A Novel Carboxymethylated Mercaptotriazinoindole Inhibitor of Aldose Reductase Interferes With the Polyol Pathway in Streptozotocin-Induced Diabetic Rats

M. SOLTÉSOVA PRNOVA1, J. BALLEKOVA1, A. GAJDOSIKOVA1, A. GAJDOSIK1, M. STEFEK1

1Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic

Received March 13, 2015
Accepted June 5, 2015

Summary
The aim of the present work was to study the effect of 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (CMTI), an efficient aldose reductase inhibitor, on sorbitol accumulation in selected organs of streptozotocin-induced diabetic rats in vivo. In addition, the effect of CMTI on aldose reductase back reaction and on sorbitol dehydrogenase was determined. The model of experimental diabetes in male Wistar rats induced by streptozotocin was used. Experimental diabetes was induced by triple intraperitoneal doses of streptozotocin on three consecutive days. In diabetic rats, significant elevation of sorbitol concentration in the sciatic nerve and eye lenses was recorded. CMTI administered intragastrically (50 mg/kg/day) for five consecutive days significantly inhibited sorbitol accumulation in the sciatic nerve, yet it was without effect in eye lenses of diabetic animals. For aldose reductase back reaction, the substrate affinity of glycerol to aldose reductase was one order lower than that of glyceraldehyde in forward reaction. In addition, the back reaction was much slower, characterized by V_{max} value of about 30 times lower than that of the forward reaction. Inhibition of aldose reductase by CMTI was characterized by closely related IC_{50} values in submicromolar range for both forward and back reactions. No significant inhibition of the second enzyme of the polyol pathway, sorbitol dehydrogenase, by 100 μM CMTI was recorded (I=0.9±2.7 %, n=3). To conclude, the presented results showed the ability of CMTI to affect the polyol pathway in diabetic rats in vivo and represent thus a further step in a complex preclinical evaluation of CMTI as a potential agent for treatment of chronic diabetic complications.

Key words
Carboxymethylated mercaptotriazinoindole • Aldose reductase inhibitor • Polyol pathway • Diabetic complications

Corresponding author
M. Stefek, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia. E-mail: Milan.Stefek@savba.sk

Recently novel carboxymethylated mercaptotriazinoindoles have been identified as efficient inhibitors of aldose reductase (Stefek et al. 2015). Of them, 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic
acid (CMTI) was characterized by a corresponding IC$_{50}$ value in a submicromolar region. A reasonable degree of selectivity with respect to the closely related aldehyde reductase and AKR1B10 oxidoreductase (Stefek et al. 2015) was recorded.

Experimental diabetes in male Wistar rats (8-9 weeks, 230-250 g) was induced by triple intraperitoneal (i.p.) doses of streptozotocin (STZ, 30 mg/kg) on three consecutive days as described previously (Juskova-Karasova et al. 2014). Two days after the last dose of STZ, all animals with plasma glucose level >15 mM were considered diabetic and were included in the study. Control and diabetic animals were randomly assigned to untreated and treated groups of six rats each. CMTI was dissolved in physiological solution. The treatment was initiated on the fifth day of the experiment and continued for the next four days by intragastric (i.g.) administration via gavage. The dosage schedule was as follows: 12.5 or 25 mg/kg dose of CMTI was applied twice daily (8:30 and 15:30) for four days; the last dose was applied on the fifth day in the morning, three hours before killing of the animals. The animals were killed by cervical dislocation in ether anesthesia followed by exsanguination of the carotid artery. Eye lenses and sciatic nerves were frozen and kept in deep-freeze for sorbitol assay. The study was approved by the Ethics Committee of the Institute and performed in accordance with the Principles of Laboratory Animal Care (NIH publication 83-25, revised 1985) and the Slovak law regulating animal experiments (Decree 289, Part 139, July 9th 2003). The CMTI substance was provided by Matrix Scientific (Columbia, SC, USA) in 99.5 % purity, determined by the LC-MS technique (Stefek et al. 2015).

Diabetic rats with ad libitum access to food overnight were in the morning characterized by the levels of plasma glucose ranging from 24.6 to 27.7 mM. Morning plasma levels of glucose of STZ-treated rats fasting overnight were not significantly increased in comparison with control animals. Treatment of the animals with CMTI did not alter plasma glucose and body weight significantly either in control or diabetic animals.

In untreated diabetic rats, significant elevation of sorbitol concentration in the sciatic nerve and eye lenses was recorded. Sorbitol was determined by enzymatic analysis according to Mylari et al. (2003) modified by Juskova-Karasova et al. (2014). CMTI administered intragastrically (i.g., 50 mg/kg/day) for five consecutive days significantly inhibited sorbitol accumulation in the sciatic nerve, yet it was without effect in eye lenses of diabetic animals (Fig. 1 a,b). No significant inhibition of sorbitol accumulation either in the sciatic nerve or the eye lens was recorded in diabetic animals after administration of CMTI in the dosage regimen of 25 mg/kg/day. In control rats, administration of CMTI (50 mg/kg/day, i.g.) for five consecutive days did not affect significantly sorbitol levels in the sciatic nerve and the eye lens.

![Fig. 1. Accumulation of sorbitol in (a) sciatic nerves and (b) eye lenses of rats under conditions of STZ-induced experimental diabetes. Effect of CMTI administered intragastrically for five consecutive days according to the following dosage schedule: Group DT1: 12.5 mg/kg twice daily (8:30 and 15:30) for the first four days and 12.5 mg/kg on the fifth day, three hours before killing of the animals. Group DT2: 25 mg/kg twice daily in the same schedule as group DT1. Group D, untreated diabetic rats; group C, untreated control animals; group CT, control rats treated by CMTI 25 mg/kg twice daily (8:30 and 15:30) for the first four days and 25 mg/kg on the fifth day three hours before killing of animals. Results are mean values ± SD with 6 animals in a group. * p≤0.05 for DT2 vs. D, *** p≤0.001 for D vs. C](image-url)

This result points to a ready uptake of CMTI after its i.g. administration into the central compartment, its supply to the peripheral nerves and inhibition of
aldose-reductase-mediated sorbitol accumulation. Yet at the dosage regimen used, the sorbitol levels in nerves were not normalized to control values. Optimization of CMTI dosage regimen may improve the therapeutic outcome.

Table 1. Parameters of Michaelis-Menten kinetics for aldose reductase forward and back reaction with glyceraldehyde and glycerol as substrates.a

<table>
<thead>
<tr>
<th></th>
<th>K_m (mM)</th>
<th>V_{max} 10,000 x OD/s/mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward reaction</td>
<td>0.26 ± 0.02</td>
<td>2.45 ± 0.38</td>
</tr>
<tr>
<td>Back reaction</td>
<td>2.50 ± 0.75</td>
<td>0.081 ± 0.029</td>
</tr>
</tbody>
</table>

*a Activity of the forward reaction was assayed spectrophotometrically as described before (Stefek et al. 2015) by determining NADPH consumption at 340 nm and was expressed as decrease of the optical density (O.D.)/s/mg protein. The reaction mixture contained 4.67 mM D,L-glyceraldehyde as a substrate, 0.11 mM NADPH, 0.067 M phosphate buffer, pH 6.2 and 0.05 ml of the enzyme preparation in a total volume of 1.5 ml. The enzyme reaction was initiated by addition of D,L-glyceraldehyde and was monitored for 4 min after an initial period of 1 min at 30 °C. Activity of the back reaction was assayed under the same conditions as described for the forward reaction by using glycerol as a substrate and NADP+ as a cofactor. A time dependent increase of absorbance at 340 nm was recorded for 4 min. Results are mean values ± SD from at least three experiments.

The treatment of diabetic animals with CMTI had no effect on sorbitol levels in the eye lens. The absence of any effect of CMTI on sorbitol accumulation in lenses under in vivo conditions may be explained by the limited availability of the drug at this site. The lens, an organ without any blood vessels, is supplied through the anterior eye chamber. The same absence of lens response to therapy by an aldose reductase inhibitor was reported by Matsumoto et al. (2008) for ranirestat and Mylari et al. (1991) for zopolrestat. The latter authors recorded steady state levels of zopolrestat in rat blood plasma on the third day of repeated oral dosage of the drug. A fourteen-day period was required to reach a steady state concentration of zopolrestat in the sciatic nerve. Obviously, a longer period is needed for eye lenses. Assessment of the overall disposition and pharmacokinetics of CMTI may provide a definite answer, which was however beyond the scope of the present study.

As we reported recently (Stefek et al. 2015), in isolated rat eye lenses incubated in the presence of high glucose, CMTI inhibited sorbitol accumulation in a concentration-dependent manner. For CMTI concentrations ranging from 0.1 to 100 μM, the degree of sorbitol inhibition spanned from about 14 % to 50 %. This finding obviously points to accessibility of isolated lenses to the inhibitor.

Under in vivo conditions, in addition to pharmacokinetic behavior, a potential effect of CMTI on aldose reductase back reaction and/or on sorbitol dehydrogenase, the second enzyme of the polyol pathway, should be taken into account. We studied Michaelis-Menten kinetics of aldose reductase in forward and back reactions using glyceraldehyde and glycerol, respectively, as substrates. The kinetic parameters, summarized in Table 1, indicated that the substrate affinity of glycerol to aldose reductase in back reaction is by one order lower than that of glyceraldehyde in forward reaction. In addition, the back reaction is much slower, characterized by V_{max} value about 30 times lower than that of the forward reaction.

For aldose reductase back reaction with 7.5 mM glycerol substrate, CMTI concentration dependence gave IC$_{50}$=0.070±0.013 μM, which is closely related to the value of IC$_{50}$=0.097±0.019 μM for the forward reaction (Stefek et al. 2015). This finding indicates that the affinity of CMTI to the ternary complex „ALR2-NADPH-glyceraldehyde“ in forward reaction is similar to that of the ternary complex „ALR2-NADP+-glycerol“ in back reaction. Sluggishness of the back reaction resulted into poor reproducibility of experimental kinetic data, especially for lower substrate concentration, which prevented us to determine the type of inhibition of the back reaction by CMTI. The above findings indicated that the back reaction contributed to sorbitol consumption only marginally, thus even its effective inhibition would not affect the sorbitol level profoundly.

Inhibition of sorbitol dehydrogenase, the second enzyme of the polyol pathway, concurrently with inhibition of aldose reductase, should, at least partially,
eliminate the sorbitol-decreasing effect of aldose reductase inhibition. Obviously this is not the case, since no significant inhibition of sorbitol dehydrogenase activity by 100 μM CMTI was recorded (I=0.9±2.7 %, n=3). Activity of sorbitol dehydrogenase was assayed spectrophotometrically by following NAD$^+$ reduction at 340 nm. The reaction mixture contained 2.5 mM sorbitol as a substrate, 0.12 mM NAD$^+$, 10 mM phosphate buffer, pH 7.4 and 0.75 U sorbitol dehydrogenase (S-3764, Sigma-Aldrich, St Luis, Mo, USA) in the total volume of 1.5 ml. The enzyme reaction was initiated by addition of sorbitol and was monitored for 4 min after an initial period of 1 min at 37 °C.

To conclude, the presented results showed the ability of the efficient aldose reductase inhibitor CMTI to affect the polyol pathway in diabetic rats in vivo and thus represent a further step in a complex preclinical evaluation of CMTI as a potential agent for treatment of chronic diabetic complications.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
This work was supported by VEGA 2/0067/11 and VEGA 2/0041/15.

References
