Animal Models in the Study of Exercise-Induced Cardiac Hypertrophy

Y. WANG1, U. WISLOFF2, O. J. KEMI3

1Department of Human Kinesiology, Capital Institute of Physical Education, Beijing, China, 2Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway, 3Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom

Received November 3, 2009
Accepted January 29, 2010
On-line April 20, 2010

Summary
Exercise training-induced cardiac hypertrophy occurs following a program of aerobic endurance exercise training and it is considered as a physiologically beneficial adaptation. To investigate the underlying biology of physiological hypertrophy, we rely on robust experimental models of exercise training in laboratory animals that mimic the training response in humans. A number of experimental strategies have been established, such as treadmill and voluntary wheel running and swim training models that all associate with cardiac growth. These approaches have been applied to numerous animal models with various backgrounds. However, important differences exist between these experimental approaches, which may affect the interpretation of the results. Here, we review the various approaches that have been used to experimentally study exercise training-induced cardiac hypertrophy; including the advantages and disadvantages of the various models.

Key words
Animal models • Exercise • Heart • Hypertrophy

Introduction
Cardiac hypertrophy is a central feature in several scenarios of pathological and physiological remodeling. In cardiovascular disease, pathological remodeling with hypertrophy and/or adjacent dilatation leads to heart dysfunction and failure, and is at least partly caused by altered cardiac gene expression and molecular phenotype (Beisvag et al. 2009). Although the response compensates for reduced contractility, the long-term effect is progressive dysfunction. In contrast, physiological hypertrophy and remodeling induced by pregnancy or endurance exercise training (athletes’ heart) is considered beneficial, as it supports the increased O2 demand. An increase in left ventricular (LV) mass is commonly observed after endurance exercise training, but examples of athletes showing LV cavity enlargement with end-diastolic dimensions suggesting pathologically dilated cardiomyopathy also occur (Maron and Pelliccia 2006). These observations question the nature of physiologic versus pathologic hypertrophy. For instance, although pressure and volume overloads are linked to pathological hypertrophy, they also occur during exercise training. Our molecular understanding of exercise-induced hypertrophy is much due to experimental studies in laboratory animal models, since this cannot be studied in humans. Here, we review the various models available for studying endurance exercise-induced hypertrophy and their advantages and disadvantages. Small rodents such
as rats and mice are most commonly used for these studies, although other models have also been established (Table 1).

Rat and mice models of exercise training

Rats and mice present with short gestation periods and many offspring, leading to mass production with relative ease. Furthermore, they reach adult age within ~2 months, are inexpensive, and though several contractile aspects of the myocardium are different from humans, structure and growth patterns are well characterized and bear similarities to human hearts (Hasenfuss 1998).

The use of genetic engineering for studying genetic and molecular pathways of cardiac remodeling and hypertrophy has re-emphasized mice in the study of exercise training. Also, artificially selecting mouse and rat strains for a multifactorial phenotype, for instance the metabolic syndrome (Wisloff et al. 2005), has also broadened the applicability of these species.

Table 1. Animal models of exercise training-induced cardiac hypertrophy.

<table>
<thead>
<tr>
<th>Species and exercise training program</th>
<th>Comments</th>
<th>Selected references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat treadmill running</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult female, 10-20 % grade, 5times/week, 60 min/day, 11 weeks, 10-26 m/min</td>
<td>Graded increase velocity and duration: LV/BW↑</td>
<td>Diffée and Nagle (2003)</td>
</tr>
<tr>
<td>Adult female, 10 % grade, 5times/week, 60 min/day, 20-30 weeks, 31 m/min</td>
<td>Constant protocol: LV/BW↑, cardiomyocyte dimensions↑</td>
<td>Moore et al. (1993)</td>
</tr>
<tr>
<td>Adult male, 0 % grade, 5times/week, 30 min/day, 6-12weeks, 0.8 km/h</td>
<td>Constant protocol: LV/BW↑</td>
<td>Fenning et al. (2003)</td>
</tr>
<tr>
<td>Adult male+female, 47 % grade, 5times/week, 60 min/day, 4-13 weeks, intervals 8 min 85-90 % of VO_{2max} and 2 min 50-60 % of VO_{2max}</td>
<td>High-intensity protocol: LV/BW↑, RV/BW↑, HW/BW↑, cardiomyocyte dimensions↑</td>
<td>Wisloff et al. (2001)</td>
</tr>
<tr>
<td>Rat voluntary wheel running</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult female, free access, 6 weeks</td>
<td>Voluntary protocol: HW/BW↑, LV/BW↑, RV/BW↑</td>
<td>Natali et al. (2001)</td>
</tr>
<tr>
<td>Rat swim training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young adult male, water 30-32 ºC, 5times/week, 75 min/day, 8 weeks</td>
<td>Constant protocol: LV/BW↑</td>
<td>Iemitsu et al. (2003)</td>
</tr>
<tr>
<td>Adult male, water 30-32 ºC, 5times/week, 60 min/day, 8 weeks, +5 % BW load attached to tail</td>
<td>Loaded protocol: LV/BW↑, RV/BW↑, HW/BW↑</td>
<td>Medeiros et al. (2004)</td>
</tr>
<tr>
<td>Mouse treadmill running</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult male+female, 47 % grade, 5times/week, 120 min/day, 8 weeks, intervals 8 min 85-90 % of VO_{2max} and 2 min 50 %-60 %</td>
<td>High-intensity protocol: LV/BW↑, RV/BW↑, HW/BW↑, cardiomyocyte dimensions↑</td>
<td>Kemi et al. (2001)</td>
</tr>
<tr>
<td>Mouse voluntary wheel running</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult mice various strains, free access, 2 weeks</td>
<td>Voluntary protocol: strain-specific responses HW/BW C3H/HeJ J least response, DBA/2J greatest response</td>
<td>Lerman et al. (2002)</td>
</tr>
<tr>
<td>Adult male, free access, 2-4 weeks</td>
<td>Voluntary protocol, exercise and running durations recorded: average 4.3 h/day, 6.8km/day at week 4; HW/BW↑</td>
<td>Allen et al. (2001)</td>
</tr>
</tbody>
</table>
Mouse swim training
Adult male, water 30-32 °C, 1 vs 2 times/day,
5 days/week, 60 vs 90 min/time,
4 vs 6 weeks, +2 vs 4 % BW load attached to tail
Effect of different durations, frequencies and loads: LV/BW↑, HW/BW↑ dependent on protocol
Evangelista et al. (2003)

Swine treadmill running
Adult Hampshire farm + Yucatan miniature,
5 times/week, 30-60 min/day, 10 weeks, continuous or interval running 70-85 % or 100 % of HRmax
Adolescent female Yucatan miniature, 5 times/week,
75 min/day, 22 weeks, sprint 15 min
5-8 mph + 60 min endurance 4-5 mph
Intensity-dependent effects: LV/BW↑
White et al. (1997)

Dog sled pulling
Adult Alaskan sled (mongrel), team pull sled exercise 20 km/day, 5 months, 30-40 % of VO2max
Constant loaded protocol: LV mass index↑, LV diameter↑
Stepien et al. (1998)

Rabbit treadmill
Adult New Zealand white, 5 times/week,
40-60 min/day, 12 weeks, 18-20 m/min
Indices of cardiac hypertrophy↑
Carroll and Kyser (2002)

Genetically manipulated animals
Transgenic mice S6K1(-/-), S6K2(-/-), S6K1(-/-) S6K2(-/-), Swim training 90 min/day, 2 times/day,
5-7 days/week, 8-12 weeks
Constant protocol: HW/BW↑, cardiomyocyte dimensions↑, involvement of Akt-pathway
McMullen et al. (2004)

Artificial selection for metabolic syndrome rats,
47 % grade, 5 times/week, 60 min/day, 8 weeks,
intervals 8 min 85-90 % of VO2max and 2 min
50-60% of VO2max
High-intensity protocol: HW/BW↑, cardiomyocyte dimensions↑, greater response in normal than metabolic syndrome
Wisloff et al. (2005)

Treadmill running

Different treadmill running protocols have been developed, lasting from weeks to months, with individual running session durations ranging from minutes to hours and running speeds ranging 10-97 m/min, and with the treadmill inclinations ranging 0-25° (0-47 %) (Fenning et al. 2003, Kemi et al. 2002, Wisloff et al. 2001, Zhang et al. 2002).

Most studies in rats and mice have applied continuous treadmill running, characterized by fixed or progressively increasing speed, inclination, and duration during the session. In rats, these protocols increase heart:body weight ratios up to 30 % (Diffee and Nagle 2003, Fenning et al. 2003, Moore et al. 1993), but have also failed to induce cardiac hypertrophy, despite long exercise periods (Moran et al. 2003). In mice, continuous running protocols have induced only a limited degree of cardiac hypertrophy, either observed as modest increases in ventricular mass or cardiomyocyte dimensions (Bellaio et al. 2007, Rosa et al. 2005), or no hypertrophy at all (Fewell et al. 1997). The reason for the varied results is unknown. However, the relative exercise load during an exercise training period decreases if the absolute load is kept constant as the exercise capacity (maximal oxygen uptake; VO2max) increases. This may potentially obscure the response to exercise training. Therefore, the exercise training intensity should be set relative to the individual fitness level.

Interval training models have been used progressively more for studying exercise-induced cardiac hypertrophy and adaptation. This mode of exercise allows for high-intensity running bouts, in which exercise time in the high intensity zone is accumulated over time; the argument being that high aerobic intensity appears more

| HW – heart weight, BW – body weight, LV – left ventricle, RV – right ventricle, TL – tibial length, VO2max – maximal oxygen uptake, HRmax – maximal heart rate, arrow indicates increase. |
effective than lower intensities for inducing structural and functional adaptations to the heart (Haram et al. 2009, Kemi et al. 2005). Interval training by successive 4- to 8-min high-intensity treadmill running bouts at 90 % of VO2max, achieved by running speeds of >30 m/min on a 25° inclined treadmill, interspersed by 2-min low-intensity intervals (~50 % of VO2max), induced observable hypertrophy within 4 weeks, and resulted in 25-35 % increased LV and right ventricular (RV) weights, and ~15 % increased cardiomyocyte dimensions after 7-13 weeks of exercise training (Kemi et al. 2002, 2005, 2008, Wisloff et al. 2001, 2002). This is superior to continuous (Iemitsu et al. 2006, Moore et al. 1993) and intensity-controlled moderate intensity treadmill running programs at 65-70 % of VO2max (Haram et al. 2009, Kemi et al. 2005). The exercise intensity in these studies was controlled by weekly measures of VO2max, whereby the running speed was adjusted to maintain constant relative exercise intensity. Only guidance by VO2max can achieve this (Hoydal et al. 2007).

A different approach to interval running, by reducing the duration and increasing the speed of each running bout well into anaerobic intensities (97 m/min at 15°), showed only a modest degree of hypertrophy (Zhang et al. 2002). Thus, it is conceivable that the accumulated time at a high aerobic intensity accentuates cardiac hypertrophy and/or that anaerobic intensities may also cause counterproductive responses.

Although most of the studies suggest that the growth response of the LV is greater or equal to the RV, it has also been reported that RV hypertrophy may be greater (Anversa et al. 1983). This may be explained by the RV performing greater relative work during exercise because of smaller mass, thinner wall, and fewer cardiomyocytes, compared to the LV.

Voluntary wheel running

Voluntary running programs carried out on running wheels with either no or various degrees of resistance offer less control of the exercise, since running periods and effort levels are determined by the animal itself, and may only be recorded and limited, but not reliably instigated, by the researchers. Nonetheless, voluntary wheel running has been reported to induce robust physiological hypertrophy (Allen et al. 2001, Konhilas et al. 2004, Moraska et al. 2000, Natali et al. 2001), demonstrating sufficient inherent motivation to induce adaptation. However, voluntary daily running distance peaks after ~2-4 weeks at ~10-15 km/day, and thereafter declines to <4 km/day. Accordingly, complete hypertrophy has been observed after only 3-4 weeks of voluntary wheel running, whereas longer exercise training programs have not produced further hypertrophy (Natali et al. 2001, Yancey and Overton 1993).

Swim training

Swim training is initiated by placing animals in water tanks for a given period of time. The exercise load may be regulated by attaching weights or floating devices to the animals. Although the duration of the swim exercise has varied considerably; 1-6 hours/day and 1-24 months, it generally induces cardiac hypertrophy by as much as 15 % (Kaplan et al. 1994, Medeiros et al. 2004), observable already after 1 hour/day of 1 week swim training (Edwards 2002). It has also been demonstrated that duration (60 vs. 90 minutes) per session or of the program (4 vs. 6 weeks) or frequency (1 vs. 2/week) may not affect the magnitude of the response, whereas external weights (+2 vs. +4 % of body weight) in contrast may affect the response, with the heavier load being more effective due to greater cell hypertrophy (Evangelista et al. 2003). Hence, swim training appears equally effective as treadmill or voluntary wheel running programs for inducing physiological hypertrophy.

Water temperature, by regulating core temperature, has been observed to affect the physiological hypertrophy non-linearly. Swim training at 25 °C induced greater cardiac hypertrophy than at 35 °C in young rats, but the opposite was true in old rats (Pratham and Devi 1999). However, varying the water temperature 30-36 °C yielded similar hypertrophy responses, whereas swim training at 38 °C failed to induce hypertrophy (Harri and Kuusela 1986). Water tank depth, density of animals, and water movement may also affect the outcome (Abel 1994, Iemitsu et al. 2003).

Larger animal models of exercise training

Larger mammalian models are frequently used to study cardiac structure and function. In general, these models resemble the human heart more accurately than rodents, in terms of oxygen uptake (VO2) kinetics, cardiac mechanics, excitation-contraction coupling, force production, collateral coronary circulation, and subcellular architecture (Hasenfuss 1998, Hamilton and Ianuzzo 1991, White et al. 1987). Larger animals are also easier to instrument, but are costly, require substantial maintenance resources, have longer gestation periods,
and do not currently allow for much genetic manipulation.

Swine models of exercise training

Treadmill running has been the preferred exercise mode in swine. Twelve weeks of various exercise training protocols, characterized by progressively increasing treadmill speeds and running durations, induced moderately increased heart and LV masses in Yucatan miniature and regular farm swine in an exercise intensity-dependent manner (Hinken et al. 2006, Laughlin et al. 1991). Longitudinal LV and cardiomyocyte cross-sectional areas and the LV cavity dimensions increased with exercise training, while the mitochondria and cell membranes adapted accordingly to maintain the cellular architecture. In another study, exercise training-induced increases in end-diastolic dimensions and stroke volumes were accounted for by reduced peripheral resistance and increased cardiac dimensions, and not by contractile performance (White et al. 1997). Intensity-controlled exercise has not been conducted in swine, but protocols for measuring VO2max have been published (Jorgensen et al. 2009).

Dog models of exercise training

Although exercise training reduces resting heart rates and heart rate responses to exercise (Carew and Covell 1978, Stepien et al. 1998), the reported morphological changes include increased (Wyatt and Mitchell 1974) or unchanged (Ritzer et al. 1980) LV wall dimensions after exercise training in non-greyhound breeds of dogs. This lack of consistency is likely due to the fact that many of the dog exercise training results are stemming from uncontrolled studies. Few of them are experimentally controlled, and rather compare race- or work-dogs to sedentary counterparts. Species differences and environmental factors may also have confounded the results. Nevertheless, LV mass and dimensions, and cardiomyocyte diameter were up to 50 % greater in race-trained greyhounds than in normal size-matched dogs (Carew and Covell 1978). Similarly, 5 months of ~20 km/day loaded sled pulling in Alaskan sled dogs increased LV diameters and mass and reduced resting heart rates, although no changes in echocardiography-derived measures of LV function were found (Stepien et al. 1998). However, disproportionate LV wall thickening and dilatation suggested the changes were due to volume and pressure overloading; as expected from combined isometric and isotonic exercise training.

Rabbit models of exercise training

Rabbit models are commonly used for myocardial studies in both health and disease. They are less expensive than other large animals, have important similarities to the human heart, and show pathologic cardiac remodeling that closely resembles that of humans (Hasenfuss 1998). Several studies have reported exercise in New Zealand white rabbits, by using the low-speed flat treadmill (18-20 m/min) for 40-60 min/day as the exercise stimulus (Carroll and Kyser 2002, Gao et al. 2007). Physiological hypertrophy has not been firmly established in rabbits, but indices of myocardial hypertrophy have been reported, by measuring end-systolic pressure-length relationships after catheter-occluding aortic blood. After exercise training, the slopes for the longitudinal segments of the LV were less steep than in sedentary control rabbits, although shortening of the segments were similar. This suggests that the myocardium may have structurally remodeled (Hexeberg et al. 1995).

Advantages and disadvantages of different modes of exercise training

The precise control of exercise intensity and volume that allows for uniform and well-controlled exercise workloads (duration, inclination, speed, distance) can only be achieved by the use of treadmills (Hoydal et al. 2007). Moreover, only treadmills offer a reliable mode by which exercise and cardiovascular parameters can be measured under controlled conditions. This also leads to a low variation within the experimental groups and thus enables us to detect small changes (Kemi et al. 2004). Hence, treadmill running has become a preferred option for controlled studies of the effects of exercise training, despite it being labor-intensive and requiring of technical skills and specialized equipment. However, treadmill running may present difficulty for motivating animals for prolonged exercise, and animals may experience physical and psychological stress from forced running. The stress responses have included reduced peripheral thyroid hormone levels and induction of adrenal hypertrophy, thymic involution, reduced serum corticosteroid binding globulin levels, and total adrenal medullary epinephrine contents (Helmreich et al. 2005, Moraska et al. 2000). On the other hand, treadmill running programs also induce numerous functional and structural beneficial adaptive responses in multiple organ systems (Haram et al. 2009, Kemi et al. 2007, 2008).
It is unclear to what degree the stress reactions are attributed to forced or voluntary exercise training, since also voluntary exercise training programs activate the stress response (Droste et al. 2007). In this study, voluntary wheel trained mice also showed lower early-morning plasma adrenocorticotropic hormone levels and substantially higher plasma corticosterone levels compared to controls. Heavier adrenal glands due to an enlarged adrenal cortex were also reported, whereas the adrenal medulla expressed higher levels of tyrosine hydroxylase mRNA, indicating higher sympathoadrenomedullary activity. Thus, it indicates that both hypothalamic-pituitary-adrenal and the sympathoadrenomedullary systems may be regulated by voluntary wheel running. Therefore, the possibility arises that stress reactions are normal or unavoidable in response to exercise training, and that this does not prevent physiological hypertrophy. For instance, no signs of perturbation to regular exercise and cardiovascular parameters after forced exercise training have been detected, and no pathological signaling events have been observed after forced swim or treadmill exercise training programs (McMullen et al. 2004). In fact, hypothalamic-pituitary-adrenal and sympathoadrenomedullary activation may also contribute to physiological cardiac hypertrophy (Kurowski et al. 1984).

A potential benefit of voluntary wheel running is that it allows for activity in a non-stressful environment on the animal’s own premises with only minimal technical requirements. However, since the average spontaneous running distance and pattern may vary extensively between animals (Lambert et al. 1996), it consequently leads to heterogeneous effect magnitudes. Moreover, voluntary wheel running provides fewer details of activity levels and may only indirectly measure exercise performance.

A main advantage of swim training is that a relatively large number of animals can be exercised readily and simultaneously, and yet without depending on animal self-motivation, although efficient swimmers may lower their activity levels unless the exercise load is increased. However, the aqueous environment may add additional stress to the animal, such as diving-related hypoxia, Valsalva maneuvers, feeling of discomfort, and fear of drowning, and low water temperatures may lead to changes in the neuroendocrine system as well as hemodynamic changes due to increased blood pressure (Kioukia-Fougia et al. 2002). Furthermore, swim training is associated with the difficulty of quantifying exercise intensity because of the lack of graded workload protocols and water interfering with the recording equipment. Nonetheless, swim training induces chronic cardiac hypertrophy with a molecular signature indicating physiological activation of growth signaling (Kemi et al. 2008, McMullen et al. 2004).

Finally, it should be noted that the control for exercise training effects in animals is accomplished by studying similar animals that are forced to remain sedentary over the course of the study. However, this deviates from the human situation where most individuals engage in at least some form of physical exercise, although it may be at a very low level. Currently, it is impossible to quantify how this affects the outcome of research studies, but it seems likely that both exercise trained and sedentary animals constitute the two extreme ends of physical activity; close-to-complete sedentary or highly active lifestyles, whereas most humans that are not physically constrained from physical exercise find themselves somewhere between those endpoints.

Advantages and disadvantages of different species

Important differences and therefore similarities and dissimilarities to human hearts have been referred to above; factors that effectively constitute important advantages and disadvantages associated with the choice of animal model. In short, the hearts of larger animals display more similarities to human hearts than small rodents, but require more resources and larger facilities in terms of purchase, breeding, maintenance, exercise training protocols, and final experiments, whether the latter is of whole-body function or through instrumentation or isolation of tissues or cells. Moreover, larger animals are more difficult to manipulate than small rodents, and at this stage, less is known about the exercise patterns or willingness to exercise in larger animals compared to rodents. For instance, the different mode of locomotion in rabbits, especially during stress, needs to be accommodated for when designing exercise training protocols. Nonetheless, the possibility remains that growth patterns are well conserved between species. However, substantial evidence suggests that differences in exercise patterns may not only occur between species, but also between different strains within the same species; see below for more details.
Factors influencing exercise training-induced cardiac hypertrophy

Age

Aging is associated with a diminished capacity for myocardial hypertrophy, as exemplified by smaller magnitudes of change in old compared to young rats (Anitha and Devi 1996). This may partly be due to a greater cardiomyocyte proliferation in early life (Bergmann et al. 2009), which has not been shown in aged hearts. Exercise training also protects against the aging-induced decrease in arterial elasticity, and thereby reduces the development of cardiac pathology (Rosa et al. 2005).

Sex

Sex is a dominant factor for cardiac adaptation. For instance, female mice of both C57BL/6J and FVB/NJ strains exhibit a greater relative gain in cardiac mass than male mice after voluntary wheel running (Konhilas et al. 2004). When the gain in cardiac mass was normalized for cage wheel activity, C57BL/6J females had an augmented hypertrophic response for the given physiologic stimulus, compared to males. This is also true for treadmill running programs in both mice and rats, albeit not at the cell level (Kemi et al. 2002, Wisloff et al. 2001). The sex-dependence of adaptation was larger than the strain-dependence, indicating sexually dimorphic hypertrophy mechanisms. Running distances peaking every 4 days, regardless of the weekly average, suggests that the estrous cycle may affect either running performance or hypertrophy response in female animals (Natali et al. 2001).

Strain

Rats of similar genetic stock, even littermates, may have as much as a 50-fold difference in daily running distances (Lambert et al. 1996). A lack of correlation between treadmill running and voluntary wheel running performances (Lerman et al. 2002) indicates that exercise performance is a complex, multifactorial trait. Cardiac differences between both rat and mouse strains may contribute to the differences in aerobic capacity (Allen et al. 2001, Barbato et al. 1998, Koch et al. 1999, Lerman et al. 2002). For instance, Dark Agouti rats have both greater treadmill running capacity and heart-body weight ratios than Copenhagen rats, and similar strain differences exist in mice. Hence, within both mice and rats, some strains have inherently different exercise capacities, which may also contribute to distinct cardiac adaptations to exercise training.

Exercise intensity

The importance of exercise intensity is evidenced by studies showing that high aerobic intensity of the exercise training yields a larger magnitude of effects than low-to-moderate exercise intensity, including the cardiac hypertrophy (Haram et al. 2009, Kemi et al. 2002). No threshold intensity of exercise for inducing observable cardiac hypertrophy has yet been identified, but cardiac hypertrophy is only sustained if exercise is sustained, and lost within weeks if exercise training is not continued (Kemi et al. 2004).

The gold standard for monitoring exercise intensity is by live recording of \(V_O^2 \) and \(V_O^2_{\text{max}} \). Albeit laborious, appropriate protocols have been established in several species (Jorgensen et al. 2009, Kemi et al. 2002, Wisloff et al. 2001). Other measures of aerobic fitness, such as heart rate, blood pressure, lactate concentration and running speed do not offer the same validity, and often require immobilization and surgical procedures that may confound the measurements.

Cell signaling of cardiac hypertrophy

Although this review does not focus on the signaling pathways that associate with exercise-induced cardiac hypertrophy, it should be noted that several exercise modes have strongly indicated that the insulin-like growth factor-1 (IGF-1)-induced Akt-mammalian target of rapamycin (mTOR) pathway at least partly controls physiological hypertrophy, and in fact, activation or deactivation of this pathway may differentiate physiological from pathological hypertrophy (Kemi et al. 2008, McMullen et al. 2004). However, it is clear that genome-wide genetic regulation (Beisvag et al. 2009) as well as activation levels of specific pathways controlled by for instance calcineurin, endothelin, and fetal genes also contribute toward such differentiation (Hunter and Chien 1999, Wilkins et al. 2004). Thus, various animal models and modes of exercise training have been used to consistently identify molecular pathways that control cardiac hypertrophy and that contrast physiological from pathological hypertrophies. Exactly why physiological hypertrophy is molecularly distinct from pathological hypertrophy is unknown, but the different nature of the stress to the heart imposed by exercise...
compared to for instance that imposed by acute injury, chronic hypertension, or chronic dilatation presumably controls this.

Measurement of cardiac hypertrophy

Cardiac weights

The most common index of cardiac hypertrophy is the measure of heart or ventricular weights related to body weight. However, relating heart to body weights is based upon several assumptions. If several groups are compared, it is only valid if the groups exhibit similar body growth patterns. For instance, body weight and composition may also change with exercise training and may vary between sexes, as male rats reduced body mass more than females after exercise training, due to a greater loss of body fat, regardless of the mode or duration of exercise (Pitts 1984). Thus, increased heart:body weight ratio may also reflect a conserved heart weight if fat mass is reduced or body growth is suppressed during exercise training. Therefore, heart and ventricular weights should be related to lean body mass or to an allometrically scaled body mass (Batterham et al. 1997, Whalley et al. 1999).

Because of fluctuating body weights, cardiac hypertrophy has also been normalized to tibial length; considered a static parameter in mature animals. Histology in maturing rats agreed more with heart weight:tibia length than the heart:body weight ratio, indicating that body weight may be inaccurate for quantifying cardiac hypertrophy unless it is properly scaled (Yin et al. 1982).

Ultrasound echocardiography

Although non-invasive ultrasound echocardiography has enabled characterization of pathological hearts (Wisloff et al. 2002), it has only been of limited value with exercise training. Echocardiography assessments of exercise-induced cardiac hypertrophy have been less sensitive than post-mortem measurements. In both mice and rats, scanning with a 10 MHz probe only partially detected cardiac hypertrophy after a treadmill running program that increased heart:body weight ratios and cardiomyocyte dimensions by 15-35% (Kemi et al. 2002, 2005). One of the limitations associated with echocardiography has been poor axial resolution, which in practice has been ~2.2 mm. This is close to what one may expect from a difference between exercise trained and sedentary LV end-diastolic diameter and LV posterior wall thickness in rodents; main parameters for evaluating cardiac hypertrophy by echocardiography. However, this may change with the new generation of high-resolution echocardiography.

Single isolated cardiomyocytes

Exercise training-induced cardiac hypertrophy is mainly brought about by increased cardiomyocyte dimensions. Accordingly, cardiomyocyte hypertrophy has been reported after voluntary wheel running, swim training, and treadmill running programs in both rats and mice (Kemi et al. 2002, McMullen et al. 2004, Moran et al. 2003, Wisloff et al. 2002). Some reports suggest that the changes in the cardiomyocyte dimensions are specific to the region from which they are isolated (Natali et al. 2001), but cardiomyocytes isolated from non-specific LV areas have nonetheless provided enough sensitivity to establish differences in cellular morphology between various exercise training protocols (Kemi et al. 2005).

The experimental conditions under which cardiomyocytes are dissociated and measured, especially ionic concentrations, should be accurately controlled, since diastolic contraction, and hence read-out resting cell dimensions or volume-dependent capacitance, would depend on this.

Conclusions

Several modes of exercise training have been introduced to a number of animal models of various genetic backgrounds, such as treadmill running, voluntary wheel running, and swim training. These models lead to physiological hypertrophy, measured both at the whole heart and ventricle and individual cardiomyocyte level. Observable and significant hypertrophy can be detected already after ~1 month of exercise training, and reaches a plateau after a few months if the exercise training is sustained. It has not yet been established whether further hypertrophy can be induced after the plateau, by increasing the amount of exercise training by either intensity or volume. However, each of these models is associated with both advantages and disadvantages that should be considered when interpreting the research results and when choosing model systems for future studies. Although the use of rodents in exercise studies by far outnumbers the use of larger animals, specific research questions may necessitate experiments in larger animals, especially if similarity to human biology is important. Nonetheless, in our experience, exercise training in rodents also mimics the responses to exercise
training observed in humans, as far as different species may be compared.

Conflict of Interest
There is no conflict of interest.

References

