Beneficial Effect of Continuous Normobaric Hypoxia on Ventricular Dilatation in Rats With Post-Infarction Heart Failure

J. HRDLIČKA1,2, J. NECKÁŘ1, F. PAPOŠEK1, J. VAŠINOVÁ1, P. ALÁNOVÁ1, F. KOLÁŘ1

1Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic, 2Department of Physiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic

Summary
Adaptation to continuous normobaric hypoxia (CNH) protects the heart against ischemia/reperfusion injury but much less is known about its potential therapeutic effects. The aim of this study was to find out whether post-infarction exposure to CNH can attenuate the progression of heart failure. Ten-week-old male rats underwent myocardial infarction (MI) or sham operation. MI was induced by 60-min coronary artery occlusion. Seven days post-MI, the rats were randomly assigned to two groups: i) sedentary controls kept at room air and ii) rats exposed to CNH (12 % O2, 3 weeks). Echocardiographic examination of the left ventricle (LV) was performed 3 days before surgery and 7, 14 and 28 days post-MI. MI resulted in a gradual increase in LV end-diastolic diameter (LVDd) compared to sham-operated animals. Fractional shortening (FS) decreased from 42.8 % before MI to 15.1 % on day 28 post-MI. CNH significantly attenuated ventricular dilatation without affecting scar area and FS. Our data suggest that prolonged exposure to CNH has certain potential to attenuate the progression of unfavorable changes in ventricular geometry induced by MI in rats.

Key words
Chronic hypoxia • Heart failure • Myocardial infarction

Corresponding author
J. Hrdlička, Department of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic. E-mail: jaroslav.hrdlicka@biomed.cas.cz

It has been well established that adaptation to chronic hypoxia confers long-lasting cardioprotection against various manifestations of injury caused by acute ischemia/reperfusion (I/R) insult. Increasing evidence has indicated that ischemia-resistant cardiac phenotype can be induced by both continuous hypoxia (Neckář et al. 2013, Chytilová et al. 2015) and certain regimens of intermittent hypoxia (reviewed in Kolář and Ošťádal 2004). However, much less attention has been paid to potential beneficial effects of chronic hypoxia in secondary prevention of chronic ischemic heart disease and post-infarction heart failure (HF). Del Pilar et al. (2006) demonstrated that intermittent hypobaric hypoxia (IHH) improved myocardial perfusion in patients with severe coronary heart disease. Exposure to repeated brief cycles of hypoxia and normoxia for 4 weeks improved cardiac contractile function in a transgenic mouse model of HF (Naghshin et al. 2012). Moreover, therapeutic action of IHH on post-infarcted rat hearts has been reported that manifested as a limitation of scar size and attenuation of both progressive myocardial remodeling and contractile dysfunction. These effects can be related to the increased angiogenesis and reduced apoptotic response in the border zone of infarction (Xu et al. 2011). It is unknown whether similar beneficial effects can be afforded by continuous hypoxia. Therefore, the aim of this study was to find out whether prolonged continuous exposure of rats to hypoxia ameliorates progression of post-infarction HF.

Adult male Wistar rats (10-week-old, initial
body weight 340-390 g, Anlab, Czech Republic) were housed in a controlled environment (23 °C; 12:12-h light-dark cycle) and given water and a standard chow diet ad libitum. Animals were randomly assigned into 3 groups: i) sham-operated (Sham), ii) rats with myocardial infarction (MI) and iii) rats with MI exposed to continuous normobaric hypoxia (CNH) (MI/CNH). The study was conducted in accordance with the Guide for the Care and Use of Laboratory Animals (National Academy of Science, National Academy Press, Washington D.C.). The experimental protocols were approved by the Animal Care and Use Committee of the Institute of Physiology of the Czech Academy of Sciences.

Acute I/R insult was performed in anesthetized (sodium pentobarbital, 60 mg kg\(^{-1}\) i.p.) open-chest rats ventilated with room air essentially as described previously (Neckář et al. 2002), except for coronary artery occlusion prolonged to 60 min. Sham surgery was performed identically without occlusion. Then all spontaneously breathing animals recovering from anesthesia were housed in separate cages and received analgesis (Ibuprofen, 6 mg/day p.o.) for another two days.

Since day 7 post-MI, the rats assigned to CNH were housed for 3 weeks in a hypoxic normobaric chamber (12% O\(_2\)) equipped with hypoxic generators (Everest Summit, Hypoxico Inc., NY, USA). A single 30-min reoxygenation period occurred at day 14 for echocardiographic examination.

Echocardiography was performed 3 days before MI and 7, 14 and 28 days post-MI using GE Vingmed System Five (GE Vingmed Ultrasound, Horten, Norway) and FPA 10 MHz probe (GE Vingmed Ultrasound, Horten, Norway). Animals were anesthetized with 2% isoflurane (Forane; Abbott Laboratories, Queenborough, UK) mixed with room air. Echocardiographic data were recorded and analysed in short and long axis of the heart and in 2D-mode and M-mode. Directly measured LV end-diastolic and end-systolic parameters included cavity diameter (LVD\(_d\) and LVD\(_s\)), anterior wall thickness (AWT\(_d\) and AWT\(_s\)) and posterior wall thickness (PWT\(_d\) and PWT\(_s\)). Based on the LV dimension, fractional shortening (FS) was derived as follows: $FS(\%) = \frac{100 \times (LVD_d - LVD_s)}{LVD_d}$. Values of heart rate (HR) were averaged from at least 4 heart cycles.

![Figure 1](image-url)

Fig. 1. Left ventricular (LV) echocardiographic parameters and histology of hearts from sham-operated rats (Sham), rats with myocardial infarction (MI) and rats with MI exposed to continuous normobaric hypoxia (MI/CNH). (A) LV end-diastolic diameter (LVD\(_d\)), (B) Fractional shortening (FS), (C) Examples of transverse sections of hearts stained with Picrosirius Red for scar delineation at day 28 after surgery, (D) Relationship between body weight (BW) and LVD\(_d\) at day 28 post-MI, (E) Relationship between scar circumference (SC) and LVD\(_d\) at day 28 post-MI. Values are means ± SEM from 9-11 hearts in each group. * P<0.05 MI/CNH vs. MI, † P<0.05 Sham vs. IM and IM/CNH.
After the last echocardiographic measurement, hearts were excised, washed with Tyrode’s solution, perfusion-fixed and stored in 4 % paraformaldehyde for 2 days at 4 °C. Hearts were cut perpendicularly to the long axis at the largest circumference, embedded in paraffin, sectioned (9-μm slices) and stained with Picosirius Red (Sigma-Aldrich, St. Louis, Missouri, USA). Slices were recorded with Olympus VS 110-S1 microscope (OlyVIA microscope (lens magnification 20×; Olympus, Hamburg, Germany) traced with computerized planimetry (OlyVIA software, San Diego, CA, USA). Differences were considered significant when P<0.05.

Slices were recorded with Olympus VS 110-S1 microscope (lens magnification 20×; Olympus, Hamburg, Germany) traced with computerized planimetry (OlyVIA software, San Diego, CA, USA). Differences were considered significant when P<0.05.

Data are presented as means ± SEM Statistical evaluations were done using one-way ANOVA with Newman-Keuls post-hoc test using GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA). Differences were considered significant when P<0.05.

I/R insult led to 56 % mortality within 48 h post-MI compared to 100 % survival in sham-operated group.

Table 1. Body weight (BW) and left ventricular (LV) echocardiographic parameters of hearts from sham-operated rats (Sham), rats with myocardial infarction (MI) and rats with MI exposed to continuous normobaric hypoxia (MI/CNH).

<table>
<thead>
<tr>
<th>Days after surgery</th>
<th>Group</th>
<th>BW (g)</th>
<th>HR (bpm)</th>
<th>LVDs (mm)</th>
<th>AWTd (mm)</th>
<th>AWTs (mm)</th>
<th>PWDd (mm)</th>
<th>PWPs (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>Sham</td>
<td>365±19</td>
<td>377±8</td>
<td>4.65±0.09</td>
<td>2.14±0.09</td>
<td>3.28±0.08</td>
<td>1.82±0.03</td>
<td>2.86±0.05</td>
</tr>
<tr>
<td></td>
<td>MI</td>
<td>379±22</td>
<td>382±14</td>
<td>4.52±0.13</td>
<td>2.13±0.06</td>
<td>3.30±0.08</td>
<td>1.95±0.06</td>
<td>3.01±0.08</td>
</tr>
<tr>
<td></td>
<td>MI/CNH</td>
<td>341±25</td>
<td>375±8</td>
<td>4.53±0.12</td>
<td>2.04±0.07</td>
<td>3.26±0.10</td>
<td>1.86±0.07</td>
<td>2.67±0.09</td>
</tr>
<tr>
<td>7</td>
<td>Sham</td>
<td>425±12</td>
<td>387±7</td>
<td>4.83±0.06</td>
<td>2.26±0.06</td>
<td>3.34±0.09</td>
<td>1.92±0.04</td>
<td>2.93±0.06</td>
</tr>
<tr>
<td></td>
<td>MI</td>
<td>409±17</td>
<td>378±8</td>
<td>8.34±0.25</td>
<td>1.86±0.07</td>
<td>1.90±0.07</td>
<td>1.95±0.09</td>
<td>2.92±0.09</td>
</tr>
<tr>
<td></td>
<td>MI/CNH</td>
<td>382±20</td>
<td>362±6</td>
<td>7.97±0.18</td>
<td>1.91±0.11</td>
<td>1.96±0.12</td>
<td>2.11±0.06</td>
<td>2.96±0.12</td>
</tr>
<tr>
<td>14</td>
<td>Sham</td>
<td>465±13</td>
<td>377±7</td>
<td>4.87±0.14</td>
<td>2.33±0.07</td>
<td>3.56±0.08</td>
<td>2.04±0.09</td>
<td>3.15±0.05</td>
</tr>
<tr>
<td></td>
<td>MI</td>
<td>446±16</td>
<td>390±8</td>
<td>9.02±0.34</td>
<td>1.81±0.06</td>
<td>1.77±0.05</td>
<td>2.00±0.04</td>
<td>3.05±0.07</td>
</tr>
<tr>
<td></td>
<td>MI/CNH</td>
<td>400±22</td>
<td>365±9</td>
<td>8.13±0.19</td>
<td>1.84±0.06</td>
<td>1.84±0.06</td>
<td>2.13±0.08</td>
<td>3.12±0.14</td>
</tr>
<tr>
<td>28</td>
<td>Sham</td>
<td>527±12</td>
<td>367±5</td>
<td>5.09±0.07</td>
<td>2.25±0.07</td>
<td>3.54±0.09</td>
<td>1.99±0.06</td>
<td>3.17±0.07</td>
</tr>
<tr>
<td></td>
<td>MI</td>
<td>503±14</td>
<td>376±7</td>
<td>9.77±0.39</td>
<td>1.81±0.03</td>
<td>1.83±0.04</td>
<td>2.12±0.06</td>
<td>3.11±0.06</td>
</tr>
<tr>
<td></td>
<td>MI/CNH</td>
<td>448±17</td>
<td>341±15</td>
<td>8.43±0.22</td>
<td>1.84±0.06</td>
<td>1.89±0.07</td>
<td>2.31±0.08</td>
<td>3.24±0.08</td>
</tr>
</tbody>
</table>

Values are means ± SEM from 9-11 rats in each group. HR, heart rate; LVDs, end-systolic LV diameter; AWTd, end-diastolic anterior wall thickness; AWTs, end-diastolic anterior wall thickness; PWDd, end-diastolic posterior wall thickness; PWPs, end-diastolic posterior wall thickness. * P<0.05 MI/CNH vs. MI, † P<0.05 Sham vs. MI and MI/CNH, ‡ P<0.05 Sham vs. MI/CNH.

As adaptation to CNH resulted in lower body weight compared to MI group (Table 1), it can be argued that body growth retardation was responsible for the attenuation of MI-induced LV dilatation (Litwin et al. 1994). However, the relationship between body weight and LVDd (Fig. 1D) clearly shows that it cannot fully explain the beneficial effect of CNH. Similar attenuation of LV dilatation has been observed in infarcted rats.
exposed to chronic IHH which did not affect body weight (Xu et al. 2011). It also should be noted that the CNH-induced LVD\textsubscript{d} lowering compared to MI group was independent of the proportion of scar tissue (Fig. 1E). In contrast to the study of Xu et al. (2011), we did not observe any improvement of FS in infarcted rats adapted to CNH. The reason for this discordance is unknown but differences between models and protocols of IHH and CNH can play a role. In addition, it cannot be excluded that the large extent of MI injury in our study already exceeded the limits of potential effective amelioration of systolic function by chronic hypoxia.

In conclusion, the prolonged exposure of rats to CNH has certain therapeutic potential against the unfavorable changes in ventricular geometry induced by severe MI. Further studies are needed to optimize CNH protocol in order to alleviate the progression of MI-induced heart failure.

Conflict of Interest

There is no conflict of interest.

Acknowledgements

This study was supported by Grant Agency of the Charles University in Prague (project GA UK 798813 to J. H.), Ministry of Health of the Czech Republic (grant 15-27735A to J. N.) and Czech Science Foundation (grant 303/12/1162 to F. K.).

References

