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Summary 

Interaural time differences (ITDs), the differences of arrival time 

of the sound at the two ears, provide a major cue for low-

frequency sound localization in the horizontal plane. The first 

nucleus involved in the computation of ITDs is the medial 

superior olive (MSO). We have modeled the neural circuit of the 

MSO using a stochastic description of spike timing. The inputs to 

the circuit are stochastic spike trains with a spike timing 

distribution described by a given probability density function 

(beta density). The outputs of the circuit reproduce the empirical 

firing rates found in experiment in response to the varying ITD. 

The outputs of the computational model are calculated 

numerically and these numerical simulations are also supported 

by analytical calculations. We formulate a simple hypothesis 

concerning how sound localization works in mammals. According 

to this hypothesis, there is no array of delay lines as in the 

Jeffress’ model, but the inhibitory input is shifted in time as a 

whole. This is consistent with experimental observations in 

mammals. 
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Introduction 

The auditory system of humans and many other 
animals is able to localize sound sources with amazing 
precision. This ability is partially possible with only one 
ear (monoaural hearing), yet for localization in the 
horizontal plane two ears are necessary (binaural 
hearing). Sound source localization can be enhanced 
when the source and the receiver move relative to each 
other (Phillips and Brugge 1985). In this paper, however, 
we limit the task of sound localization to static sources 
using binaural cues at low frequencies. Binaural cues 
determine the azimuth defined as follows. The vector 
from a listener to a sound source is projected 
perpendicularly onto the horizontal plane. The angle 
between the projected vector and a reference vector, 
forming the intersection of the horizontal plane with the 
plane of head symmetry, oriented to the front, is called 
the azimuth. One of the parameters influencing binaural 
sound source localization is the fundamental sound 
frequency. In mammals, for low fundamental frequencies 
(below 1,500 Hz) or for broadband sounds, the interaural 
time difference (ITD) is the dominant sound localization 
cue. For high fundamental frequencies, the interaural 
intensity difference (IID) is used. While this paper deals 
with lower frequency bands, it is possible that higher 
frequencies are processed with the use of similar neuronal 
algorithms, as we proposed in earlier studies by Marsalek 
and Kofranek (2004, 2005). 

This paper presents a theory of how binaural 
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sound localization for low frequencies might be realized 
in mammals and particularly in humans. The theory of 
Jeffress (1948) is one of the first well-known attempts to 
explain how neuronal circuitry achieves this. His 
prescient work is still frequently cited (Joris et al. 1998). 
Jeffress’ visionary hypothesis asserted that the ITD is 
converted to a binary signal in a higher order neuron 
through an array of delay lines of fibers in lower order 
neurons from both sides. Pioneering experiments by Carr 
and Konishi (1988) showed that Jeffress was correct in 
case of birds. As far as we know, the existence of an 
analogous delay line in mammals remains an open 
question (Grothe 2003, Joris and Yin 2007, McAlpine 
and Grothe 2003). What other neural circuit mechanism 
might be responsible for calculating the azimuth from the 
ITD? In this paper we propose an alternative to the delay 
line array model based on recent physiological evidence. 
This alternative is a stochastic delay of a very small 
number of broadly tuned channels (McAlpine and Grothe 
2003). 
 The amazing time precision (Joris et al. 1998) in 
the range of tens of microsecond points towards another 
statement of Jeffress that the neurons of the circuit should 
be located among the lower order neurons of the auditory 
pathway. The lowest order suitable neuron is the first 
binaural neuron. 
 The information about the sound source location 
contained in the ITD is implicitly encoded by spike trains 
of lower order neurons. The first binaural neurons 
function as encoders of the ITD. The circuit has to make 
the information accessible, in other words make it explicit 
within another spike train in higher level neurons of the 
auditory pathway. The function of the circuit is to convert 
the information implicit in the ITD into the explicit neural 
code for the ITD. The definition of implicit and explicit 
neural coding can be found in Koch (2004). The binaural 
neurons of the circuit can function either as a delay line 
(Jeffress 1948), or as broadly tuned channels (McAlpine 
and Grothe 2003). 
 Our model is based on one time delay in the 
neuronal circuit. The access to a continuum of responses 
to various azimuth locations is accomplished through 
stochastic variations of action potential times as 
processed by the model circuit. Our novel finding 
demonstrates that stochastic spike timing can be used by 
neurons as an instrument for computing the sound 
azimuth. Model circuit connections and properties after 
mathematical simplification of their connectivity are still 
consistent with the neuro-anatomical description of the 

wiring of the medial superior olive (MSO) circuit in 
mammals (Beckius et al. 1999, Young 1998, McAlpine et 
al. 2001). 
 We have designed and improved a model 
description of how the neural circuit in the auditory brain 
stem calculates the direction of incoming sound. This 
model is an alternative to the classical theory of delay 
lines. We present a stochastic description of the output 
spike train and spike timing within the model. Both the 
analytical calculations and numerical simulations give 
qualitatively similar results to those of experimental 
recordings from the rodent auditory brain stem. Our 
results are also comparable with recordings from 
brainstems in gerbils by Brand et al. (2002). Other 
authors (McAlpine et al. 2001) have found similar tuning 
curves in response to the changing ITD in different 
(higher) neurons of the auditory pathway (colliculus 
inferior) of another animal (guinea pig). We find the 
results to be robust with respect to variations of the time 
window size and spike timing jitter. 
 
Model 
 
Anatomical connections and their simplification 
 The notation of the mathematical formulation of 
the model follows conventions used earlier (Marsalek and 
Lansky 2005, Marsalek and Drapal 2008), where the 
excitatory-excitatory (EE) interaction is called excitatory 
coincidence detection (ECD) and the excitatory-
inhibitory (EI) interaction is called inhibitory coincidence 
detection (ICD). The medial superior olive (MSO) works 
mostly with low frequencies and the lateral superior olive 
(LSO) deals mostly with high frequencies. 
 Our model assumes different connections to the 
MSO neurons than those assumed in the Jeffress model. 
The division of neuronal fibers based on their excitatory 
and inhibitory effect is important. We show in the Results 
section that inhibitory fibers phase shift the tuning curve 
of ITD, as compared to that obtained without inhibition. 
The inhibitory connection to the MSO results from the 
inversion of synaptic polarity in the medial nucleus of the 
trapezoid body. The MNTB receives excitatory inputs 
from the contra-lateral cochlear nuclei and sends 
inhibitory inputs to the ipsi-lateral MSO. The same MSO 
also receives an inhibitory connection from the ipsi-
lateral side. This inhibitory activity originates from the 
lateral nucleus of trapezoid body (LNTB), which receives 
its excitation from the ipsi-lateral cochlear nucleus. To 
complete the picture, the MNTB sends further inhibitory 
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connections to the LSO. This intricate anatomy is nicely 
summarized by Young (1998). 
 Though the design of our model is based on 
knowledge of these anatomical connections, we have to 
simplify the model wiring to extract the functional core of 
the neural circuit. The delays in the real system are 
present in both ipsi- and contra-lateral pathways (Joris 
1996, Beckius et al. 1999). For the purpose of 
simplification, however, relative delay on one side 
suffices. This relative delay represents the net delay 
difference. Furthermore, one inhibitory branch from one 
side is enough to model the net inhibition from both 
sides. This leads us to the schematics shown in Figure 1. 
 
 

  
Fig. 1. Flow chart of the neuronal circuitry. (LPDF) and (RPDF) 
represent input spikes on left and right sides. Left (Right) 
Probability Density Function in time governs spike times in the 
last monaural neuron. (LCD) and (RCD) are Left and Right 
Coincidence Detectors, realized by the first binaural neurons on 
the ipsi- and contra-lateral sides, respectively. Next is the 
(DELAY), which is shown here at the excitatory branch of the 
circuit only, because only the relative delay matters. Spontaneous 
spiking acts as an additional (NOISE) source. (ISTN) and (ESTN) 
represent Inhibitory and Excitatory Synaptic Transmissions, 
respectively. (SUM) adds excitatory inputs, inhibitory inputs and 
noise together. From the point of view of functionality, the exact 
sequence of operations (delay, sign change due to the inhibitory 
synapse, coincidence detection) in the feed forward pathway 
does not matter. The dashed line box encompasses processing, 
which can be performed in one binaural neuron. Note that 
individual boxes in this chart neither necessarily correspond to 
individual neurons nor represent the description of the 
mammalian brain stem circuit in the text.  

Operating conditions and constraints 
 Before proceeding with a formal description of 
the variables in the model, we should briefly mention the 
coincidence detector (CD). Without detection of the 
leading edges of incoming post-synaptic potentials, 
extraction of a signal from delays in the microsecond 
range would not be possible. Regardless of which of the 
two theories we propose, they all must use this 
microsecond precision. The element detecting the leading 
edge is called the coincidence detector. The anatomical 
substrate of the CD is believed to be within the MSO 
neurons. The location of right and left CDs in our model 
circuit in Figure 1 does not reflect all the detailed 
connections found in anatomy, however. The algorithm 
realized by a single delay in the model circuit is 
computationally equivalent to the original circuit, 
regardless of the actual succession of coincidence 
detectors, delays and the polarity change from excitatory 
to inhibitory signals. For details see the Discussion 
section. 
 We can shuffle the order of delays among 
selected points in our model without loss of generality. 
This is based on observation that selected neural 
operations are commutative. An example of commutative 
additions of delays is shown in Equation (1) below. The 
first processing elements of our model are random delays, 
which have a specific probability density function (PDF) 
of synaptic input to neuron in time. Since there is chain of 
delays in both synaptic chains from the left and from the 
right ear, we can suppose that we have n ipsilateral delays 
in the ipsilateral (A) branch of the pathway 
ΔA1, ΔA2,…, ΔAn and m contralateral delays in the 
contralateral (B) branch of the pathway ΔB1, ΔB2,…, ΔBm. 
For the EE interaction m = 3 and n = 3, for the EI 
interaction of the MNTB m = 4 and n = 3 and for the EI 
interaction of the LNTB m = 3 and n = 4. Numbers m and 
n include the first synapses (ribbon synapses from hair 
cells). The total delay difference between branches (A) 
and (B), denoted ΔJA – ΔJB is given by: 
 

 
1 1

.
n m

JA JB Ai Bj
i j= =

Δ − Δ = Δ − Δ∑ ∑  (1) 

 
We assume that all these random delays with (timing) 
jitter (subscript J) on sides A and B (left and right) are 
mutually independent and identically distributed non-
negative random variables. ΔJA and ΔJB have a maximum 
of Δmax. The constraints imposed on them are given in 
Equation (2). The coincidence detection (time) window 
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ΔW must be shorter than or equal to the maximum delay 
and the sound period, T, must be greater than or equal to 
the maximum delay: 
 

 

0 ,
0 ,
0 ,

.

JA max

JB max

W max

max T

≤ Δ ≤ Δ
≤ Δ ≤ Δ
≤ Δ ≤ Δ

Δ ≤

 (2) 

 
 In excitatory coincidence detection, the spike is 
generated only when the two spikes from sides (A) and 
(B) meet in a time interval shorter than ΔW. In other 
words, the two spike delays ΔJA and ΔJB must satisfy: 
 
 | | .JA JB WΔ − Δ ≤ Δ  (3) 
 
 To model inhibitory coincidence detection, a 
modification of the condition expressed above in 
Equation (3) is used. Spikes must arrive in proper 
succession. The excitation from side A must come after 
the inhibition from side B. This is formulated as: 
 
 0 .JA JB W≤ Δ − Δ ≤ Δ  (4) 
 
 Using the model with one delay, one obtains the 
continuum of detected ITDs through stochastic variation 
of the random interaural time delay ΔJA – ΔJB. The output, 
the spike rate, clearly depends on the choice of input PDF 
of the synaptic delays. After summarizing the properties 
of the model, connections between neurons, and 
constraints imposed on the parameters and random 
variables, we can turn to the outputs of the model in the 
following two subsections. 
 
Input distribution of the coincidence detector 
 The output of the model is dependent on the 
proper choice of a PDF of random variables. 
 Firstly, the range of the PDF is defined such that 
its support is over one sound period. This is on the time 
interval [0, T], which we normalize to the interval [0, 1]. 
Therefore probability densities spanning one or both tails 
from minus infinity to plus infinity, such as gamma 
density, where its support is on [0, ∞), or normal density, 
where its support is on (–∞, ∞), are not particularly 
useful. This justifies the choice of beta density, which is 
nonzero only within the range [0, 1] and is close to 
gamma density in this range as well. This circumvents the 
need to normalize the corresponding cumulative 

distribution function to unity and makes the calculation 
more transparent without loss of generality. Another 
useful property of beta density is its simple polynomial 
definition. The formula for beta density appears in the 
Abbreviations and symbols section at the end of this 
paper. We used beta density for the description of spike 
timing distribution also in (Marsalek et al. 1997). 
 Secondly, the PDF shape, specifically the 
skewness and the kurtosis, influences the shape of the 
output tuning curve. We have experimented with both 
uniform and triangular densities, (Marsalek and Lansky 
2005), which are special trivial cases of the beta density 
with parameters a = 1, b = 1, and a = 1, b = 2, 
respectively, and make calculation simpler. However, the 
corresponding output functions analogous to Equation (7) 
are not as satisfactory as the output resulting from a non-
trivial beta density. These output functions are not shown 
here and the resulting function itself is discussed in detail 
at the beginning of the Results section. 
 
 

 
 
Fig. 2. Resulting probability density function q24. We use semi-
logarithmic scale in the y-axis. On a linear scale (not shown) the 
resulting function q24 cannot be separated from the probability 
density of the normal distribution N (0, σ24), where its standard 
deviation σ24 was chosen to match standard deviation of the 
function q24. The semi-logarithmic scale used here clearly shows 
the divergence of the two tails of the normal and of the resulting 
density, when the tail of the normal density N (0, σ24), marked 
with squares, is nonzero outside of interval [–1, 1]. The other 
function q24 possesses two discontinuities at points q24 (–1) = 0 
and q24 (1) = 0. On the semi-logarithmic scale in y-axis these 
cannot be shown. At these points, the tails of the q24 function are 
cut off by the impulse (Heaviside) function. Semi-logarithmic 
plotting on the y-axis of the PDF shows normal density as 
parabolic in these coordinates. 
 
 
 Thirdly, the mean (output) activity of the model 
obtained with inhibition must not drop below the zero 
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line. This is corrected by adding half the height of the 
span of the output range to the function. This way all 
output values are positive. They correspond to the neural 
spike rates which cannot be negative. After eventual 
normalization, so that the density integral over the whole 
function range equals unity, the output spike rates express 
output probability. 
 Finally, the input beta density has parameters 
a = 2 and b = 4 and we denote it B24. To obtain a smooth 
function on the interval (0, 1) we must have a > 1 and 
b > 1, and to obtain nonzero skewness we must have a ≠ b. 
The whole numbers a = 2 and b = 4 are the second smallest 
non-trivial values of parameters (after a = 2 and b = 3). 
Figure 2 shows the result of the analytical calculation of 
the output, which is the function denoted q24. 
 
Output distribution from the coincidence detector 
 The output function q24 is obtained as follows. 
Let us denote the difference of the two delays in 
Equation (1) as: 
 
 .JA JBZ = Δ − Δ  (5) 

 
 The probability density function of this new, 
compound random variable Z is obtained with a 
convolution integral formula for the difference of the two 
random variables. The PDFs of the ΔJA and the ΔJB are 
denoted f(x) and g(y), respectively, and the output PDF of 
the variable Z is denoted q(z). We substitute  
f = B24    and    g = B42    into    the   convolution   formula 

. Now, since  B24(x) and  B42(y) are 
nonzero only for x between 0 and 1, we must evaluate the 
integral piecewise within the respective ranges, such that 
q(z) becomes: 
 

∫ −
=−=

)1,min(

)0,1max(
)()()(

z

z
dxxzgxfzq  (6) 

∫∫ ∈−∈
−+−=

]1,0[]0,1[
)()()()(

zz
dxxzgxfdxxzgxf . 

 
 Obviously, q(z) is an even function, satisfying 
q(z) = q(−z). Therefore, we can change the sign of the 
argument z−x without loss of validity. We substitute the 
polynomial densities B24(x) and B42(y) into the integrals. 
For two 4th degree polynomials, B24 and B42, we obtain 
the sum of two 9th degree polynomials in two variables x 
and z. We use the Symbolic Math Toolbox in the Matlab 
software to avoid tedious manual computation. The 
source code for the symbolic calculation in the Matlab 

script language is available upon request. 
 In summary, using Equation (3) and assuming 
that ΔJA and ΔJB are distributed with beta densities B24(x) 
and B42(y) we find that Z = ΔJA – ΔJB has density: 
 

 
9

24
0

( ) ,i
i i
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i
q z s c z

=

=

=∑  (7) 

 
where  
takes the following values: 
 

S = [1;  0; –1; –1; –1;  0;  0; –1;  0;   1] for  ]0;1[−∈z , 

S = [1;  0; –1;   1; –1;  0;  0;   1;  0; –1] for  ]1;0[∈z , and (8) 

S = [0;  0;   0;   0;   0;  0;  0;   0;  0;   0] otherwise. 
 
 By this prescription, q24(z) is a smooth, 
piecewise polynomial function. It has four parts defined 
consecutively on intervals (−∞, −1], [−1, 0], [0, 1] and 
[1, ∞). In defining the coefficients sici of these four parts, 
we use signum function S valued −1, 0 and 1 listed above 
in Equation (8). The numerical absolute values of the 
polynomial coefficients are c0 = 1.5873, c2 = 17.1429, 
c3 = 33.33, c4 = 20, c7 = 2.8571, c9 = 0.6349 and 
c1 = c5 = c6 = c8 = 0. Signs of the coefficients confirm that 
this piecewise polynomial function is an even function 
q(z) = q(−z). We also recently found an alternative way to 
obtain the analytical results. A more straightforward way 
to calculate the indefinite integral q(z) makes use of the 
Laplace transform. In using the transform, we obtain the 
convolution by using the inverse transform of the product 
of the two function images (Drapal and Marsalek 2010). 
We prefer to show here our original piecewise evaluation, 
because this integral evaluation method gives more 
insight into how the output density behaves and how it is 
obtained. The output function is similar to the normal 
density, although close inspection reveals subtle 
differences. Comparison of the output and normal 
probability density functions is shown in Figure 2. Note 
the difference between the two tails. 
 
Results 
 
 Figure 3 shows the neural response curves of the 
MSO neuron with varying ITD. The curve in Figure 3 
with the maximum at ITD = 0 forms the output of the 
circuit with only the excitatory branch plugged in. This 
corresponds to the output of the MSO in experiments, 
when the inhibitory branch is blocked by the application 
of strychnine, as in Brand et al. (2002). The other curve 
in Figure 3 with the maximal slope at ITD = 0 shows the 
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output of the full model. This corresponds to the normal, 
control recordings from the MSO. Brand et al. (2002) 
also modeled some properties of the recorded cells using 
a detailed biophysical model with explicit representations 
of the voltage sensitive ion channels of the neuron, 
obtaining results very similar to those presented here. 
 
 

 
 
Fig. 3. Model response to pure tone stimulation. ITD is on the x-
axis in microseconds. Neuronal output activity is on the y-axis. 
The solid curve is the output of the full model with both 
excitation and inhibition. The dotted curve is the model without 
inhibition. Only one period of the output is shown here for clarity, 
but the output is periodic, so the x-axis maps to interaural phase 
difference. The error bars are sample standard deviations 
obtained numerically in simulations. In both curves they are the 
result of 100 trials. In other words, these error bars do not 
represent the level of the noise in the system. Instead, the noise 
is introduced into the system via the randomness of random 
variables and the magnitude of timing jitter.  
 
 
 Figures 3, 4, and 5 show results of numerical 
simulations of the model, which are in agreement with 
the analytical calculation. Both analytical and numerical 
computations were performed using Matlab software. 
Sound is represented as discrete samples of pure tones 
digitized using standard sound digitization (44 kHz 
sampling rate, 128 intensity levels). Spikes in response to 
pure tones were triggered by the leading edges of sound 
waves. In Drapal and Marsalek (2010) we used clicks and 
complex sounds, such as speech, processed by an 
cochlear implant emulator, with no qualitative difference 
from pure tone stimulus (not shown). Here we use pure 
tones only. The sound period, T, used in the model is that 
of the fundamental sound frequency. Spike trains were 
represented as trains of unitary events without any details 
of action potential shape. Synaptic integration was 
implemented with the use of time windows. Spontaneous 
activity is not a free parameter, but is added to the system 

to obtain positive values of responses. The activity in this 
and subsequent figures is a dimensionless quantity, which 
can be interpreted as the spike rate multiplied by a 
constant. 
 
 

 
 
Fig. 4. Effect of the size of the time window. The width of the 
time windows for CDs sets the range of ITDs detectable by the 
circuit. Four widths are compared here: ΔW = 200 μs (--), 80 μs 
(-), 50 μs (-.) and 20 μs (…). Plotted output activity is dependent 
on ITD, as in Figure 3. Only the excitatory part is active in this 
plot. From an engineering point of view, an optimal curve uses 
the full dynamic range of available output activities, ΔW = 50 μs.  
 
 

 
 
Fig. 5. Effect of the timing jitter magnitude. Two magnitudes of 
timing jitter ΔJA and ΔJB are shown here, 100 μs as a solid line (-) 
and 400 μs as a broken line (--). They also set the slope of the 
model output curve and thus the range of ITDs detected. Together 
with the previous Figure 4, this shows the robustness of the model 
with respect to variation of parameters. Figures 4 and 5 illustrate 
the range of parameter values accessible to the model. 
 
 

 The size of the time window ΔW is the key 
parameter of coincidence detection. Figure 4 shows the 
model output function for ΔW = 200, 80, 50 and 20 μs. 
In Figure 4 only the excitatory curves are shown, since 
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the inhibitory curves in the full model are analogous to 
those in Figures 3 and 5. The size of this window in the 
real neuronal circuit is set by the ionic currents giving 
rise to the generation of postsynaptic potentials (Svirskis 
et al. 2003, Szalisznyo 2006). Oertel et al. (2000) give 
the upper estimate of the window size for neurons in the 
auditory pathway specialized in coincidence detection. 
They give values in the range lesser than 300-1000 μs, 
with the smaller values for in vitro and larger values for 
in vivo preparations. 
 In general, the magnitude of timing jitter 
(denoted ΔJA and ΔJB) in a neuronal nucleus is dependent 
on the degree of neuronal convergence in the previous 
stages of processing. In spike trains propagating to a 
higher order nucleus, one of three jitter changes may 
occur: the wave of spikes can sharpen (the jitter 
decreases), the jitter may not change, or the spike volley 
can become blurred (the jitter increases). All three 
variants can be obtained with the perfect integrator 
neuronal model in the regime of coincidence detection, 
for different sets of parameters (Reed et al. 2002). All 
three variants were shown to exist in experimental 
recordings (Gerstner et al. 1996, Joris 1996, Marsalek et 
al. 1996). We do not discuss these differences further 
here. The output activity shown in Figure 5 is dependent 
on ITD for two different magnitudes of timing jitter. 
Figure 5 shows two functions of the full model only (with 
both excitation and inhibition) for two values of timing 
jitter, 100 μs and 400 μs. Oertel et al. (2000) give jitter 
values of 200 μs for in vivo and values of 20-40 μs for in 
vitro preparations. 
 A related question was raised in review: How 
many ipsi- and how many contra-lateral synaptic 
connections (and of what proportion of excitatory and 
inhibitory connections) would a real MSO neuron need in 
order to achieve the accuracy observed physiologically in 
these neurons? Probabilistic spiking transmits 
information only with a given probability (reliability). In 
a previous investigation we calculated the time to spike 
required by the coincidence detection circuit for two 
given probabilities of achieving the decisive spike 
(reliabilities), p1 = 50 % and p2 = 95 % (Marsalek and 
Lansky, 2005). These probabilities were calculated based 
on the number, K, of unitary events. The calculation 
procedure, known as a Bernoulli process, is described in 
the 2005 paper, however, the values of K are not 
tabulated in the paper, since they are only intermediate 
results of the calculation. For the whole range of sound 
frequencies relevant for the human MSO, the number of 

events, K, attained values from 1 up to 50, higher values 
for higher frequencies. However, this number of unitary 
events can be achieved either by waiting for N sound 
periods, or by parallel processing by several neurons. In 
the latter case, the MSO nucleus must consist of at least 
M copies of the circuit, but may even have N tonotopic 
channels, such that MN > K. The numbers K, M, N 
represent the minimal values required for a functioning 
circuit. Numbers of neurons and connections in the MSO 
are probably higher, since most nuclei show a redundancy 
in the number of their neurons and connections. 
 
Discussion 
 
 Binaural sound localization is achieved with 
remarkable precision throughout the animal kingdom. 
The timing precision of individual spikes in most neurons 
in the auditory pathways of various species is lower than 
animals’ behavioral assessment of the ITD. Given that 
this precision is important for survival and easily 
demonstrated, the means by which it is achieved by the 
neural circuits forms a fascinating and as yet unresolved 
question. In this paper we have presented a stochastic 
model employing both excitatory and inhibitory synaptic 
inputs to address this question in the neural circuit of the 
mammalian medial superior olive. 
 In recent years it has been demonstrated in 
experiments on gerbils (Brand et al. 2002) and also on 
other mammals (Grothe 2003) that synaptic inhibition 
plays a critical role in the sound localization circuit. The 
original theory of delay lines array by Jeffress applies in 
birds (Carr and Konishi 1988). It is not clear whether it 
also applies in mammals. Recordings in cats do not show 
the same ITD tuning curve slopes as those in rodent 
recordings (Joris and Yin 2007, Yin and Chan 1990). 
Harper and McAlpine (2004) present a theoretical 
explanation of these differences, including the discussion 
of human data. Psychophysical experiments studying the 
circuit in humans using subjective response might resolve 
this question in the future. These experiments range from 
normal hearing (Middlebrooks and Green 1991), to 
electrical hearing sense in cochlear implantees (Laback 
and Majdak 2008). Of course it is possible that the 
mammalian circuit uses some entirely different 
mechanism to those presented here and in previous 
investigations. 
 Another observation in the abovementioned 
experiments shows that the maximal response does not 
occur at the best ITD, but that the best ITD occurs where 
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the slope of the response curve is maximal. As early as 
the 1970s and 1980s, some authors discussed the 
possibility that the maximal slope of the response of a 
coincidence detector measuring the ITD between spike 
trains may relay the information (Goldberg and Brown 
1969, Phillips and Brugge 1985). The possibilities to test 
this proposal numerically were limited at that time. Here 
we exploit the advancement of computational tools in a 
numerical study of the problem. 
 Most neurons do not achieve high spike timing 
precision, but in neurons in the periphery, the information 
about timing must be somehow encoded and preserved 
before reaching the first binaural neurons. Such timing 
precision is enabled by cellular and sub-cellular 
mechanisms and is best studied using deterministic 
equations, specifically differential equations. One can 
compare the work of Svirskis et al. (2003), which studies 
the state space of the nonlinear dynamics of ion currents 
in the MSO neurons, with that of (Szalisznyo 2006), in 
which the state space of the nonlinear ion currents in the 
LSO is studied. The authors of these two papers also 
performed experimental recordings. In both the circuits of 
the MSO and the LSO, the nonlinearities are necessary 
for the proper function of coincidence detectors. Other 
models (including this work) are based on stochastic 
spiking, or cast the neural circuit in terms of a logical 
circuit. See for example a review of Colburn (1996), or 
(Marsalek 2000). Experimental investigations can also be 
supported by conceptual models (Brand et al. 2002). It is 
argued frequently that the ITD tuning curve slope offset 
is due to the optimized wiring of the circuit (Grothe 2003, 
Harper and McAlpine 2004). 
 Most theories which include inhibitory 
mechanisms claim that inhibition is precisely timed and 
brief. The models assume high precision of spike times in 
all neurons in the circuit. Not all spikes are so precise, as 
is shown in experiments of Batra et al. (1997) and Joris 
(1996). The spatial organization of the neurons 
themselves is important. Agmon-Snir et al. (1998) and 
Zhou et al. (2005) suggest models based on a spatial 
organization of neurons in the MSO. 
 The parameter space of the binaural model is 
limited at higher frequencies, where ambiguities arise due 
to the relatively short sound wavelength in comparison 
with the ITD. In the mammalian brainstem, the circuit of 
the MSO processes the low frequencies and another twin 
circuit, the LSO, processes the high frequencies. The two 
circuits are developed in parallel in human, cat, dog and 
other experimental species although in some mammals 

only one of them is present (Grothe 2003). The relative 
importance of the ITD and the IID within these respective 
sound frequency ranges in human was elucidated by 
means of confusing these two cues in psychophysical 
experiments (Wightman and Kistler 1992). Breebaart et 
al. (2001a and 2001b) brought a wider perspective 
towards the possible mechanisms used in binaural 
processing by using the excitatory-inhibitory mechanism 
where previous models dealt only with the excitatory-
excitatory interaction. Their model uses the canonical 
structure of a grid of parallel tonotopic pathways together 
with delay lines and covers both the low frequency (ITD) 
and high frequency (IID) ranges with similar 
mechanisms. The model of Breebaart et al. (2001) 
comprises of building blocks of the signal processing 
circuits. Colburn (1996) and his numerous collaborators 
developed a series of binaural circuit models of varying 
complexity. They stress the importance of the 
coincidence detector within the circuit. Stern and 
Trahiotis (1996) review existing models and their own 
circuit implementations are close to delay line concepts. 
 Our model differs from those mentioned above 
in that it employs randomness in the spike arrival time 
between synapses. Random delay and spike timing jitter 
might seem like an impediment, especially in models 
with precisely timed inhibition. The statistical properties 
of spike trains average out errors in individual spikes and 
enable the neural computation of azimuth at the same 
time. 
 When two spikes from opposite sides arrive at 
the first binaural neuron, their coincidence must be 
detected with higher precision. Jeffress (1948) was first to 
notice this. All subsequent sound localization models 
have to assume that these particular neurons are 
coincidence detectors. Neurons as coincidence detectors 
have been used frequently in sound localization models 
(Gerstner et al. 1996, Marsalek 2000, Zhou et al. 2005). 
Let us also mention the classical model describing neural 
coincidence detectors in visual circuits in invertebrates, 
starting with the Reichardt model (Srinivasan and 
Bernard 1976, Zanker et al. 1999). 
 The first binaural neuron must use coincidence 
detection to extract information from interaural sound 
timing disparity. This neuron must indeed be precise as a 
coincidence detector. Such neuron outputs spike only if 
left and right inputs coincide within a short time window, 
in the time range of microseconds. In our model, 
stochastic properties make use of timing jitter, which at 
first glance is merely signal deteriorating noise. 
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 From the point of view of implementation of the 
model, it does not matter exactly where the net ITD is 
placed in the two (left and right side) converging 
branches of the neural pathway. If an additional delay is 
added in both sides, it cancels out. The net delay between 
the two sides only matters when compared with the ITD, 
as written in Equation (1). 
 In a follow-up to this paper (Drapal and 
Marsalek 2010), we show that our numerical model can 
be connected to cochlear implant software emulator to 
give similar results to those observed by psychophysical 
methods in implanted volunteers (Laback and Majdak, 
2008). As the possibilities to experiment with binaurally 
implanted and bimodal hearing subjects expand, it is 
possible that some psychophysical experiment will 
determine, whether delay line, stochastic delay, or both 
mechanisms are used in human hearing, even before 
definitive electrophysiological experiments on mammals 
are performed (Joris and Yin 2007). 
 In this paper we present a model for a neural 
algorithm performed by a circuit in the MSO. This is part 
of a general quest to capture the multitude of neural 
algorithms serving specific purposes. Let us give two 
closing examples of these algorithms. One is the case of 
spatial maps in the auditory brainstem of birds (Peña 
2003). Peña (2003) shows how the brainstem circuit 
implements spike rate multiplication in order to calculate 
the location of a sound source. An analogous case from 
the 1980s concerns the neocortical visual circuit in the 
higher order visual areas which calculates the location of 
the illusory contour (von der Heydt et al. 1984). These 
authors demonstrate that a higher neocortical visual 
projection area can respond to a virtual object, an illusory 
contour, which is a result of a neural algorithm, as if it 

were a real solid object in a visual scene. Both these 
models were first proposed as hypotheses of a specific 
neural computation. The existence of neural circuits 
implementing the respective neural computations was 
subsequently confirmed by a targeted experimental 
recording. 
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Abbreviations and symbols 
CD – coincidence detection, ECD – excitatory 
coincidence detection, ICD – inhibitory coincidence 
detection, EE – excitatory–excitatory interaction, EI –
 excitatory–inhibitory interaction, IID – interaural 
intensity difference, IPD – interaural phase difference, 
ISD – interaural spectral difference, ITD – interaural time 
difference, LSO – lateral superior olive, MSO – medial 
superior olive, PDF – probability density function, ΔJ –
 time jitter (delay random variable), ΔW – coincidence 
detection window, T – sound period and Δmax – maximum 
delay. The beta density is a probability density function 
written in a standard form as:  

, and 
Bab(x) = 0 otherwise, where the parameters a, b > 0 and 
B(a,b) is the (Euler) beta function. 
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