Effect of Chronic Cadmium Exposure on Antioxidant Defense System in Some Tissues of Rats: Protective Effect of Selenium

Institute of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac,
1Institute for Biological Research "Siniša Stanković", Department of Physiology, Belgrade, Serbia

Received January 17, 2007
Accepted March 20, 2007
On-line May 30, 2007

Summary

The effects of selenium (Se) on antioxidant defense system in liver and kidneys of rats with cadmium (Cd)-induced toxicity were examined. Cd exposure (15 mg Cd/kg b.m./day as CdCl₂ for 4 weeks) resulted in increased lipid peroxidation (LP) in both organs (p<0.005 and p<0.01). Vitamin C (Vit C) was decreased in the liver (p<0.005), whereas vitamin E (Vit E) was increased in the liver and kidneys (p<0.005 and p<0.05) of Cd-exposed animals. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were decreased in both tissues (p<0.05 and p<0.005), whereas catalase (CAT) activity was decreased only in liver (p<0.005). Glutathione S-transferase (GST) increased in both tissues (p<0.005 and p<0.01). Treatment with Se (0.5 mg Se/kg b.m./day as Na₂SeO₃ for 4 weeks) significantly increased liver and kidneys SOD and GSH-Px activities (p<0.05 to p<0.005), as well as CAT and GST activities only in the liver (p<0.01). In animals exposed to Se, both the concentrations of Vit C (p<0.01) and Vit E (p<0.005) were increased in both tissues. Co-treatment with Se resulted in reversal of oxidative stress with significant decline in analyzed tissues Cd burden. Our results show that Se may ameliorate Cd-induced oxidative stress by decreasing LP and altering antioxidant defense system in rat liver and kidneys and that Se demonstrates the protective effect from cadmium-induced oxidative damage.

Key words

Antioxidant defense system • Cadmium • Lipid peroxides • Selenium • Rat

Corresponding author

Branka I. Ognjanović, Institute of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia. Fax: (+381) 34 335 040, E-mail: branka@kg.ac.yu

Introduction

Cadmium (Cd) is an industrial and environmental pollutant, arising primarily from battery, electroplating, pigment, plastic, fertilizer industries, and cigarette smoke. Cd is dangerous because humans consume both plants and animals that absorb Cd efficiently and concentrate it within their tissues (Stohs and Bagchi 1995). Cd shows various mechanisms of toxicity in particular species under different experimental conditions (Iscan et al. 1994, Žikić et al. 1996, Waisberg et al. 2003). It has been demonstrated that Cd stimulates free radical production, resulting in oxidative deterioration of lipids, proteins and DNA, and initiating various pathological conditions in humans and animals (Waisberg et al. 2003). Once absorbed, Cd is rapidly cleared from the blood and concentrates in various tissues. Chronic exposure to inorganic Cd results in accumulation of the metal mainly in the liver and kidneys, as well as in other tissues and organs causing many metabolic and histological changes, membrane damage, altered gene expression and apoptosis (Shaikh et al. 1999, Casalino et al. 2002, Waisberg et al. 2003).

Among antioxidant micronutrients, selenium (Se) is an essential dietary trace element, which plays an important role in a number of biological processes in humans and other species. Deficiency of this element induces some pathological conditions, such as cancer, coronary heart disease, and liver necrosis (Saito et al. 2003, Wu and Huang 2004, Agay et al. 2005). Se taken in the form of selenite, selenene, selenocysteine, and
Selenomethionine is most absorbed in the duodenum. After the absorption, increased levels of Se have been detected in the blood plasma proteins and from there it can be distributed into the tissues where it is incorporated in newly synthesized seleno-proteins. Considerable Se uptake by erythrocytes was described by Combs and Gray (1998).

Se is an essential component of several enzymes such as glutathione peroxidase (GSH-Px), thioredoxin reductase (TR) and selenoprotein P (SeP), which contain Se as selenocysteine. It is also well known that Se is essential for cell culture when a serum-free medium is used (Kim and Combs 1993, Saito et al. 2003). It is also known, that Se has a certain protective role from the toxic actions of Cd and other heavy metals (Jamall and Sprowls 1987, Ognjanović et al. 1995, Žikić et al. 1998). This protection includes the capability of Se to alter the distribution of Cd in tissues and induces binding of the Cd-Se complexes to proteins, which are similar to metallothioneins (Jamba et al. 1997, Combs and Gray 1998).

In the present experiments, the influence of Cd and Se on the antioxidant defense system (AOS), as well as on LP, Cd and Se concentrations in the liver and kidneys of rats were analyzed. After 30 days of exposure, the activities of enzymatic (SOD, CAT, GSH-Px and GST) and non-enzymatic (Vit C and Vit E) components of this system were determined. The possible protective role of Se against the toxic effects of Cd has been especially considered.

Methods

Wistar male 60-day-old rats (weighing 200 ± 20 g) were used. The animals were kept at 21±2 °C, fed with pellet rat diet, and exposed to 12 h light / 12 h dark cycle. Group 1 was used as controls. The rats of the experimental groups were exposed to: Group 2 to cadmium (15 mg Cd/kg body mass/day as CdCl₂ for 4 weeks), Group 3 to selenium (0.5 mg Se/kg body mass/day as Na₂SeO₃ for 4 weeks) and Group 4 Cd + Se in above mentioned amounts. Every group consisted of 8 animals. All chemicals were from Sigma (St. Louis, MO, USA).

All rats of each group were killed at the end of the treatment period. Liver and kidneys were minced and homogenized (10 %, w/v) separately in ice-cold saline, sucrose buffer (0.25 M sucrose, 1 mM EDTA and 0.05 M Tris-HCl, pH 7.4) in a Thomas Sci Co. glass-type homogenizer (Teflon pestle). Tissues homogenate from both control and treated rats were used for Vit C and Vit E determination. The homogenate was centrifuged at 100 000 x g for 90 min at 4 °C and the supernatant was used for antioxidant enzyme assays.

Concentration of Cd in the liver and kidneys was determined by atomic absorption spectrophotometry using a Perkin-Elmer Model 5000 (Shirley et al. 1949), while the concentration of Se was determined by fluorimetric method (Dye et al. 1960).

The concentration of LP measured as thiobarbituric acid reactive substances (TBARS) in the tissues of rat was assayed by the method of Ohkawa et al. (1979).

Superoxide dismutase (SOD) activity was determined by the epinephrine method (Misra and Fridovich 1972). Catalase (CAT) activity was measured by the method of Beutler (1982). The activity of glutathione peroxidase (GSH-Px) was assayed by following the oxidation of NADPH at 340 nm with t-butyl-hydroperoxide (Tamura et al. 1982). Glutathione S-transferase (GST) activity toward 1-chloro-2,4-dinitrobenzene as a substrate was determined according to Habig et al. (1974). All enzyme activities were expressed per g of wet tissue (U/g tissue).

Vitamin C concentration was determined spectrophotometrically by dinitrophenyl-hydrazine method at 530 nm (Omaye et al. 1979). Vitamin E was measured by the method of Desai (1984) based on the reduction of Fe³⁺ in Fe²⁺ in the presence of tocopherol and production of colored complex with bathophenanthroline.

The data were expressed as the mean ± S.E.M. and were analyzed by means of one-way analysis of variance (ANOVA). Statistical evaluation of data was done following Student’s t-test. A difference was considered significant at p<0.05.

Results

The concentrations of Cd in the liver and kidneys were significantly increased in animals exposed to Cd and in animals exposed to Cd and Se concomitantly (p<0.005). Concentration of Se was increased (p<0.005) after exposure to Se only and after to concomitant exposure both to Cd and Se (p<0.005 and p<0.01) (Table 1).

Results indicated that LP concentration was significantly increased in the liver (p<0.005) and kidneys...
Table 1. Cadmium (Cd) and selenium (Se) concentrations in liver and kidneys of controls and rats treated with cadmium (Cd), selenium (Se) or their combination (Cd+Se).

<table>
<thead>
<tr>
<th>Experimental groups</th>
<th>Control</th>
<th>Cd</th>
<th>Se</th>
<th>Cd+Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd (µg/g tissue)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>0.32 ± 0.01</td>
<td>21.26 ± 1.72 ***</td>
<td>0.24 ± 0.02</td>
<td>24.53 ± 1.12 ***</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.42 ± 0.01</td>
<td>23.44 ± 1.68 ***</td>
<td>0.47 ± 0.03</td>
<td>23.25 ± 1.31 ***</td>
</tr>
</tbody>
</table>

Se (µg/g tissue)				
Liver	0.72 ± 0.04	0.64 ± 0.08	1.83 ± 0.09 ***	1.43 ± 0.05 ***
Kidneys	0.52 ± 0.02	0.25 ± 0.02 *	1.28 ± 0.06 ***	0.75 ± 0.06 **

Data are expressed as mean ± S.E.M. n = 8 for each groups. Significantly different from controls: * p<0.05, ** p<0.01, *** p<0.005.

Table 2. Concentration of lipid peroxides (LP, nmol/g tissue) in liver and kidneys of controls and rats treated with cadmium (Cd), selenium (Se) or their combination (Cd+Se).

<table>
<thead>
<tr>
<th>Experimental groups</th>
<th>Control</th>
<th>Cd</th>
<th>Se</th>
<th>Cd+Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>27.43 ± 2.64</td>
<td>42.61 ± 3.84 ***</td>
<td>24.36 ± 2.17</td>
<td>29.82 ± 2.72</td>
</tr>
<tr>
<td>Kidneys</td>
<td>20.56 ± 1.18</td>
<td>27.63 ± 1.75 **</td>
<td>16.38 ± 0.64 *</td>
<td>23.15 ± 1.26</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± S.E.M. n = 8 for each groups. Significantly different from controls: * p<0.05, ** p<0.01, *** p<0.005.

Table 3. Vitamin C (Vit C) and vitamin E (Vit E) concentrations in liver and kidneys of controls and rats treated with cadmium (Cd), selenium (Se) or their combination (Cd+Se).

<table>
<thead>
<tr>
<th>Experimental groups</th>
<th>Control</th>
<th>Cd</th>
<th>Se</th>
<th>Cd+Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vit C (mg %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>37.60 ± 0.84</td>
<td>30.01 ± 0.39 ***</td>
<td>45.23 ± 1.58 **</td>
<td>34.53 ± 0.61</td>
</tr>
<tr>
<td>Kidneys</td>
<td>21.90 ± 0.53</td>
<td>20.87 ± 0.91</td>
<td>25.84 ± 1.71 **</td>
<td>23.68 ± 1.23</td>
</tr>
</tbody>
</table>

Vit E (µg/g tissue)				
Liver	13.41 ± 0.69	23.32 ± 0.65 ***	26.97 ± 1.50 ***	16.04 ± 0.48
Kidneys	15.73 ± 0.87	17.96 ± 0.53	27.01 ± 1.46 ***	15.82 ± 0.80

Data are expressed as mean ± S.E.M. n = 8 for each groups. Significantly different from controls: * p<0.05, ** p<0.01, *** p<0.005.

(p<0.01) of rats treated with Cd. Co-treatment with Se was very effective in the prevention of oxidative damage induced by Cd, which resulted in significantly lower LP concentration (Table 2).

Figures 1 and 2 show significant changes in the activity of AOS enzymes during the treatment of rats with Cd, Se and their combination. SOD and GSH-Px activities were significantly decreased (p<0.05 and p<0.005) in the liver (Fig. 1) and kidneys (Fig. 2), whereas CAT activity was decreased (p<0.005) only in the liver (Fig. 1) of the animals exposed to Cd. Treatment with Cd significantly increased liver (p<0.005) and kidneys (p<0.01) GST activity (Figs 1 and 2). Treatment with Se alone significantly increased liver and kidneys SOD (p<0.01 and p<0.005) and GSH-Px (p<0.01 and p<0.05) activities as well as CAT and GST activities only
in liver \(p<0.01 \). Administration of Cd with Se did not cause significant changes in activity of this enzyme in comparison with control group, while alleviated the harmful effects of Cd (Figs 1 and 2).

Table 3 shows the concentrations of Vit C and Vit E in the liver and kidneys. Exposure to Cd caused significant decrease of Vit C in the liver \(p<0.005 \) and concomitant increase of Vit E in liver \(p<0.005 \) and kidneys \(p<0.05 \) of rats. In animals exposed to Se both the concentrations of Vit C \(p<0.01 \) and Vit E \(p<0.005 \) were increased. Concomitant treatment with Cd and Se did not cause significant changes in concentration of this vitamin in both the tissues compared to control group.

Discussion

Cd has been recognized as one of the most toxic environmental and industrial pollutants. Cd is an ubiquitous toxic metal that may induce oxidative damage by disturbing the prooxidant-antioxidant balance in the tissues. A significantly increased accumulation of Cd in liver and kidneys were observed in animals treated with Cd (Table 1). Liver, kidney, lung, testes, and heart are the target organs following Cd exposure, with the severity of their intoxication dependent on the route, dose, and duration of the exposure to the metal (Ognjanović et al. 1995, Casalino et al. 1997, Štajn et al. 1997). In the cell, Cd mainly accumulates in the cytosol \((70\%) \), followed by the nucleus \((15\%) \) and lowest in mitochondria and the endoplasmic reticulum (Casalino et al. 1997).

Previous investigations show that peroral intake of Cd induces its accumulation in the red blood cells (Kostić et al. 1993), the heart (Žikić et al. 1998) and the skeletal muscle of rats (Pavlović et al. 2001), which was accompanied by considerable alterations of enzymatic and non-enzymatic component of AOS. With increasing
Cd concentration in the liver and kidneys, Se concentration also rises, although it was not administered additionally (Table 1). The increased Se concentration in the liver and kidneys could be explained by its redistribution from other tissues and organs (Jamall and Smith 1985) as well as by forming of Cd-Se protein complexes (Jamba et al. 1997, Combs and Gray 1998). The accumulation of both elements increased in liver and kidneys after concomitant exposure of rats to both Cd and Se. All these data indicate that Se diminished the toxic effects of Cd and increased the accumulation of Cd in liver and kidneys (Wahba et al. 1993).

Lipid peroxidation is one of the main manifestations of oxidative damage, which plays an important role in the toxicity of many xenobiotics (Stoehs and Bagchi 1995, Anane and Creppy 2001). Our data (Table 2) confirm that chronic intoxication with cadmium causes a significant increase of LP concentration in liver and kidneys of rats. Since it causes lipid peroxidation in numerous tissues both in vivo and in vitro (Kostić et al. 1993, Sarkar et al. 1998, Ognjanović et al. 2003, El-Demerdash et al. 2004), it has been suggested that Cd may induce oxidative stress by producing hydroxyl radicals (O'Brien and Salasinski 1998), superoxide anions, nitric oxide and hydrogen peroxide (Koizumi et al. 1996, Waisberg et al. 2003). Moreover, it has been shown that various antioxidants and antioxidant defense systems protect cells from Cd-induced toxicity (Shaikh et al. 1999, Tandon et al. 2003, Ognjanović et al. 2006).

Co-treatment with Se was very effective in the prevention of oxidative damage induced by Cd, which resulted in significantly lower LP concentration in the liver and kidneys (Table 2). This can be explained by the important role of Se in preventing lipid peroxidation and in protection of integrity and functioning of tissues and cells.

The prevention of lipid peroxidation is essential for all aerobic organisms and so the organism is well equipped with antioxidants that directly or indirectly protect cells against the adverse effects of xenobiotics, carcinogens and toxic radicals (Halliwell and Gutteridge 1999). The role of antioxidants in reversing this oxidative stress has been of long-standing interest to basic scientists and clinicians (Matés 2000).

Figures 1 and 2 show significant changes in the activity of AOS enzymes during the treatment of rats with Cd and Se. SOD and GSH-Px activities were decreased in liver (Fig. 1) and kidneys (Fig. 2), whereas CAT activity was decreased only in the liver (Fig. 1). This is probably a consequence of the intracellular accumulation of ROS with subsequent development of liver and kidney injury. Accumulation of Cd and SOD inhibition was highest in liver followed by kidneys, indicating a direct effect of Cd on SOD activity. This suggests a role of free radicals in causing cellular damage during long-term exposure to Cd (Patra et al. 1999). The decreased activity of GSH-Px can be explained by competition of Cd-metallothioneins and GSH-Px for sulfur containing amino acids (Waisberg et al. 2003). Studies of other authors have shown that Cd inhibits the activity of majority of enzymes involved in AOS (Jamall and Sprowls 1987, Sarkar et al. 1998, Casalino et al. 2002) inducing an increased production of free radicals, lipid peroxidation, and destruction of cell membranes (Kostić et al. 1993, Casalino et al. 1997, Ognjanović et al. 2003). Cd also inhibits the activities of many enzymes by binding to their sulfhydryl groups or by inhibiting the protein synthesis (Shaikh et al. 1999, Waisberg et al. 2003).

The increased activity of GST in liver and kidneys (Figs 1 and 2) is in agreement with our previous findings that the exposure to Cd causes an increased activity of GST in the plasma, heart and skeletal muscle (Kostić et al. 1993, Pavlović et al. 2001, Ognjanović et al. 2003, 2006). Other authors showed that Cd exposure increased the activity of this enzyme in different tissues. Indeed, an increased hepatic GST activity in rat (Casalino et al. 2004) and guinea pig (Iscan et al. 1994) has been observed. The GST enzyme has an important role in detoxification of xenobiotics, drugs and carcinogens and thus protects the cells against redox cycling and oxidative stress (Matés 2000, Casalino et al. 2004).

Treatment with Se alone significantly increased liver and kidneys SOD and GSH-Px activities, as well as CAT and GST activities in the liver only. By concomitant exposure of rats both to Cd and Se, the activities of SOD, CAT and GSH-Px remain at the level of the control values, indicating that Se eliminates the toxic effects of Cd on the activity of these enzymes. However, the activity of GST in the liver of these animals was increased. In rats exposed to Cd and Se separately, this can be explained by an important role played by this enzyme in preventing lipid peroxidation and oxidative damage of the liver (Jamall and Smith 1985, Kim and Combs 1993).

The antioxidants such as Vit E, Vit C and GSH protect the erythrocyte membrane from oxidative damage (Beyer 1994, Griffith 1999, Ognjanović et al. 2003). Shaikh et al. (1999) concluded that oxidative stress
appears to play a major role in chronic Cd-induced hepatic and renal toxicity since the inhibition of components of the antioxidant defense system enhanced and the administration of Vit E protected against Cd toxicity. Carotenoids can also function directly as antioxidants by reacting with active oxygen species (El-Demerdash et al. 2004). In the present study, Se reduced cellular toxicity caused by Cd-induced ROS and protected the liver (Fig. 1) and kidney (Fig. 2) antioxidant system. The effects of Se may be related either to the formation of Cd-Se complexes in association with metallothioneins, or to the changes in tissue Cd distribution (Viljoen and Tappel 1988, Jamba et al. 1997).

Our data (Table 3) show that Cd significantly decreases Vit C concentration in the rat liver, which is in accordance with other reports (Chatterjee et al. 1973, Shukla and Chandra 1989). It is known that increased accumulation of Cd in the liver induces lipid peroxidation and increases the production of malondialdehyde (MDA) (Tandon et al. 2003), which consequently inhibits the enzyme L-gulonolactone oxidase (Chatterjee et al. 1973, Hudecová and Ginter 1992) that is necessary for synthesis of Vit C, which is a potent scavenger of free oxygen radicals. Its deficiency results in intracellular oxidative damage in the guinea-pig (Nagyova et al. 1994). In rats exposed to increased concentrations of Se, an opposite effect was observed (Table 3), because the concentrations of Vit C in liver and kidneys were significantly increased. From our results it can be concluded that the inhibitory effect of Cd on the concentration of Vit C is more pronounced than the stimulatory effects of Se, since the concentration of Vit C in the liver was significantly lower in rats concomitantly exposed to both Cd and Se than in control animals. Both Cd and Se significantly increase Vit E concentration in rat liver and kidney (Table 3). Vit E is a major free radical chain-breaking antioxidant, that can also interfere with the initiation and progression of Cd-induced oxidative damage. As a primary liposoluble antioxidant, it has an important role in scavenging of free oxygen radicals and stabilizing the cell membranes, thus maintaining their permeability (Beyer 1994). Moreover, it is known that antioxidants, such as Vit E, coenzyme Q, Vit C, beta-carotene, GSH and Se, may act synergically, preventing lipid peroxidation and cell destruction (Griffith 1999, Navarro et al. 1999, El-Demerdash et al. 2004). It is well known that Se and Vit E show compensative effects and that a deficiency of both elements may cause massive injury (Saito et al. 2003).

Our previous investigations showed that chronic treatment with Cd induces a decrease of Vit C concentration in plasma, the liver (Žikić et al. 1995) and kidneys (Štajn et al. 1997) of young and adult rats, while Cd increases the concentration of Vit E in the rat heart (Ognjanović et al. 2006), kidneys (Štajn et al. 1997) and plasma (Kostić et al. 1993, Ognjanović et al. 2003). Thus, a number of studies have been carried out to determine the protective effects of Se in different biological models of injury (Kim and Combs 1993, Combs and Gray 1998, Agay et al. 2005).

It can be concluded from the present study that Cd accumulation in liver and kidneys of rats, due to chronic dietary intake of Cd, is associated with marked alterations of enzymatic (SOD, CAT, GSH-Px and GST) and non-enzymatic components (Vit C and Vit E) of AOS. Data suggest that lipid peroxidation was associated with Cd toxicity in both tissues. Our results showed that the nutritional antioxidant Se ameliorated oxidative stress and loss of cellular antioxidants and suggested that Se efficiently protect liver and kidneys from Cd-induced oxidative damage. This protection includes the capability of Se to alter the distribution of Cd in tissues and to induce binding of the Cd-Se complexes to proteins, which are similar to metallothioneins.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
This work was supported by the Ministry of Science of Republic of Serbia, Grant No. 143035B.

