Urotensin II-Induced Increase in Myocardial Distensibility Is Modulated by Angiotensin II and Endothelin-1

A. P. FONTES-SOUSA, A. L. PIRES, V. F. MONTEIRO-CARDOSO, A. F. LEITE-MOREIRA

Department of Physiology, Faculty of Medicine, University of Porto, Porto, Portugal

Summary
Endogenous regulators, such as angiotensin-II (AngII), endothelin-1 (ET-1) and urotensin-II (U-II) are released from various cell types and their plasma levels are elevated in several cardiovascular diseases. The present study evaluated a potential crosstalk between these systems by investigating if the myocardial effects of U-II are modulated by AngII or ET-1. Effects of U-II (10^{-8}, 10^{-7}, 10^{-6} M) were tested in rabbit papillary muscles in the absence and in the presence of losartan (selective AT1 receptor antagonist), PD-145065 (nonselective ET-1 receptors antagonist), losartan plus PD-145065, AngII or ET-1. U-II promoted concentration-dependent negative inotropic and lusitropic effects that were abolished in all experimental conditions. Also, U-II increased resting muscle length up to 1.008±0.002 L/L_{max}. Correcting it to its initial value resulted in a 19.5±3.5 % decrease of resting tension, indicating increased muscle distensibility. This effect on muscle length was completely abolished in the presence of losartan and significantly attenuated by PD-145065 or losartan plus PD-145065. This effect was increased in the presence of AngII, resulting in a 27.5±3.9 % decrease of resting tension, but was unaffected by the presence of ET-1. This study demonstrated an interaction of the U-II system with the AngII and ET-1 systems in terms of regulation of systolic and diastolic function.

Key words
Urotensin II • Angiotensin II • Endothelin-1 • Cardiac function • Myocardial distensibility

Introduction
Urotensin II (U-II) is a vasoactive cyclic peptide that was originally isolated from fish urophysis and has been cloned from humans (Coulouarn et al. 1998). U-II has been identified as the endogenous ligand for the orphan G protein-coupled receptor, GPR14 (U-II receptor, UT) (Ames et al. 1999, Douglas et al. 2002). Both U-II and its receptor are expressed in the mammalian cardiovascular system namely in the myocardium, vascular smooth muscle cells and endothelial cells (Johns et al. 2004, Egginger et al. 2006). Human U-II (hU-II) effectively constricts isolated arteries from non-human primates. The potency of vasoconstriction is of a greater magnitude than that of endothelin 1 (ET-1), making U-II the most potent mammalian vasoconstrictor (Ames et al. 1999).

Furthermore, U-II was reported to affect the process of cell growth in the heart. This peptide exerted mitogenic effects on vascular smooth muscle cells (Sauzeau et al. 2001, Watanabe et al. 2001a,b) and human endothelial cells (Shi et al. 2006), induced collagen and fibronectin synthesis by cardiac fibroblasts, and caused cardiomyocyte hypertrophy (Tzanidis et al. 2003, Johns et al. 2004, Russell 2004). Thereby, U-II contributes to ventricular remodeling and deterioration of systolic and diastolic function, similarly to what has been described for other vasoconstrictor peptides such as angiotensin-II (AngII) and ET-1 (Weber et al. 1994, Ito 1997).

Moreover, elevation of U-II in the plasma and hearts of patients with congestive heart failure has been observed, and these circulating levels were related to the
functional class of the disease and correlated negatively with left ventricular ejection fraction (Douglas et al. 2002, Russell et al. 2003, Russell 2004, Gruson et al. 2006). U-II also correlated significantly with big-ET-1 and brain natriuretic peptide, suggesting that U-II could play a role in worsening the course of congestive heart failure and is associated with established markers of cardiovascular dysfunction (Gruson et al. 2006).

Unlike the well-known role of chronically elevated U-II levels in progression to cardiac fibrosis and ventricular remodeling, the acute diastolic effects of U-II remain less explored. We previously found that AngII (Leite-Moreira et al. 2006), ET-1 (Leite-Moreira et al. 2003, Brás-Silva et al. 2008) and U-II acutely increase myocardial distensibility. In the case of U-II this effect is mediated by UT receptor, NO and prostaglandins (Fontes-Sousa et al. 2007). The intracellular signaling of U-II and its interaction with other vasoconstrictors such as AngII and ET-1 are poorly understood, although is has been established that U-II shares some subcellular pathways and interacts with these vasoactive systems (Tasaki et al. 2004, Li et al. 2005, Wang et al. 2007).

Although plausible, the crosstalk between U-II and AngII or ET-1 in the regulation of myocardial distensibility has not been studied yet. The main goal of the present study was therefore to test this hypothesis by investigating to what extent the myocardial effects of U-II are modulated by AngII or ET-1.

Methods

The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication Nº 85-23, Revised 1996).

Experimental preparation

Isometric and isotonic contractions were measured in papillary muscles isolated from the right ventricle of rabbits. Male New Zealand White rabbits (Oryctolagus cuniculus, 1.2-2.7 kg, n = 32) were anesthetized with intravenous sodium pentobarbital (25 mg.kg⁻¹). A left thoracotomy was performed, and beating hearts were quickly excised and immersed in a modified Krebs-Ringer (KR) solution (composition in mM: 98 NaCl, 4.7 KCl, 2.4 MgSO₄, 1.2 KH₂PO₄, 4.5 glucose, 1.8 CaCl₂, 17 NaHCO₃, 15 sodium pyruvate, 5 sodium acetate, 0.02 atenolol) at 35 ºC with cardioplegic 2,3-butanedione monoxime (BDM, 3 %) and 5 % Newborn Calf Serum. Atenolol was used to prevent β-adrenergic mediated effects. The solutions were in equilibrium with 95 % O₂ and 5 % CO₂, to obtain a pH between 7.38-7.42.

The time from thoracotomy to dissection was ~3 min. The right ventricle was opened and papillary muscles were isolated by first dividing the chordae tendinae at the muscle tip and then freeing the muscle base and a small amount of surrounding myocardium from the ventricular wall. Only long, thin, uniformly cylindrical muscles were used.

After dissection, papillary muscles (n = 52, length: 4.6±0.2 mm, weight: 3.5±0.2 mg, preload: 4.0±0.2 mN) were mounted vertically in a 10 ml plexi glass organ bath containing the aforementioned KR solution at 35 ºC. The lower muscular end was fixed in a phosphorbronze clip, and the upper tendinous end was attached to an electromagnetic length-tension transducer (University of Antwerp, Belgium).

Preload was initially estimated according to muscle dimensions. After 10 min, muscles were stimulated at interstimulus interval of 1670 ms and voltage of 10 % above threshold by rectangular pulses of 5 ms duration through two platinum electrodes. Twenty minutes later, bathing solutions were replaced by corresponding KR solutions without BDM and the muscle started to contract. One hour later, bathing solution was replaced by corresponding serum-free KR solution. During the next two hours, the muscles were stabilized. Finally, the muscles were stretched to a muscle length at which active force development was maximal. This length (mm) is known as maximum physiological length (Lmax). Protocols were initiated after obtaining two similar isotonic and isometric control twitches separated by a 10 min interval.

At the end of the experiment the muscles were lightly blotted and then weighed. Muscle cross-sectional area was calculated by dividing the weight of the muscle by its length at Lmax. A cylindrical shape and a specific gravity of 1.0 were assumed. Muscle tension was then expressed as force normalized per cross-sectional area (mN.mm⁻²).

Experimental protocols

The effects of increasing concentrations of hU-II (10⁻⁸, 10⁻⁷ and 10⁻⁶ M) on contraction, relaxation, and diastolic properties of the myocardium were studied in rabbit papillary muscles in the absence (n = 12) or in the presence of (i) losartan (10⁻⁶ M, n = 8), a selective AT₁,
receptor competitive antagonist, (ii) PD-145065 (C_{52}H_{65}N_{7}O_{10}, 10^{-7} M, n = 7), a nonselective antagonist of ET-1 receptors, (iii) losartan (10^{-6} M) plus PD-145065 (10^{-7} M) (n = 8), (iv) AngII (10^{-5}M, n = 10), or (v) ET-1 (10^{-8} M, n = 7). These substances were dissolved in the KR solution before the addition of U-II, and muscle twitches were recorded after a stable response was obtained, typically 15-20 min later. After that, U-II was added cumulatively without any washout between.

Of note, that in each experimental protocol all papillary muscles were obtained from different animals. PD-145065 and hU-II were obtained from American Peptide Company (Sunnyvale, CA, USA) and Bachem (Bubendorf, Switzerland), respectively. All the other reagents were obtained from Sigma (St. Louis, MO, USA). Peptides were prepared in aliquots and stored at –20 ºC.

Data acquisition and analysis
Isotonic and isometric twitches were converted online to digital data with a sampling frequency of 1000 Hz (Daqbook/120, IOTech Inc. Cleveland, OH, USA) and analyzed with a dedicated software (University of Antwerp, Belgium).

Selected parameters included: resting tension (RT, mN.mm⁻²), active tension (AT, mN.mm⁻²), maximal velocities of tension rise (dT/dt_{max}, mN-mm⁻².s⁻¹) and decline (dT/dt_{min}, mN-mm⁻².s⁻¹), peak isotonic shortening (PS, %L_{max}), and maximal velocities of shortening (dL/dt_{max}, L_{max}.s⁻¹) and lengthening (dL/dt_{min}, L_{max}.s⁻¹).

In the various protocols, results are given as percent change from baseline. For the parameters that are expressed as negative values (e.g. dT/dt_{min}) such percent change refers to the absolute values. When the pharmacological inhibitors were used, the term baseline refers to the performance in the presence of those inhibitors, before the addition of U-II.

Statistical methods
Values are presented as means ± S.E.M. of n experiments. Effects of increasing concentrations of U-II alone on the different experimental parameters were analyzed by one-way repeated-measures ANOVA. Effects of increasing concentrations of U-II under various experimental conditions were analyzed with a repeated-measures two-way ANOVA. Effects on the various parameters of a single concentration of the antagonists were analyzed with a paired t-test. When significant differences were detected with any of the ANOVA tests, the Student-Newman-Keuls test was selected to perform pairwise multiple comparisons. P<0.05 was accepted as significant.

Results
Baseline performance of rabbit papillary muscles was similar in all experimental protocols. Mean values of the contractile parameters from the 52 papillary muscles were as follows: AT 26.0±1.9 mN.mm⁻², dT/dt_{max} 190.4±15.6 mN.mm⁻².s⁻¹, dT/dt_{min} –140.3±8.6 mN.mm⁻².s⁻¹, PS 15.3±0.9 % of L_{max}, dL/dt_{max} 1.17±0.07 L_{max}.s⁻¹, dL/dt_{min} –4.9±0.4 L_{max}.s⁻¹. The presence of losartan, PD-145065, or losartan plus PD-145065 did not significantly modify per se any of the analyzed contractile parameters. The presence of AngII and ET-1
significantly increased active tension by 7.2±2.1 % and 31.7±4.9 %, respectively.

U-II induced concentration-dependent negative inotropic (AT, dT/dt_max) and lusitropic (dT/dl_min) effects (Fig. 1). The highest concentration of U-II (10^{-6} M) decreased 15.8±5.6 % AT, 13.5±5.4 % dT/dt_max, and 18.1±4.5 % dT/dl_min. With regard to the diastolic properties of the myocardium, we observed that U-II progressively increased resting muscle length (Fig. 1) at a constant resting tension. Correcting, at the end of the experiment, muscle length to its initial value resulted in a 19.5±3.5 % decrease of resting tension, without altering the other contractile parameters. These effects indicate an increase in muscle distensibility, or on the other hand, a decrease in muscle stiffness.

In the presence of a nonselective endothelin ET_a/ET_b receptor antagonist (PD-145065), the negative inotropic (Fig. 2) and lusitropic effects of U-II were abolished. Similarly, losartan, a selective competitive AT1 receptor antagonist, or losartan plus PD-145065 completely abolished the negative inotropic (Fig. 2) and lusitropic effects of U-II. When added previously to the bath, AngII abolished the negative inotropic (Fig. 3) and lusitropic effects of U-II. In the presence of ET-1, U-II promoted a slightly positive inotropic (Fig. 3) and lusitropic effects.

The effects of U-II on myocardial distensibility were significantly attenuated by PD-145065 or PD-145065 plus losartan, leading to a decrease in passive tension of only 11.6±2.7 % and 9.9±3.5 %, respectively (Fig. 2). On the other hand, in the presence of losartan the
effects of U-II on passive muscle length and RT were no more statistically significant (Fig. 2). Finally, this effect was increased in the presence of AngII, when resting tension decreased by 27.5±3.9 %, but was unaffected by the presence of ET-1 (Fig. 3).

Discussion

In the present study we evaluated the myocardial effects of U-II in rabbit papillary muscles. We demonstrated that U-II induced negative inotropic and lusitropic effects, as previously documented (Fontes-Sousa et al. 2007) and a significant concentration-dependent acute increase of myocardial distensibility, or conversely, a decrease in myocardial stiffness. In the presence of a selective AT1 receptor antagonist (losartan), a nonselective antagonist of ET-1 receptors (PD-145065), or both, the negative inotropic effect of U-II (AT, dT/dtmax) was completely abolished. The same occurred in the presence of AngII, while U-II with ET-1 promoted a slightly positive inotropic effect. On the other hand, the effect of U-II on myocardial distensibility was dependent on AT1 receptors, ETα and ETβ receptors. Additionally, the presence of AngII potentiated this effect.

The concentrations of U-II evaluated in the present study (10⁻⁸ M – 10⁻⁶ M) were considerably higher than those observed in plasma of control subjects in vivo (average from 2-20 pmol/l) (Ng et al. 2002, Watanabe et al. 2006). These plasma concentrations are increased in several cardiovascular conditions such as hypertension (Cheung et al. 2004), atherosclerosis (Suguro et al. 2007), coronary artery disease (Heringlake et al. 2004), and congestive heart failure (Richards et al. 2002). However, it is important to refer that reported human plasma U-II levels vary by ~1000- to 10,000-fold between groups/assays, which has been ascribed mainly to the methodology chosen to measure the plasma levels of U-II. Furthermore, as U-II might act predominantly in an autocrine/paracrine way, local concentrations are presumably several times higher than those present in the plasma.

The role of U-II in cardiovascular physiology and pathology remains largely uncertain. Recent experimental and clinical studies have revealed increased expression of U-II and UT receptor in animals with experimentally induced heart failure and myocardial infarction and in patients with heart failure, hypertension, atherosclerosis, and diabetic nephropathy, suggesting a potential role of U-II in both cardiovascular and renal diseases (Zhu et al. 2006). On the other hand, the expression of numerous neurohumoral factors such as AngII (Pfeffer and Braunwald 1990), ET-1 (Best and Lerman 2000), catecholamines (Ueyama et al. 2003), thromboxane A2 (Miyahara et al. 1997), and serotonin (Levy 2006) has been shown to be up-regulated in cardiovascular diseases. These studies give rise to the hypothesis that the interaction between U-II and other vasoactive substances may be crucial in modulating the cardiovascular effects of U-II under a certain disease status. Crosstalk of intracellular signaling pathways is probably the underlying mechanism of the interaction between U-II and other vasoactive substances (Zhu et al. 2006).

Both ET-1 and AngII receptor systems are coupled to phospholipase C/Gαq protein signaling pathways, resulting in the activation of protein kinase C isoforms and inositol phosphates, and both systems induce pathological hypertrophy accompanied by contractile dysfunction and poor clinical outcomes (Braunwald and Bristow 2000). U-II shares similar biological activities and signaling pathways with these hypertrophic Gαq-coupled receptor ligands, since it has also been observed the coupling of its receptor to activated protein kinase C-dependent pathways (Saetrum Opgaard et al. 2000, Russell and Molenaar 2004).

The decrease of passive tension as the one promoted by U-II represents a potentially important adaptation mechanism, since it demonstrates that U-II might allow the ventricle to reach the same diastolic volume with almost 20 % lower filling pressures (Fontes-Sousa et al. 2007). However, we must consider that a sustained increase in myocardial length, as the one induced by U-II, might contribute to ventricular dilatation, which is another important feature of ventricular remodeling. The acute beneficial effects of U-II on diastolic function may be also overcome by its role in the promotion of cardiac fibrosis and hypertrophy (Bousette et al. 2006b).

The present study showed that the increase of myocardial distensibility induced by U-II is dependent on Ang II and ET-1 systems. The results of the present study are in line with those of previous studies: the presence of losartan (a selective AT1 receptor competitive antagonist) or AngII, respectively abolished and potentiated the effects of U-II on myocardial distensibility. In fact, we have recently shown that the decrease of myocardial stiffness induced by AngII requires AT1 receptor activation (Leite-Moreira et al. 2006). On the other hand,
although ET-1 also increases myocardial distensibility (Leite-Moreira et al. 2003), there are important differences between the effects of U-II and AngII from those of ET-1. In fact, increased myocardial distensibility in response to ET-1 was observed only in acutely loaded cardiac muscles, which could justify why the effect of U-II was maintained in the presence of ET-1.

The development of inhibitors of these neurohumoral systems has proven to be favorable in treating many cardiac diseases by inhibiting or reversing cardiovascular remodeling. Drugs like angiotensin converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone antagonists have been demonstrated to reduce mortality and morbidity in patients (Sleight 2002, Dimopoulos et al. 2004). Additionally, recent studies demonstrated, in a rat model of coronary artery ligation, that SB-611812, a specific UT receptor antagonist, significantly improved cardiac dysfunction (Bousette et al. 2006a) and promoted a reduction of cardiac remodeling (Bousette et al. 2006b).

It is therefore reasonable to hypothesize that some cardiovascular effects could result from the interaction between different neurohumoral systems. From a pathophysiological and clinical point of view, these results are potentially relevant, since the inhibition of a given neurohumoral system might also modulate the effects resulting from the activation of other systems. However, from the data presented, we cannot deduce the specific signaling pathways that underlie these results. Further investigations are needed to clarify this issue.

Additionally, other limitations of this study must be pointed out. We cannot exclude the possibility that U-II exerts its effects through activation of AngII or ET-1 receptors, or that both losartan and PD-145065 compound inhibit UT receptor. Therefore, both hypotheses would be a possible explanation for the results. Finally, when we added each or both of the antagonists of AngII or ET-1 systems, there is no direct evidence for the presence of AngII and ET-1 and activation of their respective receptors in the experimental preparation.

In conclusion, the results of the present study suggested that in the rabbit the acute decrease of myocardial stiffness induced by U-II is mediated by AngII and ET-1 systems. These results may contribute to a more complete understanding of the role of U-II in the acute modulation of myocardial function. They also show that neurohumoral systems might have potential points of interaction. Furthermore, this might add to our understanding of the pharmacologic effects of the receptor antagonists of these peptides.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
Supported by the Portuguese Foundation for Science and Technology (grant nr. POCI/SAU-FCT/60803/2004, partially funded by FEDER) through the Cardiovascular R&D Unit (FCT nr. 51/94). Ana Patricia Fontes-Sousa and Ana Luísa Pires were supported by grants from the Portuguese Foundation for Science and Technology (nr. SFRH/BD/22590/2005 and nr. SFRH/BD/19544/2004, respectively). The results will be presented in part at the American Heart Association Scientific Sessions 2008. New Orleans, Louisa: November 8-12, 2008.

References


