DM  ⇑ insulin sensitivity 
Kobayashi et al. (1988) clofibrate, 12 weeks 70, T2 DM ⇑ insulin sensitivity 
Yong et al. (1999) fenofibrate, 24 weeks 23, hypertriglyceridemia ⇑ insulin sensitivity 
Škrha et al. (1994) etofylinclofibrate, 12 weeks 8, T2 DM ⇓ 
 fenofibrate, 12 weeks 8, T2 DM no change 
Idzior-Walus 2001 fenofibrate, 12 weeks 37, metabolic syndrome ⇑ insulin sensitivity 
Whitelaw et al. (2002) gemfibrozil, 12 weeks 12, T2 DM no change 
Rizos et al. (2002) ciprofibrate, 16 weeks 64, combined hyperlipidemia no change* 

 
T2 DM – type 2 diabetes mellitus. * Only blood glucose and insulin were measured, no glucose tolerance or insulin sensitivity tests were 
performed. 
 

 
A more recent study by Yong et al. (1999) with 

24-week fenofibrate treatment of 23 patients with 
hypertriglyceridemia showed no improvement in glucose 
tolerance. Interestingly, insulin concentrations during 
glucose tolerance test performed after treatment were 
significantly lower as compared to those before 
treatment. The authors suggested that this may indicate an 
improvement in insulin sensitivity. Another study by 
Idzior-Walus (2001) tested the effect of 12-week 
treatment with micronized form of fenofibrate on the 
glucose tolerance and other metabolic characteristics in 
37 patients with combined hyperlipidemia and metabolic 
syndrome. Similarly to the previous study, fibrate 
treatment improved glucose tolerance as measured by the 
oral glucose tolerance test.  

On the contrary, Whitelaw et al. (2002) found no 
effect of 12-week treatment with gemfibrozil on the 
insulin sensitivity as measured by euglycemic-
hyperinsulinemic clamp in 12 subjects with type 2 
diabetes mellitus. Similarly, Škrha et al. (1994) observed 
no difference in insulin sensitivity after 12 weeks of 
treatment with fenofibrate and described even 
deteriorating insulin sensitivity after administration of 
etylinclofibrate for 12 weeks. In another study, clofibrate 
treatment for 16 weeks did not affect serum glucose or 
insulin levels in 36 patients with combined 
hyperlipidemia or 28 patients with isolated 
hypercholesterolemia (Rizos et al. 2002).  

Thus, in contrast to convincing results of 
experimental studies on rodents, the effect of PPAR-α 
agonists on insulin sensitivity in humans is less 
significant and there are several remarkable differences 

with respect to the fibrate effects in humans vs. rodents. 
Firstly, none of the human studies found any difference in 
body fat content in contrast to reduction of adiposity in 
most of rodents studies. Secondly, none of the fibrates 
has increased the liver size in humans in contrast to 
marked hepatomegaly in rodents. One of the reasons for 
such difference is that the human liver and muscle 
express much less PPAR-α than those of rodents 
(Loviscach et al. 2000). Moreover, as mentioned above 
the proliferation of peroxisomes stimulated by fibrates 
appears only in rodents but not in humans.  

 
Conclusions and future directions of 
research 

 
The activation of PPAR-α in rodents stimulates 

lipid oxidation with subsequent reduction of white 
adipose tissue depots, decrease in ectopic lipid storage in 
muscle and liver and the improvement of insulin 
sensitivity in these tissues. There is some evidence that 
the improvement in insulin secretion might be another 
contributing factor, while the involvement of adipose 
tissue endocrine production has not been consistently 
demonstrated. In contrast, the effect of PPAR-α agonist 
in humans appears to be less pronounced with relatively 
slight or no improvement of insulin sensitivity and with 
no effects on body weight and adipose tissue stores. This 
difference might be explained by the fact that the levels 
of expression of PPAR-α in human muscle and 
particularly the liver are much lower than in rodents. 
Further clinical studies using more potent PPAR-α 
agonists and measuring the changes in insulin sensitivity 
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by more sophisticated techniques such as glucose clamp 
are warranted to dissect whether and to what extent there 
is any role for PPAR-α agonists as insulin-sensitizing 
agents in humans. 
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