REVIEW

Models of Epileptic Seizures in Immature Rats

P. MAREŠ1

1Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Received April 10, 2012
Accepted May 15, 2012

Summary
Models of basic types of epileptic seizures are elaborated not only in adult but also in immature rodents. It is important because at least half of human epilepsies starts during infancy and childhood. This paper presents a review of chemically and electrically induced models of generalized convulsive and nonconvulsive (absence) seizures as well as models of partial simple (neocortical) and complex (limbic) seizures in immature rats. These models can also serve as a tool for study the development of central nervous system and motor abilities because the level of maturation is reflected in seizure semiology. Age-dependent models of epileptic seizures (absences and flexion seizures) are discussed. Models of seizures in immature animals should be used for testing of potential antiepileptic drugs.

Key words
Rat • Ontogeny • Epileptic seizures • Convulsant drugs • Electrical stimulation

Corresponding author
P. Mareš, Department of Developmental Epileptology, Institute of Physiology, v.v.i., Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic. E-mail: maresp@epilepsy.biomed.cas.cz

Experimental epileptology works mostly with the models of epileptic seizures induced by pharmacological or electrical epileptogenic agents. Both types of induction have some advantages and disadvantages: targets of pharmacological tools are defined in terms of transmitter or ion channel systems but their action is diffuse in the whole central nervous system. In addition, the specificity of action is always relative and depends on the dose. Electrical stimulation is usually focused on a single brain structure but all cellular elements in this structure are stimulated. These models are frequently used for testing of potential antiepileptic drugs.

Models of seizures should be adequate to human epileptic seizures. The basic classification of epileptic seizures differentiates between seizures with partial, focal origin and generalized seizures where the exact site of origin is impossible (or at least difficult) to find. There are reviews on models of epileptic seizures in adult experimental animals which are mostly focused on use of these models for testing of possible antiepileptic drugs (e.g. Loscher and Schmidt 1988, Engel 1992, White 1997, Kupferberg 2001, Sarkisian 2001, Rogawski 2006). There are two widely used models – maximal electroshock seizures adequate to human generalized convulsive (tonic-clonic) seizures and minimal metrazol seizures modeling myoclonic seizures (Loscher and Schmidt 1988). To have a model of complex partial seizures amygdala kindling is frequently used. Another model of this type of seizures can be elicited by 6 Hz electroshock (Barton et al. 2001).

Reviews of models of seizures in immature animals are scarce (Mareš et al. 1983, Mareš and Zouhar 1988, Mareš 1991) but there are some papers focused more on the pathophysiological mechanisms (Mareš et al. 1991, Moshé et al. 1991, Holmes and Ben-Ari 2001, Sanchez and Jensen 2001). Analogous to clinical epileptology some seizures are present at all stages of brain maturation like generalized tonic-clonic seizures elicited either electrically or chemically. Similarly, epileptic automatisms modeling complex partial seizures are present throughout the development. Like in pediatric patients, there are age-bound types of seizures. Some
experimental seizures can be elicited only if a certain level of maturation is reached (e.g. model of absence seizures present in rats three and more weeks old – Mareš et al. 1982, Schickerová et al. 1984, Mareš 1998). Models of childhood epileptic encephalopathies represent another developmental profile. Flexion seizures as the characteristic type of seizures in these early life epileptic syndromes can be induced by N-methyl-D-aspartate and agonists of its receptor up to the third week of postnatal life in rats but not later (Mareš and Velíšek 1992, Mareš et al. 1997).

The two obligatory models for a preclinical testing of perspective drugs were also studied in developing rodents.

Generator of generalized tonic-clonic seizures is localized in the brainstem (Browning and Nelson 1985) but the spinal cord isolated from the brain is also able to generate this type of seizures (Mareš 2006). They could be induced by maximal electroshock since the first postnatal day in rats (Vernadakis 1962). Not only transcutaneous or corneal stimulation is efficient, the same seizure pattern could be elicited by stimulation of the spinal cord isolated from brain by a complete transection. The same pattern of generalized tonic-clonic seizures (Browning and Nelson 1985) – Mareš and Trojan 1991). Exact pattern of generalized tonic-clonic seizures can be induced by high doses of many convulsant drugs – pentylenetetrazol (Mareš and Schickerová 1980, Pineau et al. 1999), bicuculline (Zouhar et al. 1989), Ro 5-3663 (Mareš et al. 1987), benzodiazepine receptor inverse agonist Ro 19-4603 (Kubová and Mareš 1994), strychnine (Kubová and Mareš 1995), aminophylline (Mareš et al. 1994), isonicotinhydrazide (Mareš and Trojan 1991). Exact pattern of generalized tonic-clonic seizures reflects the level of maturation of the motor system: clonic phase of these seizures is poorly coordinated in 7-day-old rats, movements resemble erroneous swimming movements. Coordination matures during the second and the third postnatal weeks so that P18 rats exhibit well-coordinated “running” movements. Generalized convulsant seizures elicited by N-methyl-D-aspartate and homocysteic acid exhibit a reversal of the two phases, clonic seizures precede the tonic phase.

Minimal metrazol seizures, i.e. nongeneralized clonic seizures, can be elicited since the third postnatal week in rats (Mareš and Schickerová 1980, Velíšek et al. 1992). Again, the same seizure pattern was elicited by other convulsant drugs – bicuculline (Zouhar et al. 1989), Ro 5-3663 (Mareš et al. 1987), isonicotinhydrazide (Mareš and Trojan 1991). Corneal electroshock with lower current intensities than those necessary for eliciting of generalized tonic-clonic seizures (Browning and Nelson 1985) and rhythmic cortical stimulation inducing cortical epileptic afterdischarges (Mareš et al. 2002) are also able to evoke this seizure pattern. Results with convulsant drugs demonstrated that the age when these seizures could be elicited is different for different drugs: pentylenetetrazol induced these seizures since postnatal day 18 (P18), bicuculline since P12 and isonicotinhydrazide even in 7-day-old rats. Electrical stimulation of sensorimotor cortex induced these seizures reliably since P12. These data speak in favor of different development of the generator which is mature very early and the access of triggering factors maturing differently according to the mechanism of the action of convulsant drugs. There is also a specificity in pharmacological mechanisms inducing these seizures: they could be evoked by drugs interfering with GABA_A (pentylenetetrazol, bicuculline, Ro 5-3663, picrotoxin, benzodiazepine receptor inverse agonist Ro 19-4603) and adenosine (aminophylline) receptors but not by glycine receptor antagonist strychnine (Kubová and Mareš 1985) and agonists of N-methyl-D-aspartate receptors (NMDA – Mareš and Velíšek 1992, homocysteic acid – Mareš et al. 1997). In addition to qualitative differences in the action of individual convulsant drugs there are quantitative differences. Drugs blocking GABAergic inhibition exhibit the most potent convulsant action in the third postnatal week (e.g. Velíšek et al. 1992). In contrast, N-methyl-D-aspartate and its agonists are extremely potent at very early postnatal age and their efficacy decreases with maturation of the brain (Mareš and Velíšek 1992, Mareš et al. 1997).

Generalized nonconvulsive seizures (models of absences – Snead 1992) cannot be reliably diagnosed without EEG recording. The episodes of spike-and-wave rhythm are accompanied only by minute motor signs like rhythmic jerks of vibrissae or ears (Schickerová et al. 1984). Loss of consciousness, which is characteristic for human absence seizures, can be modeled by a failure of motivated behavior like drinking of thirsty rats (Schickerová et al. 1989). EEG and motor features of these seizures cannot be found before the third postnatal week – faint signs of these activities were observed at P15, fully developed spike-and-wave rhythm was recorded in P18 rats (Schickerová et al. 1984). Another possible but not generally accepted model of absence seizures – rhythmic EEG activity induced by systemic administration of gamma-hydroxybutyrate – exhibits
similar developmental profile: this activity appears in the third postnatal week (Rokyt et al. 1981).

Both principal types of partial seizures were also studied in immature animals. Neocortical foci were elicited by local application of penicillin (Mareš 1973) or bicuculline methiodide (Velíšková et al. 1991, Soukupová et al. 1993). They can be induced since very early stages of brain development – penicillin neocortical foci since P3 (Mareš 1973a,b), bicuculline foci at least since P5 (Velíšková et al. 1991). In contrast to the two above mentioned convulsants locally applied acetylcholine was found to elicit epileptogenic foci since P9 (Staudacherová et al. 1978), i.e. at the developmental stage when excitatory action of acetylcholine on cortical neurons develops (Strejčková et al. 1987). Atropine acting nonspecifically on neuronal membrane induced epileptogenic foci earlier than acetylcholine (Staudacherová et al. 1978). Maturation of cortical epileptogenic foci is reflected in a shift from sharp wave to spike as the EEG correlate of interictal focal discharges (it appears around P12) and especially in development of projection of focal discharges which depends on the maturation of cortical pathways (corpus callosum – Jacobson 1963). Maturation of callosal connection is clearly seen not only in development of cortical interhemispheric responses (Seggie and Berry 1972, Mareš et al. 1975) but also in experiments with induction of two symmetrical epileptic foci and synchronization of their activity (Mareš 1973c). Transition from interictal to ictal phases was studied with bicuculline methiodide-induced foci and was found even at P7 (Soukupová et al. 1993). Prince and Gutnick (1972) in their study in kittens demonstrated the basic feature of epileptogenic foci in immature cerebral cortex – low level of synchronization of firing of individual neurons in the focus. Hablitz and Heinemann (1987) described another important difference between immature and mature cortex – much higher activity of extracellular K+ characterizing epileptic activity in developing cortex.

Hippocampal afterdischarges elicited by electrical stimulation can be used to model complex partial seizures characterized by epileptic automatisms. These afterdischarges can be evoked reliably at P7 (Velíšek and Mareš 1981, Lee et al. 1989). Another model is elicited by systemic administration of kainic acid. In dependence on the dose used it induces complex partial seizures without or with secondary generalization (Cherubini et al. 1983, Albala et al. 1984, Ben-Ari et al. 1984, Velíšková et al. 1988). Starting at P7 rats exhibit these seizures (Velíšková et al. 1988), other groups studied older animals – usually at the end of the second postnatal week. The most conspicuous automatism in both models is represented by wet dog shakes; this has a specific developmental profile. Wet dog shakes can be observed in rats since the second postnatal week, younger rats exhibit scratching as the main automatism (Ricci et al. 1983, Marešová and Mareš 1987). Orientation reaction (or at least its elements) in the well-known cage is also a common automatism. Among the elements sniffing is the simplest one and can be observed even in 7-day-old rats. Development of the motor system forms a background for relatively late appearance of a typical part of orienting reaction-rearing. Rat pups up to the third postnatal week are not able to rear without support (Blanck et al. 1967).

Amygdala is also a source of focal epileptic activity with clinical counterpart corresponding to complex partial seizures. The most important finding in amygdala-induced afterdischarges in kindling experiments is represented by a failure of postictal refractoriness (Moshé and Albala 1983). Local application of penicillin into amygdala of developing rats demonstrated P3-P4 as the youngest age when an epileptogenic focus could be induced (Kudo and Yamauchi 1988).

Conclusions and perspectives

It is possible to conclude that there are many models of epileptic seizures in immature rats. The data confirm the easy generation of epileptic seizures (ictogenesis) in the immature brain but it always depends on the epileptogenic agents used to elicit seizures. Motor as well as EEG patterns of seizures reflect the level of maturation of the central nervous system. Development of motor coordination may be studied in generalized convulsive seizures, maturation of synchronization of bioelectrical activity in interictal discharges of cortical epileptogenic foci as well as in EEG pattern of generalized seizures (Zouhar et al. 1980). In the last point it is necessary to differentiate between synchronization realized by intracortical connections and generalization with necessary participation of subcortical structures (thalamus as the most important structure).

As usually the data reviewed lead to many questions. Among the most important ones is the problem of age-bound type of seizures. Emprosthotonic (flexion) seizures can be observed only up to a certain level of maturation. Do they then disappear or are they masked by
other types of seizures? On the other hand, spike-and-wave rhythm characteristic for absence seizures and their models can be elicited only when some level of maturation is reached. What are the neurotransmitter mechanisms responsible for a sudden appearance of practically mature pattern? More questions should be answered including the relationship between ictogenesis and epileptogenesis – a progressive process resulting in spontaneous appearance of epileptic seizures.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
Supported by grants No. P304/10/1274, P302/10/0971 and P304/12/G069 of the Grant Agency of the Czech Republic and project LC-554 of Ministry of Education and projects AV0Z 50110905 and RVO:67985823.

References


