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Summary 
The aim of present study was to investigate functional and 
physical alterations in membranes of heart mitochondria that are 
associated with remodeling of these organelles in acute phase of 
streptozotocin-induced diabetes and to elucidate the role of these 
changes in adaptation of the heart to acute streptozotocin-
induced diabetes (evaluated 8 days after single dose 
streptozotocin application to male Wistar rats). Action of free 
radicals on the respiratory chain of diabetic-heart mitochondria 
was manifested by 17 % increase (p<0.05) in oxidized form of 
the coenzyme Q10 and resulted in a decrease of states S3 and S4 
respiration, the respiratory control index, rate of phosphorylation 
(all p<0.01) and the mitochondrial transmembrane potential 
(p<0.05), but the ADP/O ratio decreased only moderately 
(p>0.05). On the contrary, membrane fluidity and the total 
mitochondrial Mg2+-ATPase activity increased (both p<0.05). In 
diabetic heart mitochondria, linear regression analysis revealed a 
reciprocal relationship between the increase in membrane fluidity 
and decrease in trans-membrane potential (p<0.05, r = 0.67). 
Changes in membrane fluidity, transmembrane potential, Mg2+-
ATPase activity and the almost preserved ADP/O ratio appear as 
the manifestation of endogenous protective mechanisms 
participating in the functional remodeling of mitochondria which 
contributes to adaptation of the heart to diabetes.  
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Introduction 
 

Heart in rats with acute streptozotocin-induced 
diabetes is characterized by altered metabolism 
(Kucharská et al. 2000, Stebelová et al. 2006, Volkovová 
et al. 1993, 1997, Ziegelhöffer et al. 1996, 1997, 2003a), 
changes in performance and susceptibility to additional 
pathological stimuli such as ischemia etc. (Andelová et 
al. 2006, Ravingerová et al. 2000, 2003) and by 
functional remodeling of their sarcolemmal (Ziegelhöffer 
et al. 1997) and mitochondrial membranes (Ferko et al. 
2006a). Goals of the present study are: i) to investigate 
the changes induced by acute diabetes and/or remodeling 
in physical properties of mitochondrial membranes (such 
as the transmembrane potential and fluidity of membrane 
lipids) in relation to the capability of remodeled cardiac 
MIT to utilize oxygen and to synthesize ATP; ii) to check 
whether, and to what extent may be the formation of 
conjugated dienes in mitochondrial membrane lipids  
co-responsible for the changes associated with 
remodeling of diabetic heart mitochondria (MIT); iii) to 
elucidate the role that the observed changes may play in 
endogenous protective mechanisms securing the 
adaptation of heart to streptozotocin-induced diabetes. 
  
Methods 
 

All experiments were performed in accordance 
with the Guide for the Care and Use of Laboratory 
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Animals published by the US National Institute of Health 
(NIH publication No. 85-23, revised 1985) as well as 
with the rules issued by the State Veterinary and 
Alimentary Administration of the Slovak Republic, 
basing on the law No 289/2003 of the Slovak Parliament.  

Male Wistar rats (9-11 weeks old, 220±20 g 
b. wt.) were kept on 12/12 light/dark regimen, they were 
fed with standard pellet diet and had free access to water. 
Animals were made diabetic with a single dose of 
streptozotocin (55 mg/kg, i.p.). Diabetic state of the rats 
was controlled by estimation of glucose (BIO-LA-TEST, 
Glucose GOD 250, Pliva-Lachema, Brno, Czech 
Republic) and glycohemoglobin (Burrin et al. 1980) in 
the blood, as well as cholesterol (Watson 1960) and 
triacyglycerols (Fossati and Prencipe 1982) in the serum. 
Serum insulin was determined by commercial RIA kit 
(Linco Researech USA). 

 
Isolation of mitochondria (MIT)  

Hearts damped with small volume of ice-cold 
isolation solution (IS, containing in mmol/l: 180 KCl, 
4 EDTA and 1 % bovine serum albumin, pH=7.4) were 
cut into small pieces with scissors, transferred to a 
teflon/glas homogenizer together with 20 ml of IS 
containing in addition protease (Sigma P 6141) 2.5 mg/g 
wet wt. (heart) and homogenized gently for 2-3 min. 
After centrifugation at 1000 x g for 10 min the protease 
containing supernatant, together with a part of MIT which 
were in a direct contact with the protease, was discarded. 
Pellet was resuspended in the same volume of IS but 
without protease, again homogenized and spunned down 
as previously. This supernatant containing now 
predominantly MIT, which were not in a direct contact 
with protease, was spunned down at 5000 x g for 15 min. 
The pellet containing MIT was again resuspended in 
albumin-free IS containing only 180 mmol/l KCl, 
4 mmol/l EDTA and the final MIT fraction was spunned 
down at 5000 x g for 15 min. The isolation procedure was 
performed at 4 ºC. 

 Mg2+-dependent and 2, 4-dinitrophenol (DNP)-
stimulated ATPase (the total MIT ATPase) was assessed 
by estimation of Pi liberated from ATP splitting 
(Ziegelhöffer et al. 1997). Contamination of the isolated 
MIT fraction by other subcellular membranes was tested 
via estimation of ATPase activities characteristic for the 
presence of sarcolemma (Na+,K+-ATPase) and 
sarcoplasmic reticulum (Mg2+-Ca2+-ATPase) in the 
absence and presence of their specific inhibitors ouabain 
and thapsigargin (Máleková et al. 2007). Oxygen 

consumption by isolated mitochondria was estimated by 
means of a Clark oxygen electrode (Gvozdjaková et al. 
1984). Mitochondrial coenzyme Q10 (CoQ10) was 
determined by HPLC using the method of Lang et al. 
(1986). Membrane fluidity was assessed as the degree of 
fluorescence anisotropy using the fluorescent dye DPH 
(1, 6-diphenyl-1, 3, 5-hexatriene). Transmembrane 
potential of the mitochondria was monitored by confocal 
microscopy using carbocyanine (N, N'-di (3- trimethyl-
ammoniumpropyl) thiadicarbocyanine tribromide) as a 
fluorescent indicator; it was indicated as the fluorescence 
intensity ratio between 680 nm and 570 nm (aggregates/ 
monomers) of carbocyanine (Waczulíková et al. 2007). 

 
Statistics  

Results are given as means ± S.E.M. Statistical 
significances were ascertained by using the Student's 
two-tailed test for unpaired observations. Only corrected 
p<0.05 values were considered as significant.  

 
Chemicals 

 If not specified differently in the text, all 
reagents and chemicals applied in the study were of 
analytical grade. Streptozotocin, EDTA and TRIS as well 
as the other chemicals, if not specified elsewhere, were 
purchased from Sigma-Aldrich USA. 

 
Results 
 

Diabetic state of experimental animals was 
confirmed by 258 % elevation of blood glucose and 89 % 
elevation in the total hemoglobin content. In addition, a 
292 % rise of triacylglycerols and a 62 % increase of 
cholesterol in the serum were also observed in 

Table 1. Levels of glucose and content of glycohemoglobin in 
the blood, levels of triacylglycerols, cholesterol and insulin in 
serum of rats with acute (8 days) streptozotocin diabetes. 
 

 Controls Diabetes 

Glucose (mmol/ l) 5.13 ± 0.15 18.35 ± 0.92*
Glycohemoglobin (%Hb) 4.11 ± 0.13 7.78 ± 1.06* 
Triacylglycerols (g/l) 1.21 ± 0.09 4.74 ± 0.35* 
Cholesterol (g/l) 1.70 ± 0.11 2.76 ± 0.13* 
Insulin (ng/ml) 1.04 ± 0.15 0.49 ± 0.09* 

 
Data are means ± S.E.M. from 15 experiments, * p<0.01 control 
vs. diabetic rats (Student's two-tailed test for unpaired 
observations). 
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comparison with controls. On the other hand, serum 
levels of insulin were decreased by 53 % indicating an 
impairment of its secretion (Table 1).  

The degree of contamination of MIT preparation 
by membranes of the sarcolemma and sarcoplasmic 
reticulum, estimated by presence of their marker enzymes 
amounted to 0.84 % and 1.59 %, respectively (data not 
shown).  

Due to a disconcert in unison of components of 
the electron-oxygen transport system (Tretter  and Adam-
Vizi 2004) free radicals induced a slight but significant 
(p<0.05) increase in content of the oxidized form of 
CoQ10 and slowed down the flow of electrons in the 
respiratory chain. These perturbations diminished the 
oxygen consumption states 3 and 4 as well as the 
respiratory control index (RCI) and the rate of 

phosphorylation (all p<0.05 or more), but they were not 
enough powerful to cause an uncoupling of oxidative 
phosphorylation, documented by a non-significant 
decrease of ADP/O ratio, or to damage to mitochondrial 
Mg2+-ATPase (the reversely working ATP synthase). On 
the other hand, the activity of the latter enzyme became 
slightly but significantly increased (p<0.05, Table 2).  

Remodeling of the MIT in diabetic hearts also 
involved a significant (p<0.05) increase in fluidity of the 
mitochondrial membrane (Fig. 1.). At the same time the 
MIT from diabetic animals exhibited significantly 
(p<0.001) lower transmembrane potential (Fig. 2.) as 
compared with MIT from control animals. Linear 
regression analysis of the latter findings revealed 
significant association (p<0.05, r = 0.67) between the 
increase of membrane fluidity and decrease of 

Table 2. Changes in functional properties of rat heart mitochondria induced by diabetes-caused  remodeling.  
 

Variable Results p 
  Controls Diabetes   

CoQ10 oxidized form  
(mmol  x  mg-1 prot.) 

0.472 
± 0.016 

0.559* 
± 0.017 

< 0.05 

QO2(S3)-glutamate 
(nAtO  x  mg-1 prot. x min-1) 

151.31 
± 4.31 

111.86 
± 3.93 

< 0.05 

QO2(S3)-succinate 
(nAtO  x  mg-1 prot. x min-1) 

238.64 
± 12.14 

188.72 
± 8.51 

< 0.05 

QO2(S4)-glutamate 
(nAtO  x  mg-1 prot. x min-1) 

35.7 
± 1.04 

25.26 
± 1.13 

< 0.05 

QO2(S3)-succinate 
(nAtO  x  mg-1 prot. x min-1) 

132.33 
± 5.28 

112.72 
± 3.93 

< 0.05 

Respiratory control index - 
glutamate 

5.375 
± 0.261 

4.415 
± 0.228 

< 0.05 

Respiratory control index - 
succinate 

1.8 
± 0.039 

1.67 
± 0.028 

< 0.05 

Phosphorylation rate - glutamate 
(nmol ATP  x mg-1 prot. x min-1) 

362.66 
± 13.04 

262.97 
± 12.54 

< 0.05 

Phosphorylation rate - succinate 
(nmol ATP  x mg-1 prot. x min-1) 

322.89 
± 12.97 

243.46 
± 12.47 

< 0.05 

ADP/O ratio - glutamate 
(nmol ADP x nAtO-1) 

2.505 
± 0.261 

2.405 
± 0.228 

N.S. 

ADP/O ratio - succinate 
(nmol ADP x nAtO-1) 

1.36 
± 0.228 

1.31 
± 0.028 

N.S. 

Mg2+-ATPase  
(µmol P i x g-1 prot. x h-1) 

65.79 
± 1.12 

71.26* 
± 1.21 

< 0.05 

 
Data are means ± S.E.M. from 15 experiments. Statistical evaluation of control vs. diabetic rats was done using the Student's two-tailed 
test for unpaired observations. N.S. – not significant. Diabetes-induced increase variables is indicated by asterisks. All other variables 
were decreased in diabetic hearts. 
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transmembrane potential. Testing the stability of 
transmembrane potential in control and diabetic heart 
MIT by gradual increase of the extramitochondrial 
concentration of K+ ions (Fig. 3.) revealed that although 
the MIT from diabetic hearts have markedly lower 
transmembrane potential, they possess higher capability 
to keep it stable. 
 

Discussion 
 

The aim of the present study was to examine 
alterations characterizing the diabetes-induced 
remodeling of cardiac MIT and to identify those changes 
that are related to endogenous protection or adaptation to 
the disease itself. This task required an experimental 
protocol enabling to investigate exclusively the processes 
related to diabetes. However, it is well known, that 
similarly like in men, experimental diabetes is also 
accompanied by numerous complications. In many cases 
these spontaneously appearing complications may exert 
additive or amplifying effect on the alterations caused by 

the diabetes itself. For these reasons we focused our 
attention to the acute phase of diabetes when the disease 
was already fully developed (Table 1), but the diabetes 
accompanying complications were still not present in a 
measurable extent.  

Due to disturbances in function of the respiratory 
chain the diabetic heart is not capable to utilize oxygen 
properly. Consequently, cardiac cells experience a 
situation resembling hypoxia (Juránek and Bezek 2005, 
Ziegelhöffer et al. 2005) in spite of the fact that the 
hypoxia is not caused by a decrease in tissue pO2. This 
state is known as pseudo-hypoxia. Because the high 
availability of oxygen does not allow a switch over to 
anaerobic energy production, cardiac cells would be 
suffering energy deficiency. To cope with this problem 
the diabetic heart is forced to activate endogenous 
protective mechanisms which are involved in functional 
remodeling of MIT (Ferko et al. 2006a). This remodeling 
requires changes in both chemical and physical properties 
of MIT membranes (Ferko et al. 2006b, Ziegelhöffer et 
al. 2005, 2007) coupled with a break in oxygen sensing 
of cardiac cells (Holotňáková et al. 2007).  

The remodeling is usually understood as 
structural and functional deviations from the normal state 
that are caused by some pathological stimuli. 
Nevertheless, it was already demonstrated that not all 
remodeling-associated deviations from normal function 
are noxious. Some may belong to endogenous protective 
mechanisms and represent compensatory or even 
adaptation changes alleviating the effect of the given 
pathology (Ziegelhöffer et al. 1997, 2002, Waczulíková 
et al. 2002).  

The increase observed in amount of the oxidized 
form of CoQ10 and the decrease in state 3 and state 4 
oxygen consumption, as well as in respiratory control 
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Fig. 1. Fluorescence anisotropy of DPH in the mitochondrial
membrane. Data are means ± S.E.M. of 7 experiments. 
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Fig. 2. Carbocyanine fluorescence intensity ratio –
aggregates/monomers (680 nm/570 nm) in isolated heart
mitochondria from healthy and diabetic rats. Data are means ±
S.E.M. of 7 experiments.  
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Fig. 3. Effect of KCl on stability of mitochondrial transmembrane 
potential in healthy and diabetic rat hearts. 
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index and in the rate of phosphorylation (Table 2) could 
be considered without any doubt as pathological 
deviations.  However, it was already demonstrated that in 
acute diabetes, the strength of the above mentioned 
damage may be considerably counteracted by augmented 
transfer of energy from cardiac MIT to the cytoplasma 
(Ziegelhöffer et al. 2005). The latter compensatory 
process is based on significant increase in the number of 
functionally still integrated substrate and energy 
transition pores (also termed as contact sites) in the 
mitochondrial membrane (Ziegelhöffer-Mihalovičová et 
al. 1997) and it is accompanied with an increase in 
fluidity of the mitochondrial membrane (Ziegelhöffer 
2005). The observed increase in Mg2+-ATPase activity, is 
also contributing to the stabilization of coupling between 
the oxidation and phosphorylation (Ziegelhöffer et al. 
2002, 2003b). 

Our discovery of tight association between the 
fluidity and transmembrane potential of diabetic heart 
MIT does not inform only about the mutual 
interrelationship between these two physical variables but 
it also stresses their exclusive regulatory role in processes 
located in mitochondrial membranes. In the present case, 
their functional remodeling enables the diabetic heart to 

resist the pseudohypoxia. The observation of more stabile 
transmembrane potential in diabetes-remodeled heart 
MIT is in concert with the latter notion.  

It may be summarized that the increase in 
membrane fluidity and in mitochondrial Mg2+-ATPase 
activity, as well as the stabilization of transmembrane 
potential in heart MIT, which are associated with acute 
functional remodeling of these organelles in 
streptozotocin-induced diabetes participate in endogenous 
protective mechanisms alleviating the effect of the 
disease. The presented new information may be helpful in 
search for such a treatment of diabetes that would utilize 
the endogenous protective mechanisms in the 
myocardium.  
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