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Summary 

The gold standard material in bypass surgery of blood vessels 

remains the patient’s own artery or vein. However, this material 

may be unavailable, or may suffer vein graft disease. Currently 

available vascular prostheses, namely polyethylene terephthalate 

(PET, Dacron) and expanded polytetrafluoroethylene (ePTFE), 

perform well as large-caliber replacements, but their long-term 

patency is discouraging in small-caliber applications (<6 mm), 

such as in coronary, crural or microvessel surgery. This failure is 

mainly a result of an unfavorable healing process with surface 

thrombogenicity, due to lack of endothelial cells and anastomotic 

intimal hyperplasia caused by hemodynamic disturbances. An 

ideal small-diameter vascular graft has become a major focus of 

research. Novel biomaterials have been manufactured, and 

tissue-biomaterial interactions have been optimized. Tissue 

engineering technology has proven that the concept of partially 

or totally living blood vessels is feasible. The purpose of this 

review is to outline the vascular graft materials that are currently 

being implanted, taking into account cell-biomaterial physiology, 

tissue engineering approaches and the collective achievements of 

the authors. 
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Introduction 
 
 Atherosclerosis accounts for almost one half of 
all deaths in Europe (Stehouwer et al. 2009). Although 
advanced pharmacological and minimally-invasive 
techniques offer a growing therapy option (Met et al. 
2008), a surgical bypass of blood vessels on the heart or 
on a lower extremity remains the procedure of choice in a 
number of patients (Fig. 1) (Guyton 2006, Norgren et al. 
2007). This approach is also more cost-effective, and in 
particular preserves the quality of the patient’s life better 
than primary amputation of a limb (Cheshire et al. 1992). 
A synthetic tube or a vascular prosthesis has to be 
implanted when the patient’s own artery or vein is not 
available. After more than half a century of development 
work, the results achieved with currently available 
materials are not optimal in terms of healing and tissue 
regeneration.  
 Long-term patency rates of prosthetic grafts are 
satisfactory in large-caliber arteries (>8 mm), where 
thrombogenicity (i.e. disposition to blood coagulation) 
may be overcome by massive blood flow, and the 5-year 
patency of aorto-iliac substitutes is 90 % (Brewster 
1997). There is little difference between the results for 
prosthetic and autogenous (i.e. patient’s own) material in 
medium-caliber replacements (6-8 mm), e.g. in carotid or 
common femoral arteries (Ricotta 2005). However, in 
small-caliber vessels (<6 mm), such as coronary arteries 
(heart), infrainguinal arteries (below the inguinal 
ligament), and particularly in low-flow infrageniculate 
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arteries (below the knee joint), the outcomes of vascular 
prostheses are rather disappointing. Five-year primary 
patency of prosthetic (ePTFE) above-the-knee femoro-
popliteal bypass grafts is as low as 39 %, whereas 
autovenous bypasses (i.e. performed with own vein) have 
a rate of 74 % (Klinkert et al. 2004). A summary of 
currently-used vascular replacements is shown in Table 1.  
 Currently available vascular grafts fail due to the 
thrombogenicity of the artificial surface and intimal 
hyperplasia (IH), which is located at distal anastomosis 
(Fig. 2) of prosthetic grafts (i.e. the site of the junction to 
the artery). Unlike animal models, most of the prosthetic 
blood-contacting surfaces remain uncovered by tissue in 
humans (Berger et al. 1972). The etiology of IH, 
developing usually 2-24 months post implantation, is 
multifactorial and includes a compliance mismatch 
between a relatively rigid prosthesis and the more elastic 
native artery (Sarkar et al. 2006), graft/artery diameter 
mismatch, lack of endothelial cells (EC), surgical trauma 
and flow disturbances resulting in adaptive changes in the 
sub-endothelial tissue, characterized by proliferation and 
migration of vascular smooth muscle cells (VSMC) from 
media to intima, and synthesis of extracellular matrix 
(ECM) proteins (Haruguchi and Teraoka 2003).  
 To overcome these fundamental inconveni-
encies, novel biomaterials research (Shin and Mikos 
2003) and particularly tissue engineering modalities are 
increasingly being adopted (Isenberg et al. 2006). 

Promising and clinically proven outcomes have been 
achieved with biohybrid and tissue-engineered vascular 
grafts.  
 An ideal vascular graft would possess the 
following characteristics: mechanical strength and 
compliance to withstand long-term hemodynamic 
stresses; non-toxicity; non-immunogenicity; biocompa-
tibility; “off-the-shelf” availability in various sizes for 
emergency care; operative suturability and simplicity of 
surgical handling; resistance to in vivo thrombosis; ability 
to withstand infection; complete incorporation into the 
host tissue with satisfactory graft healing and ability to 
grow when placed in children (Kakisis et al. 2005), and, 
last but not least, reasonable manufacturing costs. The 
task is so demanding and the potential rewards are so 
great that research in the field of small-caliber vascular 
substitutes has been compared with the search for the 
Holy Grail (Conte 1998).  
 The aim of this review is to outline the 
characteristics and drawbacks of currently-used vascular 
substitutes, with special emphasis on the physiological 
cellular response to materials and on vascular tissue 
engineering approaches, based on the collective 
experience of the authors. 
 
Historical background 
 
 The history of vascular surgery tracks progress 
made in suturing and replacing damaged vessels. In 
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Fig. 1. Surgical repair of multilevel peripheral atherosclerotic
disease. 
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Fig. 2. Intimal hyperplasia (IH) in distal anastomosis of a 
vascular graft, causing thrombosis and occlusion. 
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ancient times, vascular interventions were limited to 
compressing and cauterizing injured vessels to control 
bleeding. Ambrose Paré developed a vessel ligature in the 
15th century, but surgical repair of vessels did not begin 
until 1759, when Hallowell and Lambert repaired a 
brachial artery injury with a suture. The first vascular 
anastomosis (connection of blood vessels) was performed 
by Nicholas Eck as a porto-caval shunt in dogs in 1877 
(Starzl 2003). Carrel and Guthrie optimized the vascular 
anastomosis transplantation technique and even tissue 
culture for organ replacement in the early 1900s, and 
Alexis Carrel received the Nobel Prize for Physiology or 
Medicine in 1912.  
 Goyannes first used an autogenous popliteal vein 
graft for popliteal aneurysm repair in 1906. A femoro-
popliteal bypass with a reversed saphenous vein graft was 
first performed by Kunlin in 1948, initiating a very 
successful era for this type of graft that has lasted until 
the present day (Lopez and Ginzberg 2008). At the same 
time, the first fresh arterial allografts (foreign tissue of 
the same species) began to be used in human vascular 
reconstructive surgery (Gross et al. 1948). An artificial 
vascular prosthesis was first implemented as an aortic 
replacement with a Vinyon “N” tube in a dog experiment 
(Voorhees et al. 1952). The same material was implanted 
in humans to replace an aneurysm (dilation) of the 
abdominal aorta (Blakemore and Voorhees 1954), leading 
to rapid progress in vascular surgery and prostheses 
research and use (Sauvage 1986). 
 

Arterial replacements 
 
Biological vascular grafts 
 The gold standard for vascular replacement 
remains the autologous native vessel, which possesses the 
most physiological properties. In coronary artery bypass 
grafting (CABG), the internal mammary artery and the 
radial artery are superior to a greater saphenous vein graft 
(SVG), which is also often used (Beghi et al. 2002). In 
the case of lower limb or peripheral bypass surgery, the 
material of choice is also greater saphenous vein (vena 
saphena magna). It can be cleansed of valves and 
anastomosed in situ, so that the vasa vasorum remain 
intact (Kachlík et al. 2007) and the blood flow direction 
is reversed. In this type of graft, preservation of desired 
endothelial properties can be expected; however, several 
studies have failed to confirm superiority to the more 
widespread ex vivo reversed setting of the SVG (Lawson 
et al. 1999). It should be noted that, despite good clinical 
performance, SVG is also liable to atherosclerosis and 
intimal hyperplasia occurring throughout the length 
(Sarjeant and Rabinovitch 2002). In addition, almost 30-
40 % of patients lack an appropriate saphenous vein 
(Faries et al. 2000) due to previous phlebitis, vessel 
removal, varicosities, hypoplasia or anatomical 
unsuitability. Additionally, any surgical vessel harvest is 
associated with indispensable donor site morbidity 
(Swenne et al. 2006).  
 Alternatives include the use of other native 
vascular materials only in carefully selected indications, 

Table 1. Vascular substitutes in clinical use according to body region. 
 

 Vascular regions 
Large-caliber 
arteries  
(≥ 8 mm) 

Medium-caliber 
arteries  
(6-8 mm) 

Small-caliber 
arteries 
(≤ 6 mm) 

Venous 
reconstructions 

Hemodialysis arterio-
venous access 

Vascular 
substitute 
choice 

Aorta, arch vessels, 
iliac and common 
femoral arteries 

Carotid, subclavian, 
common femoral, 
visceral and above-
the-knee arteries 

Coronary, below-
the-knee, tibial and 
peroneal arteries 

Superior and inferior 
vena cava, ilico-
femoral veins, portal 
vein, visceral veins 

Upper > lower extremity 

1st choice Prosthesis (Dacron, 
ePTFE) 

Prosthesis or autograft 
(equal) 

Arterial or venous 
autograft 

Saphenous spiral 
vein graft, deep 
venous autograft 

Native material 

2nd choice Allograft, deep 
venous autograft 

Prosthesis or autograft Composite graft, 
vein interposition, 
prosthesis (ePTFE, 
Dacron), allograft, 
biosynthetic 

Allografts, ePTFE, 
Dacron, biografts 

ePTFE, PU, xenografts, 
biografts, TEBV (clinical 
trial) 

 
ePTFE (expanded polytetrafluoroethylene), PU (polyurethane), TEBV (totally-engineered blood vessels). 
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and sometimes with limited clinical performance: 
arteries, such as the right gastroepiploic artery for 
coronary application (Sasaki 2008), and veins, such as the 
lesser saphenous vein (vena saphena parva) (Chang et al. 
1992), arm veins (Calligaro et al. 1997) for coronary and 
peripheral bypasses, or deep leg veins (Ali et al. 2009) 
for infected aortic graft replacement, visceral 
revascularization or even primary lower limb bypass.  
 Although the use of fresh (cold-stored) or 
cryopreserved homografts (i.e. human allografts from 
cadaver donors) was abandoned in the early 1960s 
because of difficulties in preserving them, late graft 
deterioration, aneurysm formation and the anticipated 
availability of synthetic prostheses, they have been 
reintroduced for managing aortic prosthetic graft 
infection (Kieffer et al. 2004), lower extremity primary 
revascularization (Dardik et al. 2002, Fahner et al. 2006, 
Matia et al. 2007) and simultaneous or sequential 
revascularization surgery in solid organ transplant-
recipients (Matia et al. 2008). Although allografts are not 
routinely used (usually in limb-threatening situations, in 
redo surgery or in an infected field), some studies suggest 
improved patency of these grafts, e.g. in the case of 
preserved externally-supported human umbilical vein 
(harvested from newborns) when compared to ePTFE 
(Johnson and Lee 2000). 
 The application of heterografts (xenografts, i.e. 
tissue from different species) (Schmidt and Baier 2000) 
involves mainly studies on alternative hemodialysis 
vascular access. Although bovine carotid artery 
heterografts did not show superiority to PTFE (Hurt et al. 
1983), and decellularized bovine ureteric grafts have been 
implanted with ambiguous results (Chemla and Morsy 
2009), glutaraldehyde-crosslinked bovine mesenteric vein 
provided a considerable reduction in infection, 
thrombosis and reintervention rate (Katzman et al. 2005). 
Importantly, decellularized natural tissue of allogenic 
(human) or xenogenic (animal) origin serves as a scaffold 
for cell seeding within the scope of tissue engineering of 
vascular grafts (Dahl et al. 2003). A summary of 
biological vascular conduit materials is presented in 
Table 2. 
 
Synthetic vascular grafts 
 For more than 50 years, two polymers have been 
used for synthetic vascular prostheses: 1) polyethylene 
terephthalate (PET), Terylene or Dacron, and 
2) polytetrafluoroethylene (PTFE), Teflon or Gore-Tex. 
Both of these molecules are highly crystalline and 

hydrophobic. Prosthetic rings or coils can be applied to 
the external surface of both materials to resist kinking and 
compression in anatomically required positions (long 
bypasses, grafts crossing the joint or body midline).  
 PET/Dacron (polyethylene terephthalate,  
[-O-C=O-C6H4-O-C=O-CH2-CH2-]) was introduced in 
England in 1939, and was further developed and patented 
as Dacron by DuPont in 1950. It is a thermoplastic 
polymer resin of the polyester family and is used in 
synthetic fibers of round cross-section. These fibers are 
bundled into multifilament yarns, which can be woven 
(over-and-under pattern) or knitted (looped fashion) into 
textile vascular graft fabrics and tubes. A crimping 
technique (an undulating surface) is sometimes used to 
increase distensibility and kink-resistance. The porosity 
of a textile Dacron graft is defined by water permeability, 
which is greater for knitted Dacron. Knitted Dacron is 
impregnated with albumin, collagen or gelatin to make it 
more impervious, to decrease the porosity/permeability, 
and to avoid the need for blood preclotting prior to 
implantation. Depending on the cross-linking agent 
(formaldehyde or glutaraldehyde), the albumin 
impregnation is degraded 2 to 8 weeks after implantation 
(Marois et al. 1996). Although collagen impregnation 
increased platelet deposition and delayed the healing 
process in a dog experiment (Guidoin et al. 1996), a 
prospective randomized trial with aorto-iliac prostheses 
indicated that collagen impregnation does not stimulate 
the coagulation cascade more than conventional Dacron 
(De Mol Van Otterloo et al. 1991). There are no 
differences in clinical graft patency between woven and 
knitted Dacron, when used as an aorto-iliac bypass graft 
(Quarmby et al. 1998). Dacron is reported to dilate over 
time, but direct association with graft complications and 
failure has been rare (Blumenberg et al. 1991).  
 Host reactions to the vascular prosthesis start 
immediately after restoration of blood circulation. The 
tissue-prosthesis and blood-prosthesis interfaces are 
complex microenvironments, and the physico-chemical 
properties of the surface of the prosthesis, such as charge, 
energy, wettability and roughness, may be responsible for 
the graft patency. The first step is the plasma protein 
adsorption/desorption process typical for any 
blood/material interface (Vroman and Adams 1969), 
followed by platelet deposition, white blood cell and 
erythrocyte adhesion, and eventually endothelial and 
smooth muscle cell migration. Fibrin deposits, which 
contain platelets and blood cells, build up during the first 
few hours to days after implantation. They are stabilized 
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over a period of up to 18 months and form an inner 
compacted fibrin layer. Fibrin also fills the interstices 
within the graft wall. Generally, this fibrin/platelet 
pseudointima remains acellular; however, after 5 months, 
capillaries and fibroblasts can grow into the tight 
intersticial spaces even in humans (Stewart et al. 1975) 
and reach the inner fibrin layer. Only a few sparse small 
islands of endothelialization appeared in areas remote 
from the anastomosis region on woven excised Dacron 
grafts (Wu et al. 1995). External fibrin matrix 
surrounding the graft is gradually invaded by 
macrophages, and granulation tissue and foreign-body 
giant cells (FBGC) are usually seen under the external 
surrounding connective tissue capsule (Rahlf et al. 1986). 
In the case of knitted Dacron, endothelial islands can 
occasionally be observed on human explants during redo 
surgery or autopsy 1-11 years after implantation (Shi et 
al. 1997). Mature endothelium and a well-developed 
smooth muscle layer, described only in animal studies, is 
attributable to extended transanastomotic ingrowth rather 
than a midgraft healing process (Clowes et al. 1987, 
Zacharias et al. 1987). 
 The structure of knitted and, to a lesser extent, 
also woven Dacron allows a certain degree of transmural 
tissue ingrowth. However, the compacted inner fibrin 
layer forms a barrier and, even if the barrier is overcome 

by undifferentiated connective tissue, the capillaries 
remain unconnected to the poorly endothelialized blood 
surface (Herring et al. 1979, Xue and Greisler 2003). 
 PTFE (polytetrafluoroethylene, [-CF2-CF2-]) was 
patented by DuPont as Teflon in 1937, and ePTFE was 
patented by Gore as Gore-Tex in 1969. ePTFE is an 
expanded polymer which is manufactured by a heating, 
stretching, and extruding process resulting in a non-
textile porous tube composed of irregular-shaped solid 
membranes (“nodes”). The molecule is relatively 
biostable, i.e. less prone to deterioration in biological 
environments than PET (Guidoin et al. 1993a,b), and the 
graft surface is electronegative, which minimizes its 
reaction with blood components. It is characterized by a 
node-fibril structure, and its average porosity is described 
by the internodal distance (IND), which is usually 30 to 
90 µm. However, the actual available ingrowth spaces 
between fibrils are much smaller than IND.  
 Optimal IND of 60 µm (high porosity) was 
experimentally proposed for tissue ingrowth and 
endothelialization of 4mm ePTFE grafts in a baboon 
model (Golden et al. 1990). Though a human trial with 
high-porosity ePTFE showed capillary ingrowth, it did 
not extend more than half the distance from the outside, 
and did not produce an endothelial lining (Kohler et al. 
1992). Human host responses to standard low-porosity 

Table 2. Biological vascular grafts in clinical use. 
 

Biological vascular grafts 
Autografts Allografts (homografts) Xenografts 

(heterografts)  

Arterial Venous Arterial Venous  

Advantages Closest approximation, 
less diameter mismatch, 
internal mammary 
artery anatomically 
nearby, excellent 
function  

Durable and versatile, good 
results, infection 
resistance, relative 
availability 

Off the shelf availability, better resistance to infection, 
transplant-recipient patients 

Disadvantages Availability, vasospasm 
(radial artery), donor 
site morbidity 

Availability, harvest injury, 
vein graft disease 

Antigenicity, graft deterioration, early occlusions, chronic 
rejection, intake of drugs, infection risk 

Healing Intimal thickening, 
myointimal hyperplasia 
(radial artery) 

Endothelial desquamation, 
vein dilation, wall 
thickening, arterialization, 
re-endothelialization  

Endothelial denudation, immune response, fibrotization 

First use Jaboulay and Briau 
1896 

Goyannes 1906 Gross et al. 1948 Linton 1955  

Review e.g. Nezic et al. 2006 Cooper et al. 1996 Fahner et al. 2006 Dardik et al. 2002 Schmidt and 
Baier 2000 
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ePTFE (IND ≤ 30 μm) material are similar to the 
responses to Dacron grafts: a thin fibrin coagulum or 
amorphous platelet-rich material develops over time, and 
a lack of luminal surface endothelial cellular coverage is 
found after human implants. Collagenous external 
encapsulation develops within 1 to 6 months, penetrating 
the material structure with minimal cellular infiltration 
(Guidoin et al. 1993a). Systematic evaluation and meta-
analysis of randomized controlled trials comparing 
Dacron and ePTFE showed no evidence of an advantage 
of one material over the other (Roll et al. 2008). 
 Polyurethanes (PU) comprise a large family of 
elastic polymers containing a urethane [-NH-(CO)-O-] 
group. Polyurethanes were originally developed in 
Germany in the 1930s. They were commercialized by 
DuPont in 1962, and have been available for biomedical 
applications since the 1960s (Boretos and Pierce 1967). 
Generally, they are copolymers consisting of three 
different monomers: crystalline (hard) and amorphous 
(soft) segments, the former accounting for rigidity and the 
latter for flexibility, which can be varied by the 
manufacturer. The third monomer serves as a chain 
extender (Zdrahala 1996). The disadvantage of the first 
generation polyester-based PU was hydrolytic 
biodegradation, which resulted in abortion of one of the 
clinical trials (Zhang et al. 1997). The next generation of 
polyether-based PU, which is hydrolysis-resistant but 
more susceptible to oxidation, underwent succesful 
clinical assessment as hemodialysis access graft 
(Glickman et al. 2001), and received Food and Drug 
Administration (FDA) approval in 2000.  
 The latest generation of polycarbonate-based PU 
is hydrolytically and oxidatively stable, and promoted 
faster luminal endothelialization and less neointimal 
formation as small-calibre vascular prostheses in a rat 
experiment compared to ePTFE (Jeschke et al. 1999). 
After 36-month implantation in aorto-iliac position in 
dogs, a histological analysis of poly(carbonate-urea) PU 
grafts showed well-developed neointima only in distal 
anastomosis, only minor hydrolysis of the amorphous 
segments and, in addition, the grafts retained their 
compliance with time – a feature not observed in Dacron 
or ePTFE. These promising results led to a phase I 
clinical trial (Seifalian et al. 2003). 
 According to their microstructure, polyurethanes 
can be divided into fibrillar or foamy. Both structures 
tend to lack communicating spaces for potential capillary 
ingrowth. Upon implantation, the blood surface of the 
fibrillar PU is covered by a fibrin layer that is thinner 

than on knitted Dacron, and the outer surface is 
encapsulated by scar formation containing FBGC. In 
microporous foamy PU with 15 μm pore size, relatively 
little capillary ingrowth can be accomplished, whereas 
with increasing pore size up to 157 μm, the undesired 
inflammatory FBGC reaction could be diminished and 
capillary sprouting was allowed from the outside in a 
Chacma baboon model. However, before its completion, 
transmural ingrowth slowed down when reaching the 
dense inner fibrin layer that was “squeezed” into the 
pores from the inside (Zilla et al. 2007).  
 Although PU grafts possess many interesting 
features, e.g. the presence of EC under poor 
hemodynamic conditions, excellent healing, good 
surgical handling and low suture bleeding (Tiwari et al. 
2002), further investigations are required before more 
recommendations can be made, because there is a lack of 
evidence for their use in human peripheral bypass surgery 
(Dereume et al. 1993). An outline of synthetic vascular 
prostheses is summarized in Table 3. 
 
Vascular grafts with modified lumen 
 Several attempts have been adopted to suppress 
the thrombogenicity of synthetic material by affixing 
chemicals or anticoagulants to the graft lumen: early 
studies showed decreased platelet deposition on carbon-
coated ePTFE grafts, but the overall patency rates were 
not improved (Kapfer et al. 2006). A heparin-bonded 
Dacron graft exhibited slightly better patency than an 
untreated ePTFE graft (Devine et al. 2004), and heparin-
immobilized ePTFE provided better thromboresistance in 
humans (Bosiers et al. 2006). Applying a polyethylene 
glycol (PEG)-hirudin/iloprost coating to 4 mm ePTFE 
prostheses reduced IH and led to superior patency in a pig 
experiment (Heise et al. 2006). Heparin coating 
significantly reduced aortic graft thrombosis in rats both 
for ePTFE and for PU (Walpoth et al. 1998). A 
dipyridamole (anti-platelet drug) coating positively 
influenced the patency rate of a 5 mm PU vascular 
prosthesis in animal experiments (Aldenhoff et al. 2001). 
Fibroblast growth factor-1 and heparin affixation 
enhanced ePTFE graft capillarization and surface 
endothelialization without significant IH in a canine aorta 
model (Gray et al. 1994). Antithrombotic agents are of 
course routinely administered to patients with vascular 
disease, with an obvious influence on graft patency and 
overall cardiovascular mortality (Watson et al. 1999).  
 Interestingly, an effort has been made to increase 
the resistance of synthetic vascular grafts to infectious 
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agents. Antibiotics such as rifampicin bonded to Dacron 
did not reduce the incidence of vascular graft infection 
(Earnshaw et al. 2000); however, a silver-coated 
collagen-impregnated Dacron prosthesis offers an 
alternative approach in the treatment of vascular graft 
infection (Mirzaie et al. 2007). 
 
Composite and vein-interposition vascular grafts 
 Attempts at improving disadvantageous 
anastomotic hemodynamics include alternative surgical 
techniques and interposition of an autologous vein 
segment.  
 Despite the theoretical and experimental 
advantage of end-to-end (straight) rather than end-to-side 
(Y-shaped) anastomosis between the graft and the artery 
(O’Brien et al. 2007), clinical trials did not prove 
superiority, and moreover an increased limb amputation 
rate was revealed in the end-to-end setting, probably due 
to exclusion of collateral vessels (Schouten et al. 2005). 
Suturing materials and techniques may also decrease the 
anastomotic compliance difference, e.g. in the case of 
interrupted sutures (more than one single suture). 

However, running sutures are most widely used, because 
they are quicker and achieve better hemostasis (Tiwari et 
al. 2003).  
 Own venous tissue is placed in the form of a 
vein patch or cuff between an ePTFE graft and the artery 
to reduce the anastomotic compliance mismatch and to 
improve the prosthesis patency. Procedures implemented 
during the 1980s and 1990s include the Miller cuff, the 
Linton patch, the Taylor patch and the St. Mary boot 
(Moawad and Gagne 2003). When the patient’s own vein 
graft is of insufficient length, feasible options that 
increase the patency rates may be: a composite bypass - 
prosthesis and vein are spliced together with an additional 
anastomosis (Bastounis et al. 1999), a sequential bypass, 
which is formed as a distal venous extension graft to the 
preceding proximal prosthetic bypass (Mahmood et al. 
2002), and a bridge graft, which connects two patent 
distal arteries with a short vein segment (Deutsch et al. 
2001). Although adjunctive arterio-venous fistula 
placement increases the blood flow through femoro-distal 
(i.e. below knee) bypasses, thus theoretically preventing 
thrombosis, several trials failed to show evidence of 

Table 3. Synthetic vascular grafts in clinical use. 
 

Synthetic vascular grafts 
PET (Dacron, Terylen) ePTFE (Teflon, Gore-Tex) Polyurethane 

 Woven Knitted Low-porosity 
(<30 μm IND) 

High-porosity 
(>45 μm IND) 

Fibrillar Foamy 

Advantages Better stability, 
lower 
permeability and 
less bleeding 

Greater porosity, 
tissue ingrowth and 
radial distensibility 

Biostability, no 
dilation over time 

Biostability, better cell 
ingrowth 

Compliance, good hemo- 
and biocompatibility, less 
thrombogenicity 

Disadvantages Reduced 
compliance and 
tissue 
incorporation, 
low porosity, 
fraying at edges, 
infection risk 

Dilation over time, 
infection risk 

Stitch bleeding, 
limited 
incorporation, 
infection risk, 
perigraft seroma 
formation 

Late neointimal 
desquamation in 90 
μm IND, infection risk 

Biodegradation in first 
generation, infection risk, 
carcinogenic? 

Healing Inner fibrinous 
capsule, outer 
collagenous 
capsule, scarce 
endothelial 
islands 

Fibrin luminal 
coverage, very 
sporadic 
endothelium,  
transanastomotic 
endothelialization 
in animals 

Luminal fibrin and 
platelet carpet, 
connective tissue 
capsule with 
foreign body giant 
cells, no transmural 
tissue ingrowth 

Macrophages and 
polymorphonuclear 
invasion, capillary 
sprouting, fibroblast 
migration, certain 
angiogenesis, thicker 
neointima, 
endothelialization in 
animals 

Thin inner 
fibrin layer, 
outside 
foreign body 
cells, limited 
ingrowth 

Better 
ingrowth 
with 
bigger 
pores 

First use Ku et al. 1957 Norton and Eiseman 1975 Boretos and Pierce 1967 

Review e.g. Xue and Greisler 2003 Nishibe et al. 2004 Tiwari et al. 2002 

 
IND (internodal distance). 
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benefit (Laurila et al. 2006).  
 Vein interposition techniques are generally 
useful in the case of distal anastomosis located below the 
knee, but are unimportant in the above-the-knee position 
(Mamode and Scott 2000). The underlying mechanism 
consists in reducing the compliance mismatch and 
suppressing IH (Cabrera Fischer et al. 2005). Research 
derived from this evidence led to the evolution of 
specially formed ePTFE grafts, capable of better 
harnessing the hemodynamic forces by an enlarged 
anastomotic hood. Interestingly, clinical studies have 
shown patency rates of this pre-cuffed ePTFE (Panneton 
et al. 2004) and carbon-lined ePTFE Distaflo graft 
(Fisher et al. 2003) that are comparable to interposition 
vein cuffs. 
 
Biosynthetic/biohybrid vascular grafts (biografts) 
 The idea of introducing viable biological 
components into an artificial material-based vascular 
graft was established to produce more biocompatible 
vascular substitutes. A viable endothelial layer is the best 
antithrombogenic surface. There are three possible 
sources of graft lumen endothelialization in vivo post 
implantation: trans-anastomotic ingrowth from the native 
artery, transmural tissue and capillary ingrowth through 
the prosthesis wall, and a “fall-out” or blood-borne source 
from circulating progenitor cells. Unlike animals, humans 
seldom achieve spontaneous endothelialization more than 
1-2 cm from an anastomosis, and transmural ingrowth is 
hampered by the structure of currently-used prostheses 
(Zilla et al. 2007).  
 The concept of seeding endothelial cells onto the 
graft lumen before implantation was experimentally 
implemented (Herring et al. 1978), and consequently this 
autologous EC “transplantation” managed to improve the 
patency of human Dacron prostheses (Herring et al. 
1984) in a non-smoker population. Endothelial cells from 
a subcutaneous vein segment (e.g. saphenous, cephalic or 
jugular vein) are harvested and immediately seeded onto 
the graft lumen within the timeframe of one operation. 
The results of the first clinical trials performed during the 
1980s were controversial and disappointing, mainly due 
to insufficient cell density (Bordenave et al. 1999). 
However, sophisticated EC extraction and retention 
techniques (Tiwari et al. 2001) and the search for more 
abundant cell sources, such as microvascular endothelium 
from fat tissue or an omentum biopsy, improved the 
outcome of this single-stage cell seeding method 
(Alobaid et al. 2005).  

 On the other hand, the double-stage approach 
involves a prolonged incubation and cell multiplication 
period (2-4 weeks) between cell harvesting and 
implantation (Bordenave et al. 2005). Nevertheless, in 
vitro flow pretreatment or shear stress preconditioning of 
the cell-material constructs before exposing them to 
arterial conditions enhances cell retention by inducing 
structural changes and adaptation (Rademacher et al. 
2001). This means that an endothelial cell monolayer is 
physiologically exposed to certain mechanical forces, 
namely hydrostatic pressure resulting from blood 
pressure, shear stress resulting from tangential friction of 
blood flow against the vessel wall, and finally 
longitudinal and circumferential cyclic stretch resulting 
from repeated blood vessel distension due to the cardiac 
cycle (Lehoux et al. 2006). Chronic laminar versus 
turbulent shear stress seems to be of utmost importance 
for endothelial and vascular smooth muscle cell function 
(Chien 2007), regulating signal transduction in these cells 
(Daculsi et al. 2007), their alignment, molecule secretion, 
cytoskeleton reorganization, gene expression, cell 
migration, proliferation and survival. These processes 
ultimately influence thrombogenesis and atherogenesis 
(Yoshizumi et al. 2003), and similar cellular events and 
phenotypes (Rémy-Zolghadri et al. 2004, Fernandez et al. 
2006) can be observed when cells are seeded on 
biomaterials (Fernandez et al. 2007).  
 Early results of clinical in vitro double-stage 
endothelialization were promising (Magometschnigg et 
al. 1992, Meinhart et al. 1997), and recently published 
overall 5-year and 10-year patency of endothelialized 
fibrin glue-precoated ePTFE femoro-popliteal bypass 
grafts of 69 % and 61 %, respectively (Deutsch et al. 
2009) has already been correctly reported to close the gap 
between prosthetic and vein grafts (Meinhart et al. 1997). 
Interestingly, the feasibility of endothelium-seeded 
vascular prostheses was also confirmed in coronary 
bypass grafting, though it is not widely used (Laube et al. 
2000). 
 To improve the above-mentioned clinical 
success, additional cell sources and cell retention 
technologies are being investigated. Vascular cells are 
anchorage-dependent, and integrin receptor-mediated 
adhesion occurs via ECM proteins that are adsorbed from 
the cell culture media in vitro or from blood in vivo 
(Bačáková et al. 2004). Thus, to regulate cell attachment, 
biomaterials are coated with ECM proteins such as 
collagen, laminin and fibronectin (Vara et al. 2005) or are 
modified by covalent bonding of short adhesive peptides 
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which may be cell specific, such as the Arg-Gly-Asp 
(RGD) sequence (Bačáková et al. 2007). Fibrin, as a 
natural scaffold for cell migration and healing, plays a 
pivotal role in tissue engineering of vascular grafts 
(Filová et al. 2009). In addition, less specific physical 
surface modifications, non-ligand based techniques 
(Salacinski et al. 2001) and surface nanoarchitecturing 
(de Mel et al. 2008) are being explored.  
 An alternative approach aimed at improving 
seeding efficiency is to use progenitor cells. Bone 
marrow cells infiltrated into the ePTFE vascular grafts 
and implanted in the aortic position of dogs retained 
complete endothelialization and patency after six months 
(Noishiki et al. 1996). Similarly, human endothelial 
progenitor cells (EPC) were isolated from peripheral 
blood (Asahara et al. 1997), and it has been shown in a 
canine model that a subset of CD34+ bone marrow cells 
can be mobilized to the circulation and can colonize the 
flow surfaces of Dacron vascular prostheses (Shi et al. 
1998). Moreover, seeding of bone marrow-derived cells 
(BMC) accelerated early Dacron graft endothelialization 
without increasing thrombogenicity in a dog model 
(Bhattacharya et al. 2000). Taken together, due to their 
high proliferative capacity and differentiation potential, 
stem cells may represent the next era of cell-sourcing 
technology (Riha et al. 2005). 
 Genetically-modified cells have also been 
considered for the construction of vascular replacements. 
For example, genetically-modified endothelial cells over-
expressing tissue plasminogen activator (t-PA) and 
urokinase-type PA, or bone marrow mesenchymal stem 
cells transduced to express endothelial nitric oxide 
synthase (eNOS), would promote cell repopulation of the 
graft and help to eliminate thrombotic events (Zarbiv et 
al. 2007). However, the use of genetically-modified cells 
inherently raises ethical questions. A conventional 
approach is directly to load the materials with anti-
coagulant, anti-inflammatory and cell growth-regulating 
substances, such as heparin and heparin-like molecules, 
as mentioned above (Walpoth et al. 1998, Lee et al. 
2002), hirudin (Heise et al. 2006), dipyridamole 
(Aldenhoff et al. 2001), growth factors, such as vascular 
endothelial growth factor (Ehrbar et al. 2005) or 
fibroblast growth factor (Gray et al. 1994, Sato et al. 
2008), or antimigratory and antiproliferative drugs 
paclitaxel (Lim et al. 2007), sirolimus (Ishii et al. 2008) 
and inhibitors of CDK2 kinase (Brooks et al. 1997). 
These drugs can be incorporated directly into the 
prosthesis wall or delivered through drug-eluting stents 

(Lee et al. 2008), catheters and perivascular collars (for 
review see Sriram and Patterson 2001). Artificial 
materials releasing NO are also being developed, 
consisting of synthetic polymers (e.g. polyurethane, 
PTFE) incorporated with NO donors, such as 
diazeniumdiolates and S-nitrosothiols (Varu et al. 2009). 
 
Living vascular grafts, totally-engineered blood vessels 
(TEBV) 
 The concept of completely biological living 
grafts implies the ability to remodel, grow, self-repair and 
respond to the immediate environment. Similarly to the 
native artery, the graft would consist of a functional 
endothelial cell layer resting on metabolically active 
smooth muscle cells which are in a contractile (i.e. non-
synthetic and anti-atherogenic) phenotype (Muto et al. 
2007). The graft would also contain enough collagen and 
elastin proteins to display desirable viscoelastic 
properties, and would lack any synthetic foreign material 
that would initiate chronic inflammatory responses or be 
susceptible to infection. If a synthetic material is used, it 
should be non-immunogenic, non-thrombogenic and of 
appropriate compliance. In the ideal case, it should be 
degradable, providing a temporary scaffold for vascular 
tissue regeneration, gradually removed and replaced by 
the newly-forming tissue. 
 In the construction of tissue-engineered vascular 
grafts, three major components must be addressed: a 
scaffold to provide the initial graft shape and strength, 
adhesive matrix and living vascular cells (Baguneid et al. 
2006). For the scaffold, four major approaches can be 
identified: permanent synthetic support, natural acellular 
tissues, a biodegradable scaffold, and non-scaffold 
technology (Campbell and Campbell 2007).  
 The first seminal attempt involved seeding 
bovine EC, VSMC and fibroblasts onto collagen gel 
tubes (Weinberg and Bell 1986). An external Dacron 
mesh reinforcement had to be added because of poor 
mechanical strength. An example of the use of a natural 
scaffold involves seeding human cells on decellularized 
porcine aorta (Bader et al. 2000) or small intestinal 
submucosa implanted as vascular grafts (Lantz et al. 
1993). The most commonly used biodegradable polymer 
is polyglycolic acid (PGA). Under shear stress 
preconditioning, VSMC followed by EC were seeded 
onto this scaffold, and the resulting vascular grafts were 
implanted in pigs, with excellent results (Niklason et al. 
1999). Seeding bone-marrow cells (BMC) onto a 
biodegradable scaffold enabled the establishment of a 
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totally-engineered autograft implanted into the inferior 
vena cava of a dog, and explant analysis showed that 
BMC were able to differentiate both in endothelial and 
smooth muscle cells (Matsumura et al. 2003). 
 The non-scaffold or “self-assembly” approach 
produced a graft composed exclusively of human cells by 
wrapping and culturing fibroblast and VSMC cellular 
sheets on a PTFE mandril, which was then removed and 
EC were seeded in the lumen. This was the first 
completely biological TEBV to display mechanical 
resistance comparable to that of human vessels 
(experimental burst strength up to 2000 mm Hg). A short-
term experiment in a canine model demonstrated good 
surgical handling (L´Hereux et al. 1998). Another 
vascular graft was developed without a scaffold by 
inducing an inflammatory reaction. A silastic tube was 
placed into the peritoneal cavity of rats and rabbits and 
was in 2 weeks spontaneously covered by layers of 
myofibroblasts, collagen matrix, and a single layer of 
mesothelium. It was everted to resemble the blood vessel 
and grafted in carotid or aortic position, and remained 
patent after 4 months (Campbell et al 1999).  
 A TEBV construct consisting of autologous 
bone marrow cells seeded onto a biodegradable scaffold 
was first clinically implanted to replace the pulmonary 
artery in a pediatric patient with a cyanotic defect 
(Shin´oka et al. 2001), and there was no graft-related 
complication in a group of 42 patients (Shin´oka et al. 
2005). Another clinical success was achieved by TEBV 
produced by the cell-sheet multilayer method (L’Heureux 

et al. 2006) and implanted as a hemodialysis access graft 
in 10 patients (L’Heureux et al. 2007b). A recent paper 
reports primary 1-month and 6-month patency of 78 % 
and 60 %, respectively, meeting the approved criteria for 
a high-risk patient cohort (McAlister et al. 2009).  
 A summary of composite, biohybrid and totally-
engineered vascular grafts is outlined in Table 4. 
 
Venous replacements 
 
 Unlike arterial reconstructions, venous 
reconstructions are limited to large-diameter central 
veins, such as the inferior (Schwarzbach et al. 2006) or 
superior vena cava and the ilico-femoral veins (Kalra et 
al. 2003). Autologous size- and length-matched veins 
such as superficial femoral vein, internal jugural vein, left 
renal vein and mainly the gold-standard composite 
saphenous spiral vein graft (Doty et al. 1999) produce the 
best results, e.g. for a bypass for an occlusion of the 
superior vena cava of iatrogenic origin (catheter-related 
thrombosis). Venous allogenous homografts, either fresh 
or cryopreserved, have been used in experimental and 
clinical venous reconstruction (Sitzmann et al. 1984). The 
patency of externally supported ePTFE is better than the 
patency of grafts fashioned from ePTFE alone. However, 
the use of synthetic prostheses may be limited by low-
flow thrombogenicity, contaminated tissue beds, as in 
venous vascular trauma or tumor resection cases, e.g. in 
portal vein resection for pancreatic carcinoma (Leon et al. 
2007). Venous reconstructions may be combined with an 

Table 4. Composite, biosynthetic and totally engineered vascular grafts in experimental and clinical use. 
 

Composite grafts Biosynthetic grafts Totally engineered blood vessels 
 

Clinical Experimental Clinical Experimental Clinical 

Advantages Reduced compliance 
mismatch and intimal 
hyperplasia, improved 
patency in femoro-distal 
bypasses, easier redo 
surgery 

Antithrombogenic, better patency Responsiveness, non-thrombogenicity, self-
repair, growth, metabolically active, 
potentially cost-effective 

Disadvantages Technically demanding, 
prolonged surgery time 

No emergency use, cell amplification 
problems, cell culture contamination risk 

Demanding fabrication, time- and cost- 
consuming, bioreactor cell laboratory, 
specialized centers only 

Healing Less intimal hyperplasia Self-renewing functional endothelium Complete integration 

First use Siegman 1979 Herring et al. 1978 Herring et al. 1984 Weinberg and Bell 
1986 

Shin´oka et al. 2001 

Review e.g. Moawad and Gagne 2003 Seifalian et al. 2002 Bordenave et al. 
2008 

Isenberg et al. 
2006 

L’Heureux et al. 
2007a 
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adjuvant arterio-venous fistula to improve graft patency. 
Interestingly, the success rates of repeated percutaneous 
angioplasty approached those of operative reconstruction 
(Wisselink et al. 1993). 
 
Hemodialysis vascular access 
 
 Creating a native arterio-venous fistula for 
chronic hemodialysis access is obviously superior to 
creating a prosthetic fistula. However, patients with 
depleted veins receive a prosthetic access graft, which has 
to provide sufficient blood flow and sustain repeated 
puncturing. It is difficult to identify the ideal access graft 
from a large number of biologic and prosthetic conduits. 
Randomized trials suggest that cuffed ePTFE grafts offer 

reasonable patency and that “early access” PU grafts can 
provide a safe conduit. Biologic/semibiologic grafts give 
better results than synthetic grafts, in some respects (Scott 
and Glickman 2007). 
 

Collective experience of the authors 
 
 Static experiments performed in our laboratory 
enabled us to assess the cell colonization of various 
biomaterials without flow of culture medium. Clinically-
used PET vascular prostheses (produced by VÚP, Brno, 
Czech Republic) were impregnated with biodegradable 
polyester-based copolymers (Pamula et al. 2008) as a 
background for further modification with multilayers of 
adhesive matrix proteins, such as collagen, fibronectin, 

 
 

Fig. 3. Innovation of knitted PET 
vascular prostheses produced by VUP 
a.s., Brno, Czech Republic. A: the 
rough and highly hydrophobic inner 
surface of the prosthesis not suitable 
for cell adhesion; B: coating of this 
surface with defined molecular 
assemblies such as collagen I (Co), 
laminin (LM), fibronectin (FN) or fibrin 
(Fb) makes it more adhesive; C, D, E, 
F: confluent layer of bovine vascular 
endothelial cells (line CPAE) on CoFb 
(C, D) and multilayer of rat aortic 
smooth muscle cells on CoFN (E), CoLM 
(F) on the inner surface of a knitted 
wrapped prosthesis. Immunofluores-
cence of beta-actin (C, D) or alpha-
actin (E, F), nuclei counterstained with 
propidium iodide. NOVA nanoSEM 200 
FEI electron microscope (A), Olympus 
IX 51 fluorescence t microscope, obj. 
4x (B) or Leica TCS SP2 AOBS confocal 
microscope, obj. 10x, 29x5 μm (C), 
40x, zoom 2x, 4x1 μm (D), obj. 10x, 
9x15 μm (E), 40x, zoom 2x, 55x1 μm 
(F). 
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laminin and particularly fibrin, which can be derived in 
autologous form from the patient’s blood (Brynda et al. 
2005, Filová et al. 2009). For the purposes of vascular 
tissue engineering, we explored the adhesion and growth 
of animal-derived endothelial and vascular smooth 
muscle cells (Chlupáč et al. 2008a) (Fig. 3). Research 
work carried out on some fibrin-based surfaces (Riedel et 
al. 2009) has led to a common patent (Brynda et al. 
2008).  
 Dynamic experiments were conducted under 
defined medium flow to better mimic in vivo conditions. 
Dacron vascular prostheses were modified on the luminal 
surface with ECM protein assemblies (Chlupáč et al. 
2006a), and an investigation was made of the adhesion 
and growth of human patient-derived EC (Chlupáč et al. 
2006b). Their resistance to shear stress was also 
investigated (Chlupáč et al. 2006c). The gene expression 
profile of endothelium seeded on similar planar ECM 
analogues was also determined (Chlupáč et al. 2008b). 
Hybrid vascular graft constructs in vitro seeded with 
autologous EC and preconditioned under shear stress in a 
bioreactor (Provitro Co., Berlin Germany) are currently 
being investigated in a porcine model. 
 
Conclusions 
 
 Open arterial surgery in the form of a lower limb 
bypass remains the standard treatment for extensive and 
multilevel atherosclerotic disease. Over the past 50 years, 

no synthetic alternative has been found to compare with 
the patency rates of gold-standard autologous conduits. 
However, appropriate native material is often unavailable 
and alternative vascular prostheses show poor clinical 
performance. To address this issue, luminal modifications 
of grafts, interposition of vein segments and particularly 
tissue engineering of small-sized blood vessels have been 
introduced. Biohybrid and tissue-engineered vascular 
grafts have been manufactured with the help of materials 
research, complex tissue culture and cell seeding 
technologies. The outcomes of experimental and clinical 
implants seem to be favorable. It is likely that cell therapy 
will become a frequent option in vascular and 
endovascular surgery in the coming decades. 
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