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Summary 
Limited information is available about selection of the threshold for arterial blood pressure in critically ill patients, 
particularly in sepsis when normal organ blood flow autoregulation may be altered. The present experimental study 
investigated whether increasing perfusion pressure using norepinephrine in normotensive hyperdynamic porcine 
bacteremia affects intestinal macro- and microcirculation. Nine pigs received continuous i.v. administration of 
Pseudomonas aeruginosa (PSAE) to develop hyperdynamic, normotensive (mean arterial pressure [MAP] ≥ 65 mm Hg) 
sepsis. Norepinephrine was used to achieve 10-15 % increase in MAP. Mesenteric arterial blood flow (Qgut), ileal 
mucosal microvascular perfusion (LDFgut) and ileal-end-tidal PCO2 gap (PCO2 gap) were measured before 
norepinephrine, after 60 min of norepinephrine infusion and 60 min after norepinephrine infusion had been 
discontinued. During a 12 h period of PSAE infusion all pigs developed hyperdynamic circulation with significantly 
decreased MAP. Although the mesenteric blood flow remained unchanged, infusion of PSAE resulted in a gradual fall 
of ileal microvascular perfusion, which was associated with progressively rising PCO2 gap. Norepinephrine which 
induced a 10-15 % increase in perfusion pressure (i.e. titrated to attain near baseline values of MAP) affected neither 
Qgut nor the intestinal blood flow distribution (Qgut/CO). Similarly, norepinephrine did not change either LDFgut or PCO2 
gap. In this hyperdynamic, normotensive porcine bacteremia, norepinephrine-induced increase in perfusion pressure 
exhibited neither beneficial nor deleterious effects on intestinal macrocirculatory blood flow and ileal mucosal 
microcirculation. The lack of changes suggests that the gut perfusion was within its autoregulatory range. 
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Introduction 
 
 Organ blood flow autoregulation is usually 
preserved over a wide range of mean arterial pressure 
(Johnson 1986). As far as MAP is decreased below a 
certain critical level (i.e. autoregulatory threshold), organ 

perfusion becomes pressure-dependent. There is an 
agreement that under physiological conditions this 
minimum of MAP is about 60-65 mm Hg. MAP 
≥ 65 mmHg has been recommended as a goal for the 
vasopressor therapy in sepsis provided that the volume 
expansion is adequate (Dellinger et al. 2004). In sepsis, 
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however, vasoplegia and altered vascular reactivity may 
result in a shift of the autoregulatory threshold to higher 
values (Terborg et al. 2001). In addition, the 
autoregulatory threshold may vary between different 
organs (Bellomo and Giantomasso 2001). In this context, 
some clinicians advocate a higher MAP than is generally 
recommended (i.e. MAP ≥ 65 mmHg) presuming that it 
may further increase regional blood flow. This reasoning 
is supported by clinical and experimental studies showing 
that increasing perfusion pressure using norepinephrine in 
sepsis might be beneficial for renal perfusion and 
function (Martin et al. 1993, Bellomo et al. 1999, Di 
Giantomasso et al. 2003, Albanese et al. 2004). It should 
be stressed, however, that in most studies the intervention 
started clearly below the expected autoregulatory 
threshold, i.e. from levels of 50-60 mmHg. (Martin et al. 
1993, Bellomo et al. 1999, Albanese et al. 2004). In 
contrast, recent clinical studies showed that renal 
functions, oxygen kinetics and selected metabolic 
variables were neither improved nor compromized when 
MAP was increased from 65 to 85 mmHg in septic shock 
patients (LeDoux et al. 2000, Bourgoin et al. 2005), 
suggesting that MAP of 60-65 mmHg may define 
autoregulatory threshold, at least for renal blood flow, in 
septic shock patients (Reisbeck and Astiz 2005). 
Nevertheless, as mentioned above, this threshold may 
vary between different organs. In this context, little or 
inconclusive data are available on intestinal 
autoregulation in sepsis (for review see Asfar et al. 2004).  
A small clinical study that attempted to address this issue 
failed to show any effect on gastric tonometry when 
increasing MAP from 65 to 85 mmHg in septic shock 
patients (LeDoux et al. 2000). Data from experimental 
studies are mostly derived from short-term (Treggiari et 
al. 2002), single endotoxin or bacteria bolus (Zhang et al. 
1997, Di Giantomasso et al. 2003) or from hypodynamic 
rodent models of sepsis (Levy et al. 2003).  
 Therefore, in the present study we investigated 
whether the manipulation with perfusion pressure using 
norepinephrine, titrated towards near normal (i.e. still 
physiological) values of MAP affect intestinal macro- and 
microcirculation in hyperdynamic, well resuscitated, 
long-term live bacteria-induced porcine sepsis.  
 
Methods 
 
Animal preparation 
 The experiment was performed in adherence to 
“Principles of Laboratory Animal Care”. The study 

protocol was approved by the University Animal Care 
Committee. Nine domestic pigs of either sex with a 
median body weight of 25 kg (range 22-28) were 
premedicated one hour before the experiment with 
intramuscularly administered atropine (Atropin Biotika; 
Hoechst-Biotika, Slovakia) and azaperone (Stresnil; 
Janssen Neuss, Germany). Anesthesia was induced by 
intravenous administration of thiopenthal (Thiopenthal; 
ICN, Czech Republic) and ketamine (Narkamon; Léčiva, 
Czech Republic) into an ear vein. Then the pigs were 
orotrachealy intubated and mechanically ventilated (FiO2 

0.4; PEEP 5 cmH2O; Servo 900C; Siemens, Germany) 
with a tidal volume of 12 ml/kg and the respiratory rate 
was adjusted (14-18 bpm) to maintain end-tidal PCO2  
35-40 mm Hg (Tonocap, Datex-Ohmeda, Helsinki, 
Finland). The continuous anesthesia and analgesia were 
maintained by infusion of thiopenthal and repeated 
boluses of buprenorphine (Temgesic®, Schering-Plough, 
Great Britain) as described previously (Matějovič et al. 
2004, 2005). The jugular veins as well as the femoral 
artery were surgically exposed to allow introduction of 
pulmonary artery (1 Corodyn TD-I, B. Braun Melsungen 
AG, Germany), central venous (Certofix ® Trio, B. Braun 
Melsungen AG, Germany) and arterial catheters 
(Secalon® Seldy, Becton Dickinson, Singapore), 
respectively. A midline laparotomy was performed, and a 
precalibrated ultrasound transit time flow probe 
(Transonic System, Ithaca, NY) was placed around the 
superior mesenteric artery. A catheter (Certofix® Duo 
Paed S 520, B. Braun Melsungen AG, Germany) for vein 
pressure measurements was inserted into the superior 
mesenteric vein. A loop-ileostomy was performed, which 
allowed simultaneous insertion of a tonometric tube 
(TRIP, Tonometrics, Finland) for intramusosal PCO2 
measurements and a laser Doppler flowmetry probe  
(409-2.5, Perimed AB, Sweden) for monitoring ileal 
mucosal microcirculation. The abdominal wall was then 
closed. In addition, a cystostomy catheter for urine 
collection was percutaneously placed under ultrasound 
guidance. A postsurgical stabilization period of 6 h was 
allowed before baseline measurements were obtained. 
  
Measurements and calculations 
 The measurement and calculations of systemic 
hemodynamics included cardiac output (CO), systemic 
vascular resistance (SVR) and filling pressures of both 
ventricles (PAOP, CVP) (66S monitor; Hewlett Packard, 
Palo Alto, CA, USA). The mesenteric arterial blood flow 
(Qgut) was recorded continuously (T206 flowmeter, 
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Transonic Systems, Ithaca, NY, USA). Ileal mucosal 
PCO2 was measured by automated air tonometry 
(Tonocap, Datex-Ohmeda, Helsinky, Finland) (time 
equilibration 10 min). The ileal-end-tidal PCO2 gap, a 
surrogate index of gut perfusion/metabolism, was 
calculated (Uusaro et al. 2000a). The ileal mucosal 
microcirculation was monitored with a laser Doppler 
flowmeter (Periflux 5000, Perimed AB, Sweden) as 
described previously (Matějovič et al. 2004, 2005). 
Briefly, each measurement represented mean value of 
blood flow obtained from five randomly chosen 
locations, each recorded for 60 s with an optimal intensity 
of the backscattered light. The quality of laser Doppler 
signal was controlled on-line on a computer screen so that 
any motion disturbances as well as noise due to 
inadequate probe position could be detected before the 
measurement was started. The mesenteric vein pressure 
(MVP) was continuously recorded (66S monitor; Hewlett 
Packard, Palo Alto, CA, USA), and subsequently the 
mesenteric vascular resistance (MVR) was calculated 
according to the formula:  
 
MVR = MAP (mmHg) – MVP (mmHg) / Qgut (ml min-1). 
 
Protocol of the study (Fig. 1) 
 After the postoperative recovery period the 
baseline data were obtained (Baseline). Then the pigs 
received a central venous continuous infusion of 
Pseudomonas aeruginosa (1 x 109 colony forming 
units/ml determined by serial dilution and colony counts). 
The dose of Pseudomonas aeruginosa was titrated during 
the following 12 h to attain a decrease in MAP  
20-25 % below the baseline value. The dose of 
Pseudomonas aeruginosa required to achieve this target 
was kept constant during the remainder of the study. The 
10 % hydroxyethylstarch (Hemohes® 10 %, 200/0.5, 
B. Braun Melsungen AG, Germany) was infused to 
maintain MAP ≥ 65 mm Hg and to keep pulmonary 

artery acclusion pressure (PAOP) below 18 mm Hg. 
Moreover, all animals received 7 ml kg–1 h–1of Ringer’s 
lactate solution as a maintenance fluid. The second data 
set (Sepsis) was collected after 12 h of Pseudomonas 
aeruginosa infusion period. Thereafter, the 
norepinephrine was administered to achieve 10-15 % 
increase in MAP above the sepsis value and then after 
60 min of steady state the third data set was collected 
(Sepsis+NE). Subsequently, the norepinephrine was 
switched off and after next 60 min the last measurements 
were collected (Sepsis+NE off). When the last set of data 
had been obtained, the animals were sacrificed by an 
intravenous potassium chloride injection under deep 
anesthesia.  
 
Statistical analysis  
 All values shown are median and the 
interquartile range. Friedman repeated measures analysis 
of variance on ranks and a subsequent Dunn’s test for 
multiple comparisons were used to evaluate within-group 
differences. P<0.05 was regarded as significant. 
 
Results 
 
 The total dose of Pseudomonas aeruginosa 
infused was 19 x 109 (range 16-21 x 109) colony forming 
units/12 h. The cumulative amount of hydroxyethyl 
starch infused was 135 ml/kg (range 79-167). Systemic, 
pulmonary and some of regional and microcirculatory 
hemodynamic parameters are summarized in Table 1. All 
animals developed hyperdynamic circulation with 
reduced systemic vascular resistance within the first 12 h 
of the experiment. Despite a sustained increase in cardiac 
output, Pseudomonas aeruginosa infusion caused a 
significant gradual fall in mean arterial pressure. The 
increase in CO was not paralleled by the increase in Qgut 
(Fig. 2). Thus, the contribution of mesenteric blood flow 
to total cardiac output (Qgut/CO) was significantly 

Data 
collection: 

Surgery Recovery Sepsis induction NE NE off 

Continuous infusion of Pseudomonas aeruginosa 

3 - 4h 6h 8 – 12h 2h 

Baseline Sepsis Sepsis
+NE

1h 

Sepsis 
+NE off 

 
 
Fig. 1. Study protocol flowchart. NE = norepinephrine 
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decreased. While MVR significantly decreased, sepsis 
caused a marked deterioration of ileal mucosal perfusion 
(ileal mucosal laser Doppler flowmetry) (Fig. 3). These 
sepsis-induced microcirculatory changes were associated 
with a progressive rise in ileal mucosal-end-tidal PCO2 
gap (Fig. 4). 
 The dose of norepinephrine needed to achieve the 
intended goal was 0.1 μg kg-1 min-1 (range 0.04-0.42). 
Norepinephrine-mediated increase in MAP affected neither 
Qgut nor Qgut/CO (Fig. 1). Similarly, norepinephrine did not 
modify MVR, intestinal mucosal microcirculation (Fig. 3) 
nor ileal mucosal-end-tidal PCO2 gap (Fig. 4). After the 
cessation of norepinephrine infusion most of measured 
variables returned to the pre-treatment values, except for a 
significant fall in cardiac output. 

Discussion 
 
 The main result of our study demonstrates that in 
hyperdynamic, volume-resuscitated, normotensive 
porcine bacteremia, norepinephrine-induced 10-15 % 
increase in perfusion pressure, titrated to maintain MAP 
at near normal values, did not affect either intestinal 
macrocirculatory blood flow or ileal mucosal 
microcirculation.  
 Despite the widespread clinical use of 
vasopressor therapy in vasodilatory hypotension, limited 
data still exist to guide selection of the threshold for 
arterial blood pressure (Vincent 2001). Recent guidelines 
recommend to maintain MAP > 65 mmHg (Dellinger 
et al. 2004). However, blood flow autoregulation could 

Table 1. Systemic, pulmonary and intestinal hemodynamic parameters. 
 

 Baseline Sepsis Sepsis+NE Sepsis+NE off 

MAP (mm Hg) 97 (86;104) 74 (68;83) a 83 (79;94) a,b 72 (67;76) a,c 
HR (beats/min) 112 (100;118) 107 (104;122) 121 (111;129) 111 (96;125) 
CO (ml/min/kg) 121 (112;133) 180 (159;223) a 212 (194;237) a,b 145 (130;173) a,b,c 
SVR (dyn/s/cm-5) 2633 (2403;3148) 982 (905;1168) a 1011 (947;1201) a 1060 (946;1339) a 
MPAP (mm Hg) 25 (24;26) 34 (33;36) a 35 (32;36) a 32 (31;35) a,b 
PAOP (mm Hg) 12 (11;13) 17 (16;19) a 17 (16;17) a 17 (16;17) a 
CVP (mm Hg) 11 (9-12) 18 (17-19) a 17 (16-18) a 16 (15-18) a 
Qgut (ml/min/kg) 9 (6;12) 9 (8;13) 10 (9;14) 9 (7,12) 
MVR (dyn/s/cm-5) 25.1 (22.9;40.4) 17.7 (12.3;19.1) a 18.1 (13.3;22.4) a 18.6 (10.2;27.4) a 

 
MAP= mean arterial pressure, HR= heart rate, CO= cardiac output, SVR= systemic vascular resistance, PAOP= pulmonary artery 
occlusion pressure, CVP= central venous pressure, MPAP= mean pulmonary artery pressure, Qgut= superior mesenteric artery blood 
flow, MVR= mesenteric vascular resistance. Values are median and interquartile range. a p<0,05 versus Baseline, b p<0.05 versus 
Sepsis, c p<0.05 versus Sepsis+NE 
 
 

 
Fig. 2. Mesenteric arterial blood flow as a fraction of cardiac 
output (Qgut/CO). Data are median, 25/75 % quartiles and 5th 
and 95th quantile range. # denotes significant differences versus 
BL, BL= Baseline, NE= Sepsis+ NE, NE OFF= Sepsis+NE off. 
 
 

 
 
Fig. 3. Ileal mucosal laser Doppler flowmetry. Data are median, 
25/75 % quartiles and 5th and 95th quantile range. # denotes 
significant differences versus BL, BL= Baseline, NE= Sepsis+ NE, 
NE OFF= Sepsis+NE off 
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be lost in sepsis, resulting in almost linear pressure-flow 
relationship in the "at-risk" organs (Terborg et al. 2001). 
In this context, little or no data exist on intestinal 
autoregulation in sepsis (Asfar et al. 2004). In addition, 
due to the countercurrent microvascular architecture, the 
villus is particularly sensitive to changes in regional 
blood flow and oxygenation (Hassoun et al. 2001). 
Therefore, in the present study we tested the hypothesis 
whether the manipulation with MAP (titrated towards 
higher but still physiological values of MAP) could affect 
intestinal macro- and microcirculation in hyperdynamic 
live bacteria-induced porcine sepsis. We intentionally 
started the titration of norepinephrine in a normotensive 
hyperdynamic situation (although a 20 % decrease in 
mean arterial blood pressure from the baseline was thus 
achieved) for the following reason. The autoregulatory 
threshold for the mammalian kidney is above 80 mmHg 
(Bellomo and Giantomasso 2001). Although two recent 
clinical studies failed to demonstrate any improvement in 
renal function when MAP increased from 65 to 85 mmHg 
in patients with septic shock (Bourgoin et al. 2005, 
LeDoux et al. 2000), a higher threshold of MAP (i.e. 
above 80 mmHg) is still advocated in patients with 
history of hypertension as well as in patients with 
advanced chronic kidney or atherosclerotic vascular 
disease (Marik 2004). Since the relationship between 
arterial pressure and organ blood flow is non-linear and 
differs among vascular beds (Pinsky 1995), the increase 
in arterial pressure that might be of potential benefit for 
the kidney, may in fact jeopardize the perfusion of other 
organs (e.g. intestine). Therefore, our intention was to 

simulate this clinical scenario.  
 In our model, due to aggressive volume 
resuscitation, the intestinal blood flow was well 
maintained during the course of sepsis. Norepinephrine-
induced increase in MAP exerted no additional effect on 
mesenteric blood flow, which is in agreement with other 
experimental studies (Di Giantomasso et al. 2003, Zhang 
et al. 1997). However, since the unchanged mesenteric 
blood flow does not rule out changes in intestinal 
microcirculation, we also assessed mucosal micro-
vascular perfusion using laser Doppler flowmetry and 
tonometry, the latter being considered a surrogate marker 
of both mucosal perfusion and energy metabolism 
(Tugtekin et al. 2001). Nevertheless, increasing the 
perfusion pressure neither improved nor jeopardized 
intestinal mucosal microcirculation and ileal mucosal 
acidosis. Only one clinical study has attempted to address 
this issue showing that MAP between 65-85 mm Hg was 
associated with no difference in organ perfusion variables 
in septic shock (LeDoux et al. 2000). It should be 
stressed, however, that in this study the impact of the 
increased MAP on splanchnic perfusion was only 
evaluated using the gastric tonometry, an indirect and 
equivocal marker of splanchnic perfusion (Uusaro et al. 
2000b). In a porcine model of acute endotoxemia, 
Treggiari et al. (2002) administered norepinephrine to 
gradually increase MAP first from 52 to 65 mm Hg and 
then to 77 mm Hg. During the first arterial pressure 
increment they observed an increase in portal venous 
blood flow and jejunal microvascular perfusion. Second 
increment in perfusion pressure, however, did not further 
influence the intestinal perfusion. The effect of the first 
MAP increment was likely, since the intervention started 
clearly below the expected autoregulatory threshold. 
Nevertheless, despite obviously different experimenttal 
design (i.e. short-term, acute endotoxemia and early 
intervention versus 12 h of Gram-negative sepsis with 
delayed intervention in our study), our results are in 
accordance with those observed during the second step of 
Treggiari´s study.  
 There are some limitations of this study. First, 
the final effect of tissue perfusion pressure manipulation 
using norepinephrine depends on the relative contribution 
of multiple interrelated factors, including metabolic 
effects of such interventions. Therefore, without 
assessing metabolic consequences of vasopressor therapy, 
no definitive conclusions on the effects of MAP changes 
on tissue functions can be drawn (Träger et al. 2003a,b). 
Second, although our model mimics many of the features 

Ileal mucosal - end-tidal PCO2 gap
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Fig. 4. Ileal mucosal - end-tidal PCO2 gap. Data are median, 
25/75 % quartiles and 5th and 95th quantile range. # denotes 
significant differences versus BL, BL= Baseline, NE= Sepsis+ NE, 
NE OFF= Sepsis+NE off  
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of human hyperdynamic sepsis, the duration of the 
intervention was short. Thus, we cannot exclude that 
more prolonged application of norepinephrine would 
yield different findings. Third, since the increase in 
median MAP was only 9 mm Hg, we cannot rule out that 
a higher increment in MAP would change the results. 
Furthermore, our findings might not be transferable to 
other vasopressor agents. Finally, since we studied 
previously healthy young animals, our results may not be 
applicable to elderly patients with atherosclerosis and/or 
history of serious hypertension. We are currently 
conducting such clinical study that seeks to address these 
important questions.  
 In conclusion, our results show that in 

hyperdynamic, fluid resuscitated porcine sepsis a „better“ 
MAP achieved by titrating norepinephrine to restore near-
normal perfusion pressure neither improved nor adversely 
affected the mesenteric perfusion and intestinal mucosal 
microcirculation. Within the limitations of the present 
study, the lack of changes observed over the range of  
70-85 mmHg in MAP suggests that the gut perfusion 
was, at least in this model, within its autoregulatory 
range.  
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