SHORT COMMUNICATION

CL316243 Induces Phosphatidylinositol 3,4,5-triphosphate Production in Rat Adipocytes in an Adenosine Deaminase-, Pertussis Toxin-, or Wortmannin-Sensitive Manner

Y. OHSAKA¹,³, Y. NOMURA²,³

¹Department of Pharmacology, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Choshi, Chiba, Japan, ²Yokohama College of Pharmacy, Yokohama, Kanagawa, Japan, ³Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan

Received August 5, 2015
Accepted February 12, 2016
On-line March 15, 2016

Summary
The effect of β3-adenoceptor (β3-AR) agonists on adipocytes treated or not treated with signaling modulators has not been sufficiently elucidated. Using rat epididymal adipocytes (adipocytes) labeled with [32P]orthophosphate, we found that treatment with the selective β3-AR agonist CL316243 (CL; 1 μM) induces phosphatidylinositol (PI) 3,4,5-triphosphate (PI(3,4,5)P3) production and that this response is inhibited by adenosine deaminase (ADA, an adenosine-degrading enzyme; 2 U/ml), pertussis toxin (PTX, an inactivator of inhibitory guanine-nucleotide-binding protein; 1 μg/ml), or wortmannin (WT, a PI-kinase inhibitor; 3 μM). The results showed that CL induced PI(3,4,5)P3 production in intact adipocytes and that this production was affected by signaling modulators. Taken together, our findings indicate that CL produces PI(3,4,5)P3 in an ADA-sensitive, PTX-sensitive, or WT-sensitive manner and will advance understanding of the effect of β3-AR agonists on adipocytes.

Key words
Adipocytes • CL316243 (disodium (R,R)-5-[2-[(2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate) • Phosphatidylinositol 3,4,5-triphosphate

Corresponding author
Y. Ohsaka, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan. E-mail: y-ohsaka@live.jp; y-ohsaka@cis.ac.jp

Treatment of adipocytes with β3-adrenoceptor (β3-AR) agonists, including CL316243 (CL), induces various responses, including glucose transport and protein-kinase B phosphorylation (PKB activation) in a signaling modulator-sensitive manner (Ohsaka et al. 1998, Zmuda-Trzebiatowska et al. 2007). Polymorphic studies have indicated that signaling molecules associated with β3-AR can be targeted to improve adipocyte dysregulation (Arner and Hoffstedt 1999). However, the effect of β3-AR agonists on adipocytes, including those treated with signaling modulators, has not been fully elucidated.

Phosphatidylinositol (PI) 3,4,5-triphosphate (PI(3,4,5)P3) is a component of the PI 3-kinase-related pathway and has been shown to activate PKB (Walker et al. 1998). Additionally, expression of a PI(3,4,5)P3-responsive kinase in rat epididymal adipocytes (adipocytes) induces an insulin (INS)-responsive glucose transport-related response (Standaert et al. 1997). PI 3-kinase activation is induced in adipocytes treated with CL as well as INS (Ohsaka et al. 2014). In a previous study, PI(3,4,5)P3 was produced by INS treatment (0.1 μM), which peaked at about 1 min, in adipocytes in a signaling modulator (e.g. wortmannin [WT])-sensitive manner (Takasuga et al. 1999). However, it is unclear whether CL treatment produces phosphoinositides in intact adipocytes. The effect of CL treatment for 1 min on PI(3,4,5)P3 production is...
unknown.

Adenosine is released from adipocytes and degraded in adenosine deaminase (ADA; 2 U/ml, <10 min)-treated adipocytes (Shirakura and Tokumitsu 1990). Adipocyte membranes treated with an adenosine-receptor agonist modulate the inhibitory guanine-nucleotide-binding (G) protein G_i which can be affected by pertussis toxin (PTX) (Mitchell et al. 1989, Soeder et al. 1999). In addition, WT treatment (from 0.1 to <10 μM) inactivates the kinases that produce PI 3- and PI 4-monophosphates (Okada et al. 1994). Previous studies showed that adipocytes treated with ADA (2 U/ml, 30 min), PTX (0.2 μg/ml, 180 min), or WT (0.1 μM, 10 min) exhibit altered responses to β3-AR agonists (0.01-100 μM, 10-30 min) (Chaudhry et al. 1994, Ohsaka et al. 1997, 1998, Zmuda-Trzebiatowska et al. 2007), including ADA- or PTX-sensitive alteration of β3-AR agonist-induced adenosine 3’,5’-cyclic monophosphate (cAMP) accumulation. It is unclear whether CL produces PI(3,4,5)P3 in an ADA-, PTX-, or WT-sensitive manner.

To investigate the effect of β3-AR agonists on signaling modulator-treated or -untreated adipocytes, we examined whether treatment with CL (1 μM; Lederle Laboratories, Wayne, NJ) for 1 min produces PI(3,4,5)P3 and whether this response is affected by treatment with ADA (2 U/ml, 10 min; Sigma-Aldrich Co., St. Louis, MO), PTX (1 μg/ml, 60 min; Kaken Pharmaceutical Co., Tokyo, Japan), or WT (3 μM, 1 min; Kyowa Hakko Kogyo Co., Tokyo, Japan).

![Fig. 1. Effect of CL alone or in combination with ADA, PTX or WT on PI(3,4,5)P3 production in adipocytes. [32P]orthophosphate-labeled adipocytes that were treated or not treated with ADA (2 U/ml, 10 min) or PTX (1 μg/ml, 60 min) were incubated for 1 min with or without CL (1 μM; a-c). In addition, [32P]orthophosphate-labeled adipocytes treated with or without WT (3 μM, 1 min) were incubated for 1 min with or without CL (d and e) or INS (0.7 μM; e). Furthermore, adipocytes treated or not treated with ADA or PTX were incubated for 10 min with or without CL (f). The radioactivity of PI(3,4,5)P3 (PIP3) that was separated by TLC and the accumulation of cAMP in adipocytes were determined. Values are presented as means ± standard deviation of 3 or 4 experiments. Autoradiographic images represent typical results. The results were analyzed using analysis of variance with Scheffe’s test or unpaired Student’s t-test. † P<0.05 vs. cells treated without agents (b-e). * P<0.05 vs. cells treated with CL alone (d and f) or INS (e).]
Adipocytes (10⁶ cells/ml) were prepared from rat epididymal adipose tissues as described previously (Ohsaka et al. 2014). Animal experiments, which were approved by the institutional review board, were conducted in accordance with the guidelines established by the Japanese Association for Laboratory Animal Science (JALAS) (JALAS 1987). The adipocytes were incubated for 2 h in phosphate-free Krebs-Ringer bicarbonate buffer containing 3% bovine serum albumin (Sigma-Aldrich Co.) in the presence of carrier-free [³²P]orthophosphate (DuPont NEN, Boston, MA) at 37°C. [³²P]-labeled adipocytes treated with or without agents were immediately separated from the medium by centrifugation at 500 x g for 20 s, and phospholipids were extracted and separated by thin-layer chromatography (TLC) in a solution of chloroform/acetone/methanol/acetic acid/water (80:30:26:24:14, v/v) as described previously (Arcaro and Wymann 1993). The radioactivity of PI(3,4,5)P₃ was detected and quantified using a Fuji BAS2000 Bioimaging Analyzer (Fuji Photo Film Co., Tokyo, Japan).

To confirm the function of isolated adipocytes, we examined whether treatment with INS (0.7 μM, 1 min; Sigma-Aldrich Co.) produces PI(3,4,5)P₃ in a WT-sensitive manner and whether ADA or PTX treatment alters CL (1 μM, 10 min)-induced cAMP accumulation; cAMP accumulation was determined as described previously (Shirakura and Tokumitsu 1990). Treatment of the adipocytes with INS induced WT-sensitive PI(3,4,5)P₃ production (Fig. 1d), and ADA or PTX treatment altered CL-induced cAMP accumulation (Fig. 1f).

PI(3,4,5)P₃ is produced from PI 4,5-bisphosphate (PI(4,5)P₂) in a PI 3-kinase p85 regulatory subunit-containing immunocomplex (Kelly and Ruderman 1993). In G-protein subunit β (Gβ) antibody immunoprecipitates, CL treatment increases the PI 3-kinase p85 subunit level and phosphorylates the 3'-position of the inositol ring (Ohsaka et al. 2014). In addition, PI(3,4,5)P₃ is dephosphorylated by a PI(3,4,5)P₃ phosphatase in vitro, and this dephosphorylation is enhanced by PI(4,5)P₂ (Campbell et al. 2003). As shown in Figure 1a-e, CL treatment produced PI(3,4,5)P₃. This response is presumed to be regulated by a PI or phospho-PI kinase(s) and/or a phospho-PI phosphatase(s). Production of PI(3,4,5)P₃, which is produced by INS, was induced in CL-treated intact adipocytes.

PI(3,4,5)P₃ is able to activate PKB isoforms (Walker et al. 1998), including PKB-α/β (which can be phosphorylated). Additionally, treatment of adipocytes with PI(3,4,5)P₃ activates the protein-kinase C (PKC) isoform PKC-ζ (Standaert et al. 1997). The number of glucose transporters (GLUT4) in the plasma membrane (PM) is increased by expression of PKB-α (Tanti et al. 1997) or PKC-ζ (Standaert et al. 1997). CL-induced PI(3,4,5)P₃ production may regulate activation of PKB-α and/or -ζ the expression of which is observed in adipocytes (Walker et al. 1998) and PKC-ζ and may induce PM GLUT4 expression.

Adipocytes have the G₁-coupled A1 adenosine-receptor (Burnstock 2014). The G-protein subunit Gα of G₁,2 is modified by PTX (Mitchell et al. 1989); PTX inhibits receptor signaling-induced G-protein dissociation of the Gα and Gβγ subunits (Katada et al. 1984). ADA or PTX treatment did not induce CL-induced PI(3,4,5)P₃ production (Fig. 1a-e). The CL-induced PI(3,4,5)P₃ production may be regulated by adenosine-sensitive molecules including the A1 adenosine-receptor and by a PTX-sensitive G₁ isoform(s). Adipocytes express the PI 3-kinase isoforms p85/p110-α/ p110-β (Ohsaka et al. 2014 and Discussion section therein) and PI 4-kinase (Okada et al. 1994). The p85/p110-β isoform is activated by Gβγ in vitro (Hazeki et al. 1998). WT inactivates these kinases. In Figure 1d, CL-induced PI(3,4,5)P₃ production was inhibited by WT; such an inhibitory effect was not observed when another response (lipolysis) was measured (data not shown). Adipocyte membranes treated with β₃-AR agonists modulate G proteins (Soeder et al. 1999), including Gζ, which can regulate p85 complex formation in Gβ antibody immunoprecipitates (Ohsaka et al. 2014). CL-induced PI(3,4,5)P₃ production may be regulated by WT-sensitive PI kinases, including a PI 3-kinase isoform of p85/p110.

In this study, CL induced the production of PI(3,4,5)P₃ in intact adipocytes, and this production was affected by signaling modulators. Our findings indicate that CL produces PI(3,4,5)P₃ in an ADA-sensitive, PTX-sensitive, or WT-sensitive manner and will advance understanding of the effect of β₃-AR agonists on adipocytes.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
We thank Dr. Y. Tokumitsu (Hokkaido University, Japan) for helpful advice on the measurement of cAMP.
References

OHSAKA Y, NISHINO H, NOMURA Y: Adipose cells induce phospho-Thr-172 AMPK production by epinephrine or CL316243 in mouse 3T3-L1 adipocytes or MAPK activation and G protein-associated PI3K responses induced by CL316243 or aluminum fluoride in rat white adipocytes. *Folia Biol (Praha)* **60**: 168-179, 2014.

