The Role of Non-Aromatizable Testosterone Metabolite in Metabolic Pathways

M. DUŠKOVÁ¹, H. POSPÍŠILOVÁ¹

¹Institute of Endocrinology, Prague, Czech Republic

Received September 6, 2010
Accepted October 8, 2010
On-line November 29, 2010

Summary
Dihydrotestosterone (DHT) originates via irreversible reduction of testosterone by catalytic activity of 5α-reductase enzyme and it is demonstratively the most effective androgen. Androgens influence adipose tissue in men either directly by stimulation of the androgen receptor or indirectly, after aromatization, by acting at the estrogen receptor. DHT as a non-aromatizable androgen could be responsible for a male type fat distribution. The theory of non-aromatizable androgens as a potential cause of a male type obesity development has been studied intensively. However, physiological levels of DHT inhibit growth of mature adipocytes. In animal models, substitution of DHT in males after gonadectomy has a positive effect on body composition as a testosterone therapy. Thus, DHT within physiological range positively influences body composition. However, there are pathological conditions with an abundance of DHT, e.g. androgenic alopecia and benign prostatic hyperplasia. These diseases are considered as risk factors for development of metabolic syndrome or atherosclerosis. In obese people, DHT metabolism in adipose tissue is altered. Local abundance of non-aromatizable androgen has a negative effect on adipose tissue and it could be involved in pathogenesis of metabolic and cardiovascular diseases. Increased DHT levels, compared to physiological levels, have negative effect on development of cardiovascular diseases. Difference between the effect of physiological and increased level brings about certain paradox.

Key words
Non-aromatizable androgen • Adipose tissue • Metabolic syndrome • Atherosclerosis • Testosterone

Introduction
DHT was described first in 1930s (Dorfman and Hamilton 1939). For a long time, it was considered an ineffective testosterone metabolite. Its effect was discovered 30 years later (Bruchovsky and Wilson 1968). Nowadays, DHT is known as the most powerful androgen with affinity to the androgen receptor 5× higher than testosterone (T). The androgenic efficacy itself, in comparison to T, is approx. double or triple. Testosterone is sometimes considered to be a DHT effect modulator (attenuation of its effect). DHT in placental mammals occurs already from sixth week of intrauterine life via irreversible reduction of testosterone by catalytic activity of 5α-reductase enzyme which interferes with metabolism of progesterone, deoxycorticosterone and testosterone, and exists in two isoforms, type I and II. Both isoforms are expressed differently in various tissues and during developmental stages. In humans, type I 5α-reductase is present in sebaceous glands of skin, in liver, muscles and brain; a small amount is also present in the prostate and it may increase in prostate cancer. Type I of 5α-reductase has a negative effect on adipose tissue and it could be involved in pathogenesis of metabolic and cardiovascular diseases. Increased DHT levels, compared to physiological levels, have negative effect on development of cardiovascular diseases. Difference between the effect of physiological and increased level brings about certain paradox.

DHT plays a role in prenatal differentiation of external genitalia being a regulatory hormone of testicular descent and development of external genitalia, it also affects skin appendages (hair follicle and sebaceous glands), maturation of spermatozoa in epididymis as well
as the body composition (Aumueller et al. 1996).

It is a known fact that sex steroids influence fat deposition in women and men. Fat distribution is one of the secondary sex characteristics. In men, the fat tends to depose abdominally, they have more visceral fat than premenopausal women. In women, the preferential fat distribution is in gluteofemoral region and body fat portion is overall higher. Androgens may influence adipose tissue in men either directly by stimulation of androgen receptor or indirectly by influencing estrogen receptor after aromatization. DHT as a non-aromatizable androgen might be responsible for a male type fat distribution.

Influence of DHT physiological level on body composition

Androgens affect body composition in men. During the last 3 decades, several original studies and review articles describing effects of testosterone and its supplementation on body composition were published. Testosterone acts by reducing abdominal fat and by increasing muscle mass.

Supplementation with testosterone, however, brought many controversial outcomes. Blouin et al. 2008 in their review article describe as a testosterone physiological window, when its lower as well as higher levels have a negative effect on body composition and cardiovascular risk. Non-physiological levels are apparently one of the reasons of controversial outcomes.

Much smaller number of studies is dedicated to DHT. In some animal models, effect of DHT mediated only by androgen receptor is used. The quantity of fat, subcutaneously as well as viscerally, correlates with level of both testosterone and DHT (Nielsen et al. 2007). DHT as well as testosterone, affect proliferation of fat cells (Singh et al. 2003). Their physiological levels therefore have an influence on body composition. It was demonstrated that unlike testosterone, DHT has a positive effect on bone density (Ilangoovan et al. 2009).

Role of DHT in adipose tissue

Several experimental models are dedicated to effects of DHT in adipose tissue. In cell lines, DHT as well as testosterone affects pluripotent cells by blocking their transformation into adipocyte (Singh et al. 2003). In another paper, DHT inhibited the differentiation of mesenchymal cells and preadipocytes via androgenic receptor but with no influence on their proliferation (Gupta et al. 2008). Several animal models were dedicated to effect of DHT on adipose tissue. Two extensive genetic analyses of adipose tissue in gonadectomised male mice after substitution of DHT were carried out. Substitution of DHT improves metabolism of the adipose tissue by numerous mechanisms: stimulation of glycolysis, fatty acids and triacylglyceroles production, lipolysis and cell share reorganization, and cell proliferation and differentiation (Bolduc et al. 2004, 2007). In study Moverare-Skrtic et al. (2006) only 45 ug/day was used for 5 weeks comparing to study Bolduc et al. (2004) where 0.1 mg /day was administered for 3 weeks. The dosage in study Moverare-Skrtic et al. (2006) could have been insufficient for full saturation of DHT in the physiological level which is 0.59 nM (Potter et al. 2006).

In visceral fat in obese men, differences in levels and metabolism of DHT were found. Obese men have higher level of DHT in visceral fat than in subcutaneous fat (Bélanger et al. 2006). Also, degradation of DHT in omental fat is higher in obese people than in slim people (Blouin et al. 2006). A metabolite of DHT, androstane-3α,17β-diol-17-glucuronide, in one of the studies, correlated not only with the quantity of fat, but also with central fat distribution, intrahepatic fat, lipid spectrum disorder and insulin resistance (Vandenput et al. 2007).

Relation of DHT to cardiovascular diseases risk factors

A number of experimental models deal with influence of DHT on risk factors of cardiovascular diseases. Animal experiments provide evidence of positive effect of DHT levels normalization on cardiovascular risk. In gonadectomised rats, substitution of DHT improves a thrombotic potential of platelets (Li et al. 2007); in gonadectomised rabbits, DHT reduces atherosclerosis development through suppression of intimal foam cell formation of macrophage partly via suppression of lecithin-like oxidized-low-density lipoprotein receptor-1 (Qiu et al. 2010).

Studies with cell lines bring findings about the effect of high DHT levels which inhibits growth of smooth muscle cells in cell culture; this inhibition is dose-dependent (Somjen et al. 2009). Exogenous administration of DHT in cell culture of human macrophages stimulates expression of proatherogenic genes in male macrophages but not in female macrophages (Ng et al. 2003). However,
DHT dosage used in the study was 10 times higher than DHT physiological level in male plasma which affected the study outcomes.

Yanes et al. (2009) monitored influence of DHT on production of aldosterone in the cell line of human adrenocortical cells. Effect of DHT is dose-dependent. Physiological levels of DHT do not alter the secretion of aldosterone. Supraphysiological level of DHT stimulates secretion of aldosterone via its effect on calmodulin/calmodulin-dependent protein kinase and protein kinase C intracellular signalling pathway but independently on classic androgen receptor. According to the authors, supraphysiological levels of androgens may, by means of this mechanism, contribute to development of cardiovascular diseases (Yanes and Romero 2009).

DHT levels and factors influencing DHT levels

Concentration of DHT in male serum is approx. by an order of magnitude lower than concentration of testosterone. Diurnal profile of testosterone is well recognized. The difference between morning and afternoon level of testosterone is up to 25 % in young men, decreasing to 10 % in older age. Diurnal profile of DHT is similar, however its variations in all age categories are smaller (Brambilla et al. 2009). Literary data about DHT/T ratio vary during life. Some studies describe increase of DHT/T during life (Feldman et al. 2002). In other studies, DHT/T remains unchanged (Pirke and Doerr 1975, Gray et al. 1991, Maier 2001). The alteration of the ratio of these two androgens during life, by some authors, is considered as a cause of the development of benign prostatic hyperplasia and androgenic alopecia (AGA) in the middle age. In our study monitoring serum levels of DHT in 13,152 men during life, we found a constant ratio of a total and free DHT/T since puberty. Before puberty, the dominant androgen is DHT rather than T. These findings indicate that in adulthood, serum levels of DHT in men almost exclusively depend on levels of gonadal testosterone whereas before puberty, may depend on production of androgens in adrenal glands (Stárka et al. 2008, 2009).

Considering DHT/T ratio in serum remains constant during life, the role of change of DHT/T in development of AGA and benign prostatic hyperplasia is rather unlikely. The cause is assumed to be in local change of DHT/T in androgen-dependent tissues which however will not be demonstrated in the serum levels of hormones or in the change of tissue sensitivity to the effects of DHT.

Some studies describe geographical and racial differences in DHT levels in various ethnic groups. An extensive American study examined a group of 1899 men aged 30 to 79. The authors did not find a difference between T and SHBG (sex hormone binding globulin); however, after adjustment, they found a higher DHT and lower DHT/T ratio in black people than in white or Hispanic people. This difference could explain racial differences in occurrence of prostatic carcinoma and body composition (Litman et al. 2006). In another study, DHT levels in 5,003 men from five continents were described. This study did not prove only racial but also geographical differences in steroid levels which could not be explained by body composition. The geographical differences were expressed more strongly than racial differences. DHT was higher in Japanese people (0.52 ng/ml) and men from Hong Kong (0.45 ng/ml) compared Asian people from the USA (0.34 ng/ml) who had similar levels as white people (0.36 ng/ml), black people from the USA (0.38 ng/ml) and Swedish people (0.36 ng/ml) (Orwoll et al. 2010).

DHT levels may be influenced by some external effects. Sleep deprivation decreases DHT levels but they are corrected after the convalescence. Decrease of androgens is not followed by the decrease of the gonadotropins which remain unchanged (Akerstedt et al. 1980, Gonzáles-Santos et al. 1989). Combination of physical activity with energetic and sleep deprivation induces decrease of gonadotropins but also decrease of testosterone and DHT (Opstad 1992).

Aerobic exercise for 1 year time period increases levels of DHT and SHBG but does change levels of T, estradiol and 3α-androstanediol glucuronide (Hawkins et al. 2008). One of the studies monitored effect of a 3-week diet enhanced with creatine in rugby players versus placebo. Creatine increased DHT levels but T level remained unchanged (Van der Merwe et al. 2009). Above mentioned studies show, that some food stimuli, stress or physical activity may change androgen levels and ratios which explain geographical differences among the androgens. These changes should also be considered in interpreting of the studies outcomes comparing influence of individual factors on disease development.

Androgenic alopecia (AGA) as a condition with DHT abundance

AGA is the most common form of hair loss in men. Occurrence of the first AGA symptoms is in 20 %
of 20 year-old men rising by 10% with every decade. As a premature alopecia is denoted a fully apparent baldness before 35th year of age. Androgens control hair growth all over the body; their effect varies in different parts of the body: occipital scalp, eyebrows and eyelashes are insensitive to androgens. In other parts, androgen effect on the hair growth is opposite; on the chin, chest, axilla, pubic area and extremities, the hair follicles are stimulated by a higher level of androgens to be transformed into terminal follicles. In men with a hereditary predisposition to baldness, follicles are inhabited on the frontal and parietal scalp. Why hair responds differently to androgens in various parts of the body has been a subject of various hypotheses, but no convincing reason is known yet. The cause is seen in different density of receptors for androgens, increased production of DHT, reduced metabolic degradation of androgens and also other factors (Kaufman 2002).

The essential role of DHT for hair growth and AGA development is confirmed by Imperato-McGinley syndrome caused by mutation of gene for type II of 5α-reductase, which prevents expression of this enzyme and sufficient production of DHT. Men with this syndrome do not suffer from enlarged prostate and do not become bald (Imperato-McGinley et al. 1974). Another evidence is that follicles or skin samples taken from bald spots in AGA have a higher content of DHT than in men without bald. There are not many findings about the role of I type 5α-reductase for hair growth, however its level in sebaceous glands is high, especially in acne prone areas. Clinical evidence of role of DHT was shown also by studies focused on the use of 5α-reductase inhibitors in treatment of AGA either localized on vertex (Finasteride Male Pattern Hair Loss Study Group 2002) or manifested by frontal hair line retreat.

AGA as a symptom of increased androgen activity has been intensively studied to be a possible risk factor of some diseases. In the literature, there has been described a higher risk of both benign hyperplasia (Oh et al. 1998, Chen et al. 2004) and prostate carcinoma (Hawk et al. 2000, Gilles et al. 2002), i.e. a prostate disease; prostate, similarly to hair follicles, is more influenced by DHT than T. In some studies, the relation of AGA and prostate carcinoma was not confirmed (Hsieh et al. 1999).

Premature AGA is also associated with higher occurrence of obesity (Hirsso et al. 2007). Several studies bring evidence on AGA as an independent risk factor of cardiovascular and metabolic diseases (Lesko et al. 1993, Trevisan et al. 1993, Herrera et al. 1995, Ford et al. 1996, Sasmaz et al. 1999, Lotufo et al. 2000, Matilainen et al. 2000, Dušková et al. 2004, González-González et al. 2008, Dogramaci et al. 2009). Some studies, however, face methodical problems, e.g. small number of probands which raises doubts about these results. In an extensive epidemiological study, including 5,056 men from 45 to 64 years of age, no relation between AGA and myocardial infarction or between AGA and intromedial thickness as a marker of symptomatic atherosclerosis was proved (Shahar et al. 2008). The key problem of this study is that it did not monitor the start of hair loss, for it is apparently only premature AGA that is related to the mentioned diseases. It should be also mentioned that changes in prostate as well as changes in metabolic parameters and cardiovascular risk factors, in men with a premature AGA, are expected to change significantly in older age. Local abundance of DHT could play a role in development of both premature AGA and male type obesity.

Conditions with DHT deficiency

Naturally, there are several situations with reduced effect of androgens, the first one is a complete androgen insensitivity syndrome. Girls with this syndrome have genotype 46XY. One of the studies dealt with metabolic parameters and body composition in women with this syndrome. Higher prevalence of obesity, dyslipidemia and insulin resistance were found (Dati et al. 2009).

The problem of this study is a small number of probands due to rarity of this syndrome. There is an animal model for this syndrome, the knock-out mice for AR receptor are obese at unchanged food habits but their lipid spectrum remains unchanged (Sato et al. 2003). Another natural model related directly to DHT is the above mentioned Imperato-McGinley syndrome. Affected individuals produce testosterone in normal or even in slightly elevated quantity but do not convert it to DHT sufficiently. Homozygous patients with a male karyotype are born with a phenotype as a specific type of hermafroditism and look rather like girls until adolescence. During puberty, due to influence of increasing levels of testosterone, the virilisation starts: normal libido, stabilization of male phenotype, sparse beard and a scanty body hair; in older age, they are not affected by prostate growth or baldness (Imperato-McGinley et al. 1974). In the literature, there are no
Polymorphism of the gene for 5α-reductase was studied in relation to peripheral arterial disease. Significant relation between the polymorphism of the gene for 5α-reductase of type I associated with lower activity of this enzyme and peripheral arterial disease was found. Lower DHT level could therefore predispose to peripheral arterial disease (Signorelli et al. 2008). A question remains how this polymorphism is manifested when 5α-reductase of type I is responsible for only ⅓ of DHT.

Finasteride treatment is an artificially created model of lower DHT levels. The key problem of finasteride treatment as a model of lower DHT levels effects is that medication is prescribed in patients with DHT abundance. Finasteride as a 5α-reductase blocker is used in treatment of benign prostatic hyperplasia and its indication has recently been extended to the treatment of AGA in a lower total daily dose.

Therefore this model accumulates a double effect: a long term exposition to higher DHT level and also reducing their levels with finasteride which is relatively short. Two studies dealt with administering the treatment to healthy individuals without differentiation whether the probands had DHT abundance or not. Gormley et al. (1990) did not observe changes in lipid profile after a short term use of finasteride in higher and low dosage. Amory et al. (2008) during administering of finasteride or dutasteride, did not find significant influence on lipid metabolism in healthy men with a long term use. Another two studies monitored effect of finasteride in patients with DHT abundance. Denti et al. (2000) observed increase of levels of HDL-cholesterol and lipoproteins after a 6-months treatment in patients with benign prostatic hyperplasia. In our study, we have found elevation of cholesterol, HDL, LDL after 3, 6, 8 months with normalization of all parameters after 1-year treatment. In patients with AGA, decrease of insulin resistance in the insulin tolerance test after 1-year finasteride treatment, was observed (Dušková et al. 2009).

Conflict of Interest

There is no conflict of interest.

Acknowledgements

This paper is dedicated to Professor Luboslav Stárka, MD, DSc. The study was supported by the Grant Project IGA MZČR 10215-3 and SUV MŠMT reg. no. 262 501.

References

