Brain-Derived Neurotrophic Factor Treatment Increases the Skeletal Muscle Glucose Transporter 4 Protein Expression in Mice

M. SUWA¹, K.-I. YAMAMOTO², H. NAKANO³, H. SASAKI⁴, Z. RADAK⁵, S. KUMAGAI²⁴

¹Faculty of Life Design, Tohoku Institute of Technology, Taihaku-ku, Sendai, Miyagi, Japan,
²Graduate School of Human-Environment Studies, Kyushu University, Kasuga, Fukuoka, Japan,
³Department of Human Development, Nakamura Gakuen University, Jonan-ku, Fukuoka, Japan,
⁴Institute of Health Science, Kyushu University, Kasuga, Fukuoka, Japan,
⁵Research Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest, Hungary

Received March 4, 2009
Accepted August 17, 2009
On-line November 20, 2009

Summary
The purpose of the present study was to investigate whether peripheral brain-derived neurotrophic factor (BDNF) treatment induced metabolic adaptations in mouse skeletal muscle. BDNF (20 mg/kg/day) was injected subcutaneously for successive 14 days. BDNF treatment significantly reduced the total food intake and inhibited the weight gain in comparison to the control group. The glucose transporter 4 (GLUT4) protein expression in the gastrocnemius muscle was significantly increased by BDNF treatment in comparison to the control and pair-fed groups. Neither the oxidative nor the glycolytic enzyme activities in the gastrocnemius muscle changed after the BDNF treatment. These results suggest that the peripheral BDNF treatment promotes the skeletal muscle GLUT4 protein expression as well as hypophagia.

Key words
BDNF • GLUT4 • Hypophagia • Skeletal muscle

Corresponding author
M. Suwa, Faculty of Life Design, Tohoku Institute of Technology,
6 Futatsusawa, Taihaku-ku, Sendai, Miyagi, 982-8588, Japan.
Fax: +81-22-304-5591. E-mail: suwa-m@tohtech.ac.jp

Brain-derived neurotrophic factor (BDNF) is a part of the neurotrophin family and is produced in the nervous system and periphery. The BDNF controls the food consumption (Xu et al. 2003), lipid and glucose metabolism (Nakagawa et al. 2000, Tsuchida et al. 2002), and insulin resistance (Kuroda et al. 2003). Recent human studies have shown that circulating BDNF is associated with eating disorders (Nakazato et al. 2003, Monteleone et al. 2004), obesity (Monteleone et al. 2004, Suwa et al. 2006), glucose and lipid metabolism (Suwa et al. 2006, Levinger et al. 2008), type II diabetes mellitus (Suwa et al. 2006) and metabolic syndrome (Chaldakov et al. 2003, 2004). Based on these metabolic contributions, BDNF is considered to be a “metabotrophins” (Chaldakov et al. 2007).

Skeletal muscle metabolic characteristics such as glucose transporter 4 (GLUT4) expression and mitochondrial oxidative capacity are associated with skeletal muscle insulin-stimulated glucose uptake, whole body insulin sensitivity and prevalence of type II diabetes mellitus (He et al. 2001, Bruce et al. 2003, Doehner et al. 2010). Chronic BDNF treatment to diabetic mice significantly improves the glucose uptake in skeletal muscle (Yamanaka et al. 2007). Based on these results, the BDNF is hypothesized to regulate the skeletal muscle metabolism. This study examined whether chronic BDNF treatment to mice affects skeletal muscle metabolic characteristics such as GLUT4 protein expression and glycolytic and oxidative enzyme activities.

Sixty-nine- to 72-day old female ICR mice were
used for the current study. All mice were fed a standard rodent chow (CE-2, CLEA Japan, Inc., Tokyo, Japan). All experimental procedures were approved by the Nakamura Gakuen University Animal Experiment Committee.

Because BDNF treatment reduces food intake (Nakagawa et al. 2003), the effects of BDNF treatment was studied in comparison with both ad libitum-fed control and pair-fed mice. The mice were divided into an ad libitum-fed (AL, n=8), a pair-fed (PF, n=8), or a BDNF-treated (BDNF, n=8) group. The mice of the BDNF group were subcutaneously administered daily with 20 mg/kg body mass BDNF (Dainippon Sumitomo Pharma, Osaka, Japan) in saline for 14 successive days. This dose of BDNF has been shown to enhance the skeletal muscle glucose uptake (Yamanaka et al. 2007). In the AL and PF groups, a comparable volume of saline was administered subcutaneously.

About 24 h after the last administration, the mice were fasted for 4 h and anesthetized with pentobarbital sodium (60 mg/kg body weight i.p.). The gastrocnemius muscle was rapidly dissected, frozen in liquid nitrogen and stored at –80 °C until the analyses were performed.

The GLUT4 protein expression was determined by Western blotting and the enzyme activities including citrate synthase (CS), malate dehydrogenase (MDH), β-hydroxyacylCoA dehydrogenase (βHAD), hexokinase (HK), and lactate dehydrogenase (LDH) were measured spectrophotometrically as described previously (Suwa et al. 2008).

To compare the findings among the three groups, a one-way analysis of variance (ANOVA) was used. Fisher's PLSD was conducted if the ANOVA indicated a significant difference. A value of $P<0.05$ was considered to be significant.

The body mass prior to the treatment was similar in all three groups (AL; 27.5±0.5 g, PF; 27.9±0.6 g, BDNF; 27.6±0.2 g). The changes in the body mass in the PF (0.0±0.7 g) and BDNF (-0.3±0.4 g) groups were significantly lower than AL group (1.7±0.4 g) (Fig. 1A, $P<0.05$). Total food intake in the PF (49.7±2.1 g) and BDNF (49.7±2.1 g) groups were significantly lower than in AL group (58.7±1.9 g) (Fig. 1B, $P<0.01$). These results suggest that BDNF treatment inhibits the body mass increase because of reducing food intake.

The GLUT4 protein expression in the BDNF group was significantly higher by +37 % and +35 % than in the AL and PF groups, respectively (Fig. 2, $P<0.05$). Oxidative (CS, MDH and βHAD) and glycolytic (HK and LDH) enzyme activities were measured, and no differences were observed among the groups in any enzymes (data not shown).
The current study demonstrated that the subcutaneous BDNF injection to mice significantly decreased the food intake in agreement with the previous study (Nakagawa et al. 2003). In humans, the serum BDNF level may demonstrate a possible link with such eating disorders as bulimia nervosa and anorexia nervosa (Nakazato et al. 2003, Monteleone et al. 2004). Circulating BDNF may therefore play a role in suppressing food intake. BDNF expressed in ventromedial hypothalamus neurons has been shown to apparently suppress food consumption downstream of the melanocortin-4 receptor (Xu et al. 2003). Because BDNF can cross the blood-brain barrier (Pan et al. 1998), the subcutaneous injection of BDNF reduces the food intake possibly via hypothalamus neurons.

The most important finding in the current study is that the BDNF treatment increases the GLUT4 expression. GLUT4 plays an important role in skeletal muscle glucose uptake (Röckl et al. 2008). GLUT4 protein abundance is strongly associated with capacity of skeletal muscle glucose uptake (Doehner et al. 2010), suggesting that skeletal muscle GLUT4 abundance is a potential limiting factor of whole body and skeletal muscle glucose metabolism. The increasing GLUT4 protein expression in the current study is thus considered to improve the glucose metabolism.

Although it has been generally accepted that the neurotrophins act by either paracrine or autocrine mechanisms (Davies 1996), BDNF also exists in the blood (Radka et al. 1996). More than 90 % of blood BDNF is stored in platelets, and platelets can release the BDNF (Fujimura et al. 2002). Platelets are assumed to release BDNF at nerves or other tissues expressing BDNF receptor tyrosine kinase B (Fujimura et al. 2002). In addition, circulating BDNF level is associated with eating behavior (Monteleone et al. 2004), metabolic disorders (Chaldakov et al. 2003, 2004, Suwa et al. 2006), physical activity (Nofuji et al. 2008), depression (Brunoni et al. 2008), Alzheimer's disease (Laske et al. 2006), and cognitive function (Gunstad et al. 2008). We therefore presume that circulating BDNF might possess several of physiological functions including GLUT4 biogenesis and thereby mimic the endocrine mechanism.

Although this is only a preliminary study, the results presented herein raise the possibility that BDNF treatment may potentially contribute to the therapy of obesity and type II diabetes mellitus, while also helping to treat related cardiometabolic diseases. Further studies are necessary to identify the therapeutic effects of BDNF for such diseases and to clarify the mechanism underlying the effects of BDNF for GLUT4 expression and hypophagia.

Conflict of Interest

There is no conflict of interest.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 20650105) to Shuzo Kumagai.

References

