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Summary 

The analysis of information coding in neurons requires methods 

that measure different properties of neuronal signals. In this 

paper we review the recently proposed measure of randomness 

and compare it to the coefficient of variation, which is the 

frequently employed measure of variability of spiking neuronal 

activity. We focus on the problem of the spontaneous activity of 

neurons, and we hypothetize that under defined conditions, 

spontaneous activity is more random than evoked activity. This 

hypothesis is supported by contrasting variability and 

randomness obtained from experimental recordings of olfactory 

receptor neurons in rats.  
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Information coding by spiking neuronal 
activity 
 

One of the most fundamental problems in 
neuroscience is the problem of neuronal coding, i.e., the 
way information is represented in neuronal signals 
(Perkel and Bullock 1968, Softky 1995, Strong et al. 
1998). Generally, neurons communicate via chemical and 
electrical synapses, in a process known as synaptic 
transmission. The crucial event that triggers synaptic 
transmission is the action potential (spike), a pulse of 

electrical discharge that travels along an axon‘s excitable 
membrane. Individual spikes in a spike train are usually 
well separated, and their shapes and durations for a given 
neuron are very similar. Therefore, it is presumed that the 
form of the action potential is not important in 
information transmission, and the whole spike train is 
described as a series of all-or-none point events in time 
(Gerstner and Kistler 2002, Nicholls et al. 2001). Since 
the lengths of the interspike intervals (ISIs) between two 
successive spikes in a spike train often vary, apparently 
randomly both within and across trials (Gerstner and 
Kistler 2002, Shadlen and Newsome 1998, Stein et al. 
2005), statistical methods and methods of probability 
theory and stochastic point processes have been widely 
applied in the description and analysis of neuronal firing 
(Cox and Lewis 1966, Kass et al. 2005, Moore et al. 
1966, Tuckwell 1988). 

Two standard hypotheses, not mutually 
exclusive, of information coding by spike trains are 
usually considered (Perkel and Bullock 1968, Gerstner 
and Kistler 2002): 

1) In the rate coding scheme, information sent 
along the axon is encoded by the number of spikes per 
observation time window (the firing rate) (Adrian 1928). 
In most sensory systems, the firing rate increases, 
generally non-linearly, with increasing stimulus intensity 
(Kandel et al. 1991). Any information possibly encoded 
in the temporal structure of the spike train is ignored. 
Consequently, rate coding is inefficient but highly robust 
with respect to the ISI ‚noise‘ (Stein et al. 2005). The 
temporal structure of ISIs, however, has also been proven 
to represent an informative part of the neuronal signal 
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(Gerstner and Kistler 2002, Shadlen and Newsome 1994, 
Stein et al. 2005), leading to the idea of temporal coding. 

2) Temporal codes employ those features of the 
spiking activity that cannot be described by the firing 
rate. For example, time to the first spike after stimulus 
onset, characteristics based on the second and higher 
statistical moments of the ISI probability distribution, or 
precisely timed groups of spikes (temporal patterns) are 
candidates for temporal codes (Buracas and Albright 
1999, Gerstner and Kistler 2002, Rieke et al. 1997). For 
an overview of temporal coding see Perkel and Bullock 
(1968), a more recent discussion can be found in Abeles 
(1994), Rieke et al. (1997), Shadlen and Newsome 
(1994), Stein et al. (2005), Theunissen and Miller (1995).  

While the description of neuronal activity from 
the rate coding point of view is relatively straightforward 
(Lansky et al. 2004), temporal coding allows an infinite 
number of alternatives. Spike trains with equal firing 
rates may turn out to be different under various measures 
of their temporal structure. In order to describe and 
analyze the way information is represented in spike trains 
(Perkel and Bullock 1968, Softky 1995, Strong et al. 
1998), particularly under the temporal coding paradigm, 
methods to compare different spike trains are needed 
(Bhumbra et al. 2004, Buracas and Albright 1999, 
Nemenman et al. 2004, Paninski 2003, Rieke et al. 1997, 
Victor and Purpura 1997). Here we restrict our attention 
to two concepts which, unfortunately, can be easily 
confused but, as will be seen, are entirely different: the 
concept of randomness versus of variability of spiking 
activity. 

 
Variability and randomness  
 

Clasically, the coefficient of variation of ISIs, CV 
(the ratio of the standard deviation of ISIs to the mean 
ISI), is routinely used to characterize the variability of 
neuronal firing under steady-state conditions. Information 
coding by ISI variability, as a sub-type of temporal 
coding, is often reported in the literature: see Burns and 
Pritchard (1964), Fenton et al. (2002), Perkel and Bullock 
(1968), Ratliff et al. (1968) and many others. 
Furthermore, CV is a dimensionless quantity, and spike 
trains with different mean ISIs can be compared 
meaningfully (Softky and Koch 1993). Thus, employing 
CV allows one to separate the rate and temporal 
(variability) coding contributions. 

In a series of recent papers (Kostal and Lansky 
2006b, 2007, Kostal et al. 2007a) we have proposed an 

information-theoretic (Cover and Thomas 1991) measure 
of spiking randomness, η (Kostal and Lansky 2006a). In 
the simplest case of renewal spiking activity (ISIs are 
realizations of independent and identically distributed 
random variables) described by the ISI probability 
density function f(t) (often representd by ISI histograms), 
η is defined as  
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where E(T) is the mean ISI (integration range in (1) 
depends on the range of ISIs). The measure η can also be 
defined for non-renewal spiking activity (see Kostal and 
Lansky (2006a), Kostal et al. (2007a) for details).  

Figure 1 shows the relation between variability 
and randomness for two frequently employed neuronal 
models - the leaky and perfect integrate-and-fire models 
(Tuckwell 1988, Gerstner and Kistler 2002). Three 
simulated (Kostal and Lansky 2006b, 2006a, Kostal et al. 
2007b) and two real spike trains (Duchamp-Viret et al. 
2005, Kostal and Lansky 2006a) are shown alongside one 
another. Essentially, η measures the ‚choice‘ of different 
ISI lengths that appear in the spike train and the 
’freedom’ in their serial ordering. A larger choice of ISIs 
and more freedom in their ordering results, intuitively, in 
a greater randomness of spiking. There exists a unique 
maximally random spiking activity (η=1, Fig. 1A), which 
is generated by the Poisson model (Tuckwell 1988, 
Kostal et al. 2007a), and there exists a unique minimally 
variable activity (CV = 0, pacemaking neuron). Although 
CV and η are similar in concept (Kostal and Lansky 
2006a, Kostal et al. 2007a), each of these measures 
provides a different point of view. For example, consider 
a hypothetical spike train consisting only of ‚long‘ and 
‚short‘ ISIs. In the completely random case, there is an 
equal probability that each ISI is either long or short, 
while in a less random case there is a pattern formation 
(i.e.‚ ‚long-short‘ couplings). The CV is the same in both 
cases since ISI correlations do not affect the variability 
(Fig. 1A and E). Even if there are no correlations between 
successive ISIs, the spike trains may still differ in their 
randomness but not in variability (Fig. 1A and C). On the 
other hand, equal ‚choice‘ of possible ISI lengths may be 
either concentrated around one particular ISI length or 
‚spread‘ in such a way that the randomness is the same, 
but variability differs (Fig. 1B, C and D). Generally, 
spike trains with CV < 1 look more regular (Fig. 1D), 
while CV > 1 is often used as a marker for bursting 
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activity (Fig. 1B) (Duchamp-Viret et al. 2005, Kostal and 
Lansky 2006b, Tuckwell 1988). However, the quantities 
CV and η are not entirely independent, e.g, there is no 
spiking activity with low variability and high randomness 
at the same time. 

Finally, we note that making a strict distinction 
between randomness and variability avoids paradoxical 
results, although these two terms are often colloquially 
interchanged. Consider again, for example, a spike train 
consisting of ‚long‘ and ‚short‘ ISIs with no interval 
correlations. By adding ‚medium‘ length ISIs we do not 
increase the spiking variability, contrary to what might be 

expected intuitively, but rather we decrease it. On the 
other hand, since the ‚choice‘ of ISIs is larger, the spiking 
randomness is increased. Furthermore, even if 
conventional analysis of two spike trains reveals no 
difference, the spike trains may still differ in their 
randomness, and the difference is detectable with a 
relatively limited amount of data (Kostal et al. 2007a).  

 
The randomness of spontaneous activity 
 

Spontaneous activity generally denotes such 
neuronal activity that is not related in any obvious way 

 
 
Fig. 1. Variability (CV) and randomness (η) of simulated and experimental neuronal spiking activity. The solid and dashed curves show
continuous dependence between CV and η for a range of parameters of two standard neuronal models – the leaky and perfect 
integrate-and-fire models. The curves have a similar shape with maxima around CV =1, although this shape is not universal for all 
neuronal models (Kostal and Lansky 2006b, 2007). Five spiking activities (re-scaled to the same mean firing rate) are shown and their 
CV and η are plotted (triangles). Although both CV and η have intuitive interpretations, the samples show clearly that visual inspection of
spike trains is not sufficient to quantify the degree of randomness or variability. 
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to external stimulation (Gerstner and Kistler 2002, 
Shadlen and Newsome 1994). Such a relatively vague 
definition permits to denote as „spontaneous“ very 
different conditions, often only in contrast to 
specifically controlled conditions, denoted as evoked 
activity. Spontaneous activity crucially affects 
information transfer, since the coding properties must be 
judged according to the deviation of the evoked activity 
from the spontaneous activity (Chacron et al. 2001, 
Chacron et al. 2003). Furthermore, spontaneous activity 
seems to be important for the establishment and 
maintenance of connectivity between neurons (Yu et al. 
2004).  

There is an ambiguity in the definition of 
spontaneous activity as provided above, because 
apparently „spontaneous“ neuronal firing may still be 
affected by phenomena that are not under direct 
experimental control. For example, cortical neurons (or 
generally neurons interconnected in active networks) 
constantly receive signals from other neurons, and it is 
essentially these signals from other neurons that 
contribute the most to the character of the spontaneous 
activity. In the following we attempt to distinguish the 
„true“ spontaneous activity that can be characterized as 
an intrinsic property of neurons. Such spontaneous 
activity may be best observed in first-order sensory 
neurons. Duchamp et al. (2005) suggested that the 
„spontaneous“ activity of olfactory neurons in rats is 
modulated by the breathing frequency if the animals are 
allowed to breathe freely. Their experiment showed that 
if we wish to observe true spontaneous activity, any 
possible external effect must be reduced to a minimum. 
Does the absence of these external effects change the 
properties of the spontaneous activity? 

From the rate coding perspective, the presence 
of a stimulus is clasically marked by an increased firing 
rate (Adrian 1928, Gerstner and Kistler 2002). Since 
there is a metabolic cost associated with each spike 
(Laughlin et al. 1998), it follows that true spontaneous 
activity should be characterized by low energy 
demands. Since low energy results in small spike 
counts, we may ask whether low energy affects the 
temporal structure of the spike train (temporal coding) 
in any way. The creation of particular spiking patterns, 
highly regular or modulated spiking requires energy or 
external stimulation, therefore we hypothetize that true 
spontaneous activity maximizes spiking randomness 
(according to the definition provided above). In other 
words, the Poisson model of spiking (Gerstner and 

Kistler 2002, Kostal and Lansky 2006b, Tuckwell 1988) 
should provide a good approximation (the Poisson 
model is idealized and lacks certain real-world features, 
for example the refractory phase). We note that there are 
sensory systems in which spontaneous activity is not 
random at all, for example, the electrosensory system of 
certain fish (Chacron et al. 2001, Ratnam and Nelson 
2000). However, the spontaneous activity of such cells 
requires further mechanisms and energy to be 
maintained. 

Chow and White (1996) analyzed the statistical 
properties of neuronal firing described by the classical 
Hodgkin-Huxley neuronal model (Hodgkin and Huxley 
1952) with the inclusion of stochastic channel dynamics. 
It was shown that the spontaneous activity arising from 
channel fluctuations is well described by the Poisson 
model. Also, the firing of the leaky integrate-and-fire 
model without input current (but with stochastic 
fluctuations of the membrane potential) is described by 
the Poisson spiking model (Lansky and Sato 1999). 

Statistical analysis of true spontaneous activity 
of first-order auditory neurons in guinea pigs (Lansky et 
al. 2006) confirmed that the Poisson model provides a 
good description. Duchamp-Viret et al. (2005) estimated 
variability and randomness from spontaneous activity 
recordings done on olfactory receptor neurons in freely 
breathing and tracheotomized rats. The recordings were 
obtained under steady-state conditions, and it was shown 
that in the majority of cases the firing can be considered 
renewal. It was demonstrated by considering the 
‚amount’ of randomness per time unit (Kostal and Lansky 
2006a) that the activity is less variable but more random 
in the case of tracheotomized animals than in those freely 
breathing and that the Poisson model provides a good 
approximation. In other words, the activity observed in 
the case of tracheotomized animals is close to the ideal of 
true spontaneous activity. The result further illustrates 
that variability and randomness should not be used 
interchangeably. 
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