Effect of Captopril on Serum Lipid Levels and Cardiac Mitochondrial Oxygen Consumption in Experimentally-Induced Hypercholesterolemia in Rabbits

Z. KOJIC¹, K. GOPCEVIC², D. MARINKOVIC³, G. TASIC¹

¹Institute of Physiology, School of Medicine, University of Belgrade, ²Institute of Biochemistry, School of Medicine, University of Belgrade, ³Institute of Pathology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia

Received January 18, 2011
Accepted March 30, 2011
On-line July 19, 2011

Summary
Angiotensin converting enzyme inhibitors are widely used in therapy of cardiovascular diseases. However, the consensus on effects of these inhibitors in control of myocardial oxygen consumption during the process of experimental hypercholesterolemia and under the condition of endothelial dysfunction has not been reached. Here we examined effects of captopril, an angiotensin converting enzyme inhibitor, on serum lipid levels and oxygen consumption rate in mitochondria isolated from heart of rabbits treated by hypercholesterolemic diet. During the twelve-week period, the Chinchilla male rabbits were daily treated by saline (controls); 1 % cholesterol diet; 5 mg/kg/day captopril or 1 % cholesterol + 5 mg/kg/day captopril. Total- and high-density lipoprotein cholesterol and triglyceride in serum were measured spectrophotometrically. The left ventricle mitochondrial fraction was isolated and myocardial oxygen consumption was measured by Biological Oxygen Monitor. Mitochondria isolated from hearts of rabbits exposed to hypercholesterolemic diet showed significantly reduced respiration rates (state 3 and state 4) with altering adenosine diphosphate/oxygen ratio, whereas the respiratory control ratio was not affected when compared to controls. Mitochondria from cholesterol/captopril–treated animals showed significantly reduced respiration rates without altering adenosine diphosphate/oxygen ratio index or respiratory control ratio. Although captopril did not exert the favorable effect on serum lipid levels in cholesterol-treated animals, it restored the mitochondrial oxygen consumption. Further studies should be performed to define the underlying physiological and/or pathophysiological mechanisms and clinical implications.

Key words
ACE inhibitors • Mitochondria, Heart • Oxygen consumption • Hypercholesterolemia • Rabbits

Corresponding author
Z. Kojic, Institute of Physiology, School of Medicine, University of Belgrade, Visegradska 26, 11000 Belgrade, Serbia. Fax: +381 11 3611 262. E-mail: zvezdanak@med.bg.ac.rs

Introduction
The importance of plasma lipoprotein and lipid metabolism abnormalities characterized by hyperlipidemia and/or hypercholesterolemia as the cause of coronary heart diseases and potential atherosclerosis is supported by a number of epidemiological and population-based studies (Alves et al. 2010, Zeng et al. 2010). Rabbits under hypercholesterolemia-inducing diets have been largely used as an experimental model to study the development of human atherosclerosis (Dornas et al. 2010). In general, development of atherosclerosis is regulated by multiple complex mechanisms, including endothelial dysfunction with impaired nitric oxide (NO) bioavailability, oxidative stress, inflammation, hemostasis, and insulin resistance (Montecucco et al. 2009). Reciprocal relationships between endothelial dysfunction and insulin resistance as well as cross-talk between hyperlipidemia and the rennin-angiotensin-aldosterone system may contribute to development of atherosclerosis (Koh et al. 2010).
The renin-angiotensin-aldosterone system is a major endocrine/paracrine system involved in the regulation of a myriad of cardiovascular processes (Schmieder et al. 2007). Its role in the pathogenesis of hypertension, cardiac hypertrophy, and atherosclerosis is well established. Because angiotensin converting enzyme inhibitors (ACE-I) exhibit cardioprotective, vasculo-protective, antiatherogenic effects and contribute to tissue protection, they are widely used in therapy of cardiovascular disease (Shi et al. 2010, Sharpe 1993). Antihypertensive and cardioprotective effects of ACE-I have usually been attributed to the inhibition of angiotensin II (Ang II)-mediated effects at vascular or ventricular angiotensin type 1 (AT1) receptors. Another important mechanism involves Ang II-induced interactions with the bradykinin – kallikrein system, which might include alterations of cardiac oxygen consumption during ACE inhibition due to a modulation of NO synthase activity (Morais et al. 2010, Manolis et al. 2010).

In addition to inhibiting Ang II production (Shi et al. 2010), ACE-I also reduce kinins breakdown, resulting in local accumulation of kinins on the endothelial cell surface (Manolis et al. 2010). Response of endothelial cells to kinins stimulation is complex and one of the responses is kinins-induced NO synthesis (Vanhoutte 2010). The importance of endothelial NO in control of oxygen consumption (QO2) was suggested in 1994, when it was shown that inhibition of NO synthesis resulted in 40 % QO2 increase in the posterior dog legs (King et al. 1994) and 25 % increase in the whole body, accompanied with 1.1 °C increase in body temperature (Shen et al. 1994, 1995). Therefore, it has been postulated that endothelial NO permanently inhibits tissue respiration in a tonic manner, and that constitutive NO endothelial production regulates the mitochondrial function in parenchimal cells of the peripheral tissues.

However, the consensus on the effect of ACE inhibitors in control of tissue cellular respiration under the condition of endothelial dysfunction during the process of atherosclerosis and hypercholesterolemia has not been reached. Mitochondria play a central role in the energy metabolism of all tissues by controlling the production of ATP, and experimentally isolated mitochondria are commonly used to evaluate the metabolic activities of brain, heart, and muscle tissues in both normal and diseased states (Johannsen and Ravussin 2009). The aim of this study was to determine the influence of captopril, an ACE inhibitor, in the animals treated by hypercholesterolemic diet on serum lipid levels and oxygen consumption rate in isolated mitochondria from heart cells.

Material and Methods

Chemicals

All chemicals were obtained from Sigma (St. Louis, MO).

Animal and diets

Male Chinchilla rabbits (n=40) 9 week old and weighing 2.0±0.27 kg (mean ± SD) were bred in the Animal Center of the Institute of Physiology, School of Medicine, Belgrade. Rabbits were housed individually in standard stainless steel cages at 24 °C with a 12-h light:dark cycle (lights on, 06.30-18.30 h). All experiments were performed in accordance with a protocol approved by the local Ethics Committee and in accordance with the European Guidelines on Laboratory Animal Care. During 12 weeks of treatment, rabbits were fed the commercial rabbit chow diet (Zemun, Serbia) and orally received once a day a single dose of the following supplementation: physiologic saline (control, group A, n=10); high cholesterol diet (1 %), (group B, n=10), high cholesterol diet (1 %) plus captopril 2 hours later (group C, n=10) or captopril only (group D, n=10). Captopril was given in a dose 5 mg/kg body weight in 0.5 ml saline per day.

Blood samples

At the end of the 12 week treatment protocol, the rabbits were anesthetized with katanime-HCl. Blood samples were drawn and serum was obtained by centrifuging the blood at 3,000 rpm for 20 min at 4 °C. The serum samples were stored at –70 °C until analyzed.

Serum lipid profile

Serum total cholesterol (TC), triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) were measured by an enzymatic “end point” kinetic spectrophotometric method using Rx Monza Clinical Chemistry Analyser (Randox Laboratories Ltd, UK) and the commercial kit provided by the Randox, UK. Serum LDL concentrations were calculated according to Friedewald et al. (1972). Results are reported as means of duplicate samples for each animal.

Tissue samples and mitochondrial isolation

At the conclusion of the 12 week treatment protocol, the heart was rapidly removed. The left ventricle...
was dissected from the rest of the heart and used for the mitochondrial isolation by differential centrifugation as described by Kowaltowski et al. (2001). Briefly, the tissue was minced with scissors and washed twice with ice-cold Krebs-Ringer solution, then placed in ice-cold buffer containing 300 mM sucrose, 10 mM K+-HEPES buffer, pH 7.2, and 1 mM K+-EGTA, pH 8.0. The minced tissue was homogenized by using a blender-type homogenizer (QUIAGEN GmbH) for 10-15 s and in a glass-grinding vessel with a motor-driven pestle for 5-10 s at 4 °C. Nagarse (4 mg/20 ml homogenate) was added to the homogenate, which was then incubated on ice for 10 min. The homogenate was then centrifuged (Heraeus Laboratory Centrifuge, UK) for 4 min at 750 g (1,500 rpm). The supernatant was saved, and 1 mg/ml BSA was added. The supernatant was then centrifuged for 4 min at 750 g, and the pellet was discarded. The resulting supernatant was then centrifuged at 9,000 g (9,500 rpm) for 10 min at 4 °C. The mitochondrial pellet was then resuspended in ice-cold buffer A containing 1 mg/ml BSA and recentrifuged at 9,000 g at 4 °C two times. The final pellet was suspended in 3 ml of respiration medium containing (in mM) 250 sucrose, 2 KH2PO4, 10 MgCl2, 20 K+-HEPES buffer, pH 7.2, 0.5 K+-EGTA, pH 8.0, at 4 °C. Protein was determined by the Lowry Folin phenol reagent method using BSA as a standard (Lowry et al. 1951).

Measurement of mitochondrial respiration

Mitochondrial oxygen consumption was measured using Biological Oxygen Monitor System (Model 5300: YSI Inc, Ohio, USA). In order to measure oxygen consumption mediated by complex I of the mitochondrial electron transport chain, glutamate and malate (5 mM) were added to the respiration media before the mitochondria. Isolated rabbit heart mitochondria were suspended at 1 mg/ml in a potassium chloride buffer (30 °C) containing (in mM) 125 KCl, 20 Hepes, 2 K2HPO4, 0.01 EGTA, and 1 MgCl2 (pH 7.2) and mitochondrial state 4 rates of O2 uptake (resting or controlled respiration) were determined. Subsequently, 1 mM ADP was added for the determination of state 3 rates of O2 uptake (active respiration). After measuring states 3 and state 4, the respiration activity of heart mitochondria was assessed by measuring respiratory control ratio (RCR): the respiratory rate (State 3) in the presence of ADP compared to the rate (State 4) following the expenditure of ADP and the adenosine diphosphate/oxygen (ADP/O) ratio: the ratio of ADP removed from the media to the amount of oxygen consumed, according to the Estabrook method. Software Digiscope for Windows (version 2.0.6) was used for dynamic measurement (real-time measurement), for calculation of oxygen uptake and for presentation of oxygraphic curves. The results of oxygen consumption were expressed in ng atoms of consumed oxygen per minute per milligram of protein of thick mitochondrial suspension.

Statistical analysis

Statistical analysis was performed by using the SPSS (version 17.0.1) software package (IBM, NY). The means ± SEM for all data were calculated for all variables. Statistical significance was assessed by using repeated-measures ANOVA with P<0.05.

Results

Serum lipids

Table 1 shows lipid levels in the four study groups. The cholesterol feeding (group B) increased the values of TC and LDL-C by roughly 10- and 7-fold,
respectively. It also altered the HDL-C and LDL/HDL index by 2.2- and 3.2-fold, respectively. The serum triglyceride values increased 2-fold. The circulating TC, LDL, HDL-C and triglyceride concentrations in rabbits fed hypercholesterolemic diet were significantly higher than those in control rabbits (group A) ($P<0.05$). There were no significant differences in serum TC, LDL-C, HDL-C and TG concentrations or LDL/HDL ratio among the groups B and C ($P>0.05$). Treatment with captopril only did not significantly affect the lipid profile compared with control rabbits ($P>0.05$).

Mitochondrial oxygen consumption

State 4 (basal) mitochondrial oxygen consumption significantly decreased in group B ($P<0.01$) when compared with group A (15.45±2.03 vs. 20.33±2.15). The captopril treatment protocol (group D) decreased state 4 mitochondrial oxygen consumption to less extent compared with controls ($P<0.05$). However, no significant difference in the state 4 mitochondrial oxygen consumption was observed between group C and A ($P=0.05$) (Fig. 1A). State 3 (ADP stimulated) mitochondrial oxygen consumption significantly decreased in group B ($P<0.01$ vs. control) (Fig. 1B). Captopril treatment protocol to the less extend decreased the state 3 (ADP stimulated) mitochondrial oxygen consumption ($P<0.05$ vs. control). However, no significant difference in mitochondrial oxygen consumption between groups C and A was observed ($P>0.05$) (Fig. 1B). No significant difference in RCR was found within or among four groups after 12 week treatment (Fig. 2A). ADP/O ratio in group B significantly decreased ($P<0.01$ vs. group A) to 2.07±0.40. No significant difference in ADP/O ratios was found within or among control (3.24±0.24), high cholesterol diet + captopril (2.78±0.33) and captopril (3.20±0.44) groups after 12-week treatment (Fig. 2B).

Discussion

In the present study, we evaluated the effects of ACE inhibition by captopril in rabbits fed a high-cholesterol diet on serum lipid profile and myocardial oxygen consumption. Rabbits are an animal species that have several aspects similar to those of humans in regard to lipoprotein metabolism (Moghadasian et al. 2001). During a typical atherogenic diet (supplementation of 0.5 % to 4 % cholesterol per weight for approximately 8 to 16 weeks), rabbits rapidly become hypercholesterolemic (plasma cholesterol > 1,000 mg/dl) (Chapman et al. 1980). However, careful extrapolations should be made in relation to the degree of hypercholesterolemia produced in laboratory animals, because they exceed the levels usually found in humans.

Our results are in general agreement with suggestions concerning the rabbit serum lipid profile. The hypercholesterolemic rabbits had significantly higher levels of TC, LDL-C, HDL-C, and triglycerides than the control group. In contrast, there were no significant differences in serum lipids among the groups fed the high cholesterol – and high cholesterol + captopril diets, respectively. At the end of treatment, the LDL/HDL-ratio was significantly higher in groups B and C than in groups...
A and D. We showed that captopril does not adversely affect serum lipid levels. However, our data do not suggest favourable effects of captopril treatment in hypercholesterolemic rabbits. These results are consistent with many clinical studies showing that captopril does not significantly affect the serum lipid profile (Koh et al. 2010, Alves et al. 2004, Pollare et al. 1989, Krone and Nägele 1988).

Here we also show that basal oxygen consumption rate (state 4) of isolated cardiac mitochondria was significantly lower in rabbits on atherogenic diet and rabbits receiving captopril than in controls (Fig. 1A). The maximum oxygen consumption rate (state 3), was also significantly lower in groups B and D than in group A (Fig. 1B). However, the ADP/O index of the isolated cardiac mitochondria was significantly lower in group B than in group A, while in group D this index was not significantly different compared with control (Fig. 2B). These results may suggest the presence of different mechanisms of oxygen consumption inhibition. The ADP/O index was 3 or higher in group A and group D, and reduction of this index suggests that, in addition to the process of oxidative phosphorylation, other oxygen consuming processes also take place in mitochondria.

Lipid peroxidation is the most commonly recognized one (Morrison et al. 1973, Chance and Williams 1956). Reduction of this ADP/O index in group B coincides with increased oxidative stress (data not shown). Since there was no fall of ADP/O index in group D, inhibition of mitochondrial respiration in group D is probably related to cardioprotective effects of 12-weeks treatment with captopril. These findings are in agreement with several studies showing cardioprotective effect of ACE-I (Penna et al. 2010, Al-Maghrebi et al. 2009, Chen et al. 2003, Vavrínková et al. 2001, Gvozdjáková et al. 1999, Yanagishita et al. 1997, Ma et al. 1996, Sanbe et al. 1995, Cholley et al. 1995). In contrast, other groups did not show any protective effect of captopril on mitochondrial function in heart and kidney of spontaneously hypertensive rats (Mujkosová et al. 2010, Rossi et al. 2003).

While ADP/O ratios are used as an estimation of the capacity for energy production, the RCR reflects the tightness of coupling between respiration and oxidative phosphorylation in mitochondria. RCR values were comparable among the groups, ranging between 6.07 and 6.28 in all animals. These results indicate absence of chemiosmotic uncoupling in mitochondria of the rabbit heart. In group C, captopril added to atherogenic diet restored the mitochondrial QO2, compared to atherogenic treatment. These observations are in agreement with Chowdhury et al. (2010) and de Cavanagh et al. (2003).

At an early stage of atherosclerosis, the treatment with different ACE inhibitors reduced endothelial dysfunction in atherogenic diet-fed (Becker et al. 1991) or hyperlipidemic rabbits (Chobanian et al. 1992). ACE-I can increase endothelial NO generation (Desideri et al. 2008). Essentially, NO can mediate cell-protective or cell-damaging reactions depending on the
relative levels of O_2, NO, O_2^-, H_2O_2 and other oxidants (Brown and Borutaite 2007). Hence, based on the observed preservation of heart mitochondrial function in group D it can be assumed that in captopril-treated animals the higher levels of NO, as well as the lower levels of H_2O_2 and O_2^-, as compared with untreated control animals, led to the metabolization of NO through nondamaging routes. The reversible inhibition of mitochondrial respiration due to NO competition with oxygen for the building site on cytochrome oxidase probably explains the cardioprotective action of captopril (group D). Irreversible inhibition of mitochondrial respiration probably takes place in group B.

Our study has several limitations. We did not present biochemical markers of organ injury (reactive oxygen species, NO level, lipid peroxidation) that would provide additional information of the metabolic derangements of the animals during atherogenic diet and captopril treatment protocol. Also, we did not measure the plasma prekallikrein levels, which could be affected by ACE-I treatment. Furthermore, we did not assess the effect of captopril on mitochondrial permeability transition and apoptosis. We also did not monitor the effects of AT$_1$, AT$_2$ and bradykinin receptor antagonists that could provide additional information of the contribution of rennin-angiotensin-aldosteron system and bradykinin-kallikrein systems to cardiac metabolism in the course of hypercholesterolemia.

In conclusion, the ACE inhibitor captopril can protect against hypercholesterolemia-related cardiac mitochondrial dysfunction without lowering serum lipid levels in rabbits fed a high-cholesterol diet. Mitochondria isolated from rabbit hearts exposed hypercholesterolemic diet show reduced respiration rates (state 3 and state 4) with altering ADP/O index, whereas the respiratory control ratio was not affected compared with control. Mitochondria isolated from rabbit hearts exposed captopril only shows reduced respiration rates without altering ADP/O index or respiratory control ratio. Cardiac mitochondrial respiration inhibition due to exposure to hypercholesterolemic diet was less severe in group C and D than in group B. Thus, our results suggest that other metabolic processes may be involved in the respiration inhibition induced by these treatments protocol. Despite captopril did not exert favorable effect on serum lipid levels, it restored mitochondrial oxygen consumption to the some extent in group C. Further studies should be performed to define the underlying physiological and (or pathophysiological) mechanisms and clinical implications.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
Study supported by the research project from the Ministry of Science of the Serbia (175043).

References

