Perindoprilat Changes ANG (1-9) Production in Renal Arteries Isolated From Young Spontaneously Hypertensive Rats After ANG I Incubation

P. P. WOŁKOW¹², B. BUJAK-GIŻYCKA¹², J. JAWIEŃ¹, R. OLSZANECKI¹, J. MADEJ¹, J. RUTOWSKI³, R. KORBUT¹

¹Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland, ²Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland, ³Department of Pharmacology, Medical Faculty, University of Rzeszów, Poland

Received February 13, 2015
Accepted October 16, 2015
On-line March 15, 2016

Summary
We used mass spectrometry to quantitate production of angiotensinogen metabolites in renal artery of 3- and 7-month-old Wistar-Kyoto (WKY) and Spontaneously Hypertensive Rats (SHR). Tissue fragments were incubated for 15 min in oxygenated buffer, with added angiotensin I. Concentrations of angiotensins I (ANG I), II (ANG II), III (ANG III), IV (ANG IV), angiotensin (1-9) [ANG (1-9)], angiotensin (1-7) [ANG (1-7)], and angiotensin (1-5) [ANG (1-5)], excreted into the buffer during experiment, were measured using liquid chromatography-mass spectrometry (LC/MS) and expressed per mg of dry tissue. Effects of pretreatment with 10 μM perindoprilat on the production of ANG I metabolites were quantitated. Background production of any of ANG I metabolites differed neither between WKY and SHR rats nor between 3- and 7-month-old rats. Perindoprilat pretreatment of renal arteries resulted, as expected, in decrease of ANG II production. However, renal arteries of 7-month-old SHR rats were resistant to ACE inhibitor and did not change ANG II production in response to perindoprilat. In renal arteries, taken from 3-month-old rats, pretreated with perindoprilat, incubation with ANG I, resulted in the level of ANG (1-9) significantly higher in SHR than WKY rats. Our conclusion is that in SHR rats, sensitivity of renal artery ACE to perindoprilat inhibition changes with age.

Key words
Angiotensin (1-9) • Renal artery • Spontaneously hypertensive rat

Introduction
Angiotensinogen metabolites play a prominent role in vasculature. For the long time, the most extensively studied pathway of metabolism of angiotensin I (ANG I) was formation of angiotensin II (ANG II), III (ANG III), and IV (ANG IV) through action of angiotensin converting enzyme (ACE) and aminopeptidases. Recently, cleavage of amino acids at the carboxy terminus of ANG I molecule, which leads to formation of angiotensins (1-9) (ANG (1-9)), (1-7) (ANG (1-7)), and (1-5) (ANG (1-5)) became also a subject of intense research (Vickers et al. 2002, Ferreira et al. 2012, Santos et al. 2013). Cleavage of carboxy terminal amino acid from ANG I to form ANG (1-9), mediated by angiotensin converting enzyme 2 (ACE 2), was discovered in the year 2000 (Donoghue et al. 2000, Tipnis et al. 2000). Other reactions in this pathway are mediated by cathepsins and neutral endopeptidases (Uehara et al. 2013, Jackman et al. 2002). Interest in this alternative pathway of ANG I metabolism is substantiated by the vasodilatatory and antiproliferative, i.e., cardioprotective effects of ANG (1-7), which are contrasted with vasoconstrictive and proliferative effects.
of ANG II (Chappell 2007, Iyer et al. 1998). Overproduction of ANG II plays an important role in development of hypertension and inhibitors of ACE are the cornerstone of antihypertensive therapy (Luque et al. 1996, Ferrario et al. 2005, Ferrario 2010). However, no drugs, targeting carboxy terminus cleaved angiotensins were developed for clinical use, so far.

Tikellis et al. (2006) described developmental changes in ACE and ACE2 expression and activity in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) controls. Interestingly, ACE but not ACE2 activity was lower in SHR rats compared to WKY controls. The aim of our study was to determine whether sensitivity of renal arteries to ACE inhibition changes with age and how this impacts ANG I metabolism in SHR and WKY rats.

Inbred strain of SHR rat is a well-established model of genetically determined hypertension. We incubated in water bath fragments of renal artery, isolated from SHR and WKY rats at the age of 3 months (when hypertension reaches plateau, Tikellis et al. 2006) and at 7 months (before the onset of kidney damage, Braun et al. 2013) to quantitate, by LC/MS method, production of ANG I metabolites. The effects of perindoprilat (an ACE-I) on angiotensin metabolism were also studied.

Materials and Methods

Animals

Male WKY and SHR rats, 3-month-old (n=9 for each strain), 330-400 g and 310-360 g of weight, respectively and 7-month-old (n=10 for each strain), 340-410 g and 400-440 g of weight, respectively, were administered fraxiparine (2850 IU, i.p.) and anesthetized with 50 mg of thiopentone (50 mg/ml, i.p.). Fragments of renal artery were excised through abdominal incision. All experimental studies using animals were approved by an Ethical Committee at the Jagiellonian University (No 12/2006).

Preparation of tissue fragments and “organ-bath” procedure

Tissue fragments were washed with cold, standard Krebs-Henseleit solution and cleaned of thrombi and tissue remnants. Blood vessels were cut into a suitable number of rings and rectangular rosettes of about 2 mm² each. Tissue incubation was performed as described previously (Bujak-Giżycka et al. 2007) in our earlier established and optimized protocol. Briefly, tissue fragments were incubated in triplicates, each in 400 µl of freshly prepared, 95% oxygen and 5% CO₂ bubbled Krebs buffer (at 37°C) with or without an ACE-I – perindoprilat at final concentration of 10 µM. Before addition of any exogenous substance, sample of 50 µl of buffer was removed to provide information on background levels of ANG I metabolites. After 5 min of incubation with perindoprilat or buffer, ANG I was added to a final concentration of 1 µM and samples were incubated for further 15 min (the choice of incubation times and substance concentrations was based on pilot experiments to provide the broadest possible representation of ANG I metabolite spectrum). Then, incubation buffer was removed and analyzed by LC/MS. Tissue fragments were dried overnight at 60°C and weighed to allow estimation of peptides’ production per mg of dry tissue.

Chemicals

ANG II and ANG (1-7) were purchased from Sigma Chemicals (USA). Angiotensins: ANG I, ANG III, ANG IV and ANG (1-9) as well as ANG (1-5) were purchased from Bachem (USA). Perindoprilat was a gift from Servier (France). Formic acid (99 %), trifluoroacetic acid (TFA) and ammonium formate were purchased from Fluka (USA). Acetonitrile (J. T. Baker, USA), and water (Rathburn, Scotland) were HPLC grade.

LC/MS measurement of angiotensin peptides

Metabolites of ANG I were analyzed by LC/MS method, developed in our previous studies (Bujak-Giżycka et al. 2007, Olszanecki et al. 2008), with analytical conditions optimized to current type of samples. Separation of peptides was performed on a reversed-phase HPLC system, equipped with a quaternary high pressure pump L-7000 (Merck, Germany), using a Purospher STAR RP C18e column (125 mm × 2 mm ID, 5 µm particle size) with an appropriate guard C18 column (4 mm × 4 mm ID, 5 µm particle size). Samples were injected onto chromatographic column in a volume of 50 µl. The
optimized mobile phase solvents were: 5% acetonitrile in a buffer of 4 mM ammonium formate with 4 mM of formic acid (phase A) and 90% acetonitrile in the same buffer (phase B). Angiotensin peptides were separated at a flow rate of 0.25 ml/min with a linear gradient of B in A. Retention times were as follow: 13.00 min (ANG (1-7)), 13.70 min (ANG (1-5)), 14.00 min (ANG (1-9)), 14.45 min (ANG III), 14.80 min (ANG II), 15.10 min (ANG IV) and 15.35 min (ANG I).

Mass spectrometric detection was performed using an LCQ ion-trap mass spectrometer (Finnigan, San Jose, USA), with an ESI source (electrospray). All experiments were carried out in the positive ion mode (ion spray voltage 5 kV; capillary voltage 46 V; capillary temperature 200 °C, nitrogen flow rate 65 psi) and selective ion monitoring (SIM) mode, as previously described (Bujak-Giżycka et al. 2007). M/z values of monitored ions corresponded mainly to doubly-protonated molecules of all angiotensins, except the single-charged ions of ANG IV and ANG (1-5), and were the following: 450 for ANG (1-7) (MW=899.02), 466 for ANG III (MW=931.11), 524 for ANG II (MW=1046.19), 592 for ANG (1-9) (MW=1183.34), 649 for ANG I (MW=1296.51), 665 for ANG (1-5) (MW=664.76) and 775 for ANG IV (MW=774.92). Acquired data were analyzed by Xcalibur Software v. 1.2 (Fig. 1).

Samples for calibration curves of each examined peptide (mixture of standards) were analyzed in the same mode as above. Concentrations of angiotensins were calculated using the standard calibration curves, constructed by linear regression analysis by plotting of peak area vs. angiotensin concentration. Calibration curves were prepared for each examined peptide at a concentration range of 20 pM – 100 nM.

Statistics

Concentrations of angiotensins were expressed as in pmol/mg dry tissue. All values in the figures and text are expressed as mean ± SD. Concentrations of studied analytes were compared using non-parametric Wilcoxon’s test. A P value of less than 0.05 was considered statistically significant.

Results

Background level of all of examined angiotensinogen metabolites was negligible and didn’t influence the results of further conversion of exogenously

Fig. 1. Representative chromatograms of products of ANG I conversion by renal artery of SHR (A) and WKY (B) rats. Inserts show extracted values of monitored ions of major metabolites.
added ANG I.

After incubation of the renal arteries with ANG I, concentrations of produced metabolites [ANG II to ANG (1-5)] did not differ significantly between the rat strains, but were higher in 3-month-old than in 7-month-old animals (p<0.04) for ANG II, ANG III, and ANG IV metabolites), and higher in 7-month-old rats for ANG (1-9) (Fig. 2 A-B).

The pattern of produced metabolites did not differ significantly between 7-month-old and 3-month-old rats, as well as between SHR and WKY strains. The main product of ANG I metabolism was ANG II, in all groups, but surprisingly, the higher production was observed in a control (WKY) group.

Pretreatment with perindoprilat caused very strong inhibition of ANG II production in WKY in comparison to SHR rats. In 3-month-old animals, effect of ACE-I action was significantly more pronounced than in 7-month-old rats. Concentration of ANG II was 88.88 % lower in 3-month-old WKY rats (0.10 pmol/mg after perindoprilat pretreatment vs. 0.90 pmol/mg), but in 7-month-old animals decrease was only 60.27 % (0.17 pmol/mg vs. 0.42 pmol/mg). Renal arteries of SHR rats were less sensitive to ACE-I action – in 3-month-old group 56.83 % decrease was observed (0.29 pmol/mg vs. 0.67 pmol/mg), and surprisingly, only 8.73 % inhibition in 7-month-old rats (0.30 pmol/mg vs. 0.33 pmol/mg) (Fig. 3).

However, the most striking results obtained by us, concerned the level of ANG (1-9), produced by renal arteries after incubation with ANG I.

In 3-month-old rats (Fig. 4A), renal artery incubated with ANG I produced a similar amount of ANG (1-9) in both WKY and SHR rats. However, perindoprilat pretreatment of renal arteries, before ANG I incubation, almost tripled production of ANG (1-9) in SHR rats, while no increase or even some decline of ANG (1-9) production was evident in WKY rats (p<0.05 comparing strains of 3-month-old rats pretreated with perindoprilat).

In 7-month-old SHR rats (Fig. 4B), production of ANG (1-9) after incubation of renal arteries with...
ANG I is increased, compared to 3-month-old SHR rats. In 7-month-old SHR rats, the concentration of ANG (1-9) is similar to the level observed in 3-month-old rats pretreated with perindoprilat. In 7-month-old SHR rats, pretreatment with perindoprilat does not induce further increase in ANG (1-9) production.

In contrast to SHR rats, renal arteries of 7-month-old WKY rats produce from ANG I the similar amount of ANG (1-9) as 3-month-old WKY rats (Fig. 4B). However, perindoprilat pretreatment in this group of 7-month-old WKY rats leads to increase of ANG (1-9) production to the same level as in SHR rats. The influence of perindoprilat on production of ANG II, ANG (1-7) and ANG (1-9) in both strains of 3-month-old and 7-month-old rats is summarized in Table 1.

Discussion

In our study we assessed the metabolism of ANG I in renal arteries of spontaneously hypertensive rats. Apart from the dominant in the literature, classical pathway of metabolism to ANG II, ANG III, and ANG IV, an interesting alternative in the form of ANG (1-9), ANG (1-7), and ANG (1-5) was discovered. ANG (1-7) is an active peptide of RAS. It counteracts vasoconstriction by releasing nitric oxide and prostacyclin (Fang et al. 2013). Moreover, it opposes ANG II mitogenic, arrhythmogenic and procoagulant activities (Trask and Ferrario 2007). Enhancing natriuresis and diuresis, it inhibits water and sodium retention caused by ANG II. Recently, it has been shown that vasodilatative and diuretic activities of ANG (1-7) are mediated via Mas, a G-protein coupled receptor (Santos et al. 2003). Furthermore, some activities of ANG (1-7) are blocked by AT1 and AT2 receptors antagonists (Clark et al. 2001). On the other hand, ANG (1-7) independently to Mas receptor, increases bradykinin activity and antagonizes hypertrophic action of ANG II (Su 2014).

Chronic activation of RAS is a major cause of chronic kidney diseases. Main components of RAS are present within the kidney (angiotensinogen, AT1R, renin and ACE). There are many evidences of the important role of intrarenal ACE in inducing hypertension, even in the absence of systemic ACE (Gonzalez-Villalobos et al. 2013).

Our results showed that there are specific age related differences in metabolic pathways. In renal arteries of 3-month-old animals, higher amounts of ANG II, ANG III, and ANG IV were formed than in 7-month-old rats while ANG (1-9) was produced in lower level in these rats. Our most important finding is that angiotensin (1-9) is elevated in renal arteries isolated from 7-month-old SHRs after incubation with ANG I and also after treatment with perindoprilat.

Still very little is known about the role of ANG (1-9), other than being a precursor of ANG (1-7). Recent studies suggest that this peptide has beneficial effects in hypertension and organ damage, caused by ANG II. There are strong evidences that ANG (1-9) could reduce the hypertension and ameliorate cardiac and aortic wall hypertrophy and fibrosis in hypertensive rats (Ocaranza et al. 2014b). Treatment with ANG (1-9) resulted in decrease of circulating ANG II level and ACE activity.
ANG (1-9) is the RAS peptide found in the plasma of healthy volunteers and in patients treated with ACE-I (McKinney et al. 2014). It was also demonstrated that the concentration of ANG (1-9) increases in plasma and heart tissue of rats after myocardial infarction (Ocaranza et al. 2006). It can be produced from ANG I by carboxypeptidase A (CPA) or a CPA-like enzyme (McKinney et al. 2014, Ocaranza et al. 2014a) or by the recently recognized ACE2 (Vickers et al. 2002, Donoghue et al. 2000, Tipnis et al. 2000). Campbell et al. (1991) found that ANG (1-9) concentration in the kidney homogenates was higher than concentration of ANG II. Concentration of ANG (1-9) reached there about 50% of ANG I level. Moreover, the main products of ANG I metabolism in human heart are both ANG (1-9) and ANG II, generated by heart chymase, ACE or carboxypeptidase A (Kokkonen et al. 1997). ANG (1-9) was shown to be a strong competitive inhibitor of ACE (at multiple-fold lesser concentration than ANG I) both in human heart and platelets (McKinney et al. 2014, Ocaranza et al. 2014a). Moreover, ANG (1-9), like ANG (1-7) and ACEIs, increases nitric oxide and arachidonic acid release due to enhanced bradykinin action on its B2 receptor (Jackman et al. 2002), while the links among vasodilator systems: NO, prostaglandins and bradykinin are already well known (Ocaranza et al. 2014a).

During the development of hypertension, changes in RAS components levels are observed. Results obtained from 5-week-old SHR rats (Zhou et al. 2012) showed that ANG II serum level increased rapidly for the first few weeks (starting from 5 to 11), then, up to 18 week, level of ANG II seems to achieve the steady state after the slight decrease. After 18th week of age, ANG II level raised again. Interestingly, ANG (1-7) level showed the tendency to “plateau-like” until 14-week, then rapid increase was observed up to 17 week and next slight drop. Treatment with ACE-I resulted in significant decrease of ANG II production, but with low increase of
ANG (1-7). Nevertheless, these results concern circulating RAS and cannot be directly translated to production in the tissue.

There are only few studies of ANG I metabolism in renal artery. According to our previous results, metabolism of ANG I in renal artery differs from aorta (Bujak-Giżycka et al. 2007). In rat aorta, main metabolite of ANG I was also ANG II, but its production was significantly higher than other metabolites. This fact indicates the prominent role of ACE-dependent metabolic pathway, whereas in renal arteries other metabolites were in comparable levels as ANG II, possibly due to high activity of others RAS enzymes, like ACE2 or NEP.

In our experiments, pretreatment with perindopril resulted in decrease in ANG II production by renal arteries (p=0.05). This effect was strongly pronounced in 3-month-old animals. Moreover, elevated production of ANG (1-7) and ANG (1-9) (p=0.05) was observed in 3-month-old SHR rats, whereas in control group was negligible (Table 1).

Obtained results suggest that ACE-I caused not only expected decrease of ANG II formation, but also higher production of ANG (1-9) and more intensive metabolism of ANG II to ANG (1-7). Additionally, lower sensitivity of renal artery to ACE inhibition was observed in SHR rats at 7 months of age. Our data are in line with the results of Tikellis et al. (2006) who demonstrated that activity of ACE but not that of ACE2 is lower in 80-day-old SHR rats compared to WKY controls and with the results of Mooradian and Lieberman (1990) who observed lower activity of ACE in 6- compared to 2-month-old Fisher rats.

Quantitation of angiotensin peptides requires very specific and sensitive methods. In many studies, the most popular were radioimmunoassay (RIA) or ELISA measurements (Liu et al. 2011, Wang et al. 2003), but these methods do not allow to distinguish and assess each one of ANG I metabolites. This aim can be achieved by using liquid chromatography separation techniques (Singh et al. 2005), especially with mass spectrometric detection, like LC/MS (Olszanecki et al. 2008, Suski et al. 2013, Cui et al. 2007) or MALDI/TOF (Velez et al. 2009). We developed LC/MS method to measure angiotensin metabolism in ex vivo model (Fig. 1). This method was used in our studies, not only in animal tissue (Bujak-Giżycka et al. 2007, Olszanecki et al. 2008), but also in cell lines (Suski et al. 2013) and human tissue fragments (Stettner et al. 2013).

However, our study has got some limitations. Ex vivo model, used in present experiment, does not show the endogenous levels of ANG I peptides, but rather describes the “ability” of current tissue to metabolize ANG I. Similar models were successfully used by other authors (Velez et al. 2009, Singh et al. 2005) as well as in our earlier studies (Bujak-Giżycka et al. 2007, Olszanecki et al. 2008, Stettner et al. 2013) and we suppose that results are adequate to living tissue. On the other hand, it could be noticed that in this model, isolated tissue fragments present a static system, without influence of many biochemical pathways and without dynamic changes, characteristic for the living body.

In conclusion, we found that with ageing, renal artery of SHR rat become less sensitive to treatment with ACE-Is. Moreover, our observation that ANG (1-9) is elevated in renal arteries of 3-month-old rats after ANG I and perindoprilat incubation in SHRs corroborates with the previous observations, pointing towards the role of ACE2 – ANG (1-7) – receptor Mas axis as an important endogenous mechanism of homeostasis in young rats, despite strong pressure from the opposite ACE – ANG II – AT1 receptor axis (Chappell 2007). Confirmation of this mechanism could be obtained by experiments in “gene-

Table 1. Concentrations of angiotensin II (ANG II), angiotensin (1-7) (ANG (1-7)) and angiotensin (1-9) (ANG (1-9)) [pmol/mg of dry tissue] after incubation of renal arteries of 3-month-old (3M) and 7-month-old (7M) Wistar-Kyoto (WKY) and Spontaneously Hypertensive (SHR) rats with 1 μM angiotensin I (Mean ± Standard Deviation, pmol/mg of dry tissue).

<table>
<thead>
<tr>
<th>Age group</th>
<th>Rat strain</th>
<th>ANG II</th>
<th>P</th>
<th>ANG (1-7)</th>
<th>N</th>
<th>P</th>
<th>ANG (1-9)</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M</td>
<td>SHR</td>
<td>0.67 ± 0.33</td>
<td>0.29 ± 0.11</td>
<td>0.37 ± 0.20</td>
<td>0.63 ± 0.17</td>
<td>0.13 ± 0.09</td>
<td>0.34 ± 0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WKY</td>
<td>0.90 ± 0.63</td>
<td>0.10 ± 0.01</td>
<td>0.45 ± 0.38</td>
<td>0.43 ± 0.26</td>
<td>0.14 ± 0.14</td>
<td>0.06 ± 0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7M</td>
<td>SHR</td>
<td>0.33 ± 0.34</td>
<td>0.30 ± 0.38</td>
<td>0.32 ± 0.27</td>
<td>0.27 ± 0.26</td>
<td>0.30 ± 0.17</td>
<td>0.32 ± 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WKY</td>
<td>0.42 ± 0.43</td>
<td>0.17 ± 0.10</td>
<td>0.26 ± 0.21</td>
<td>0.38 ± 0.39</td>
<td>0.18 ± 0.11</td>
<td>0.32 ± 0.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P – Renal arteries were pretreated with 10 μM perindoprilat before addition of ANG I. N – no pretreatment with perindoprilat.
targeted” mice without functional Mas receptor.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
This article was supported by the grants from Polish National Center of Science (NCN): No 2012/05/B/NZ4/02743, N N402 096 32/3258, N N402 468937, N N401 293939, and from statutory funds of the Jagiellonian University Medical College K/ZDS/001488. We would like to thank Servier company for a gift of perindoprilat. We also thank Jolanta Reyman and Alicja Starośniak for their excellent technical support.

References

VELEZ JC, RYAN KJ, HARBESON CE, BLAND AM, BUDISAVLJEVIC MN, ARTHUR JM, FITZGIBBON WR, RAYMOND JR, JANICH MG: Angiotensin I is largely converted to Angiotensin (1-7) and Angiotensin (2-10) by isolated rat glomeruli. *Hypertension* **53**: 790-797, 2009.

