Ovarian Steroid Hormone Secretion Activity Examined After Supplementation of Green Tea Extract

S. ROYCHOU DHURY¹², M. HAL ENAR², V. TUPA², K. MICHALCOVA², S. NATH¹, M. KACANIOVA³, A. KOLESAR OVA²

¹Department of Life Science and Bioinformatics, Assam University, Silchar, India, ²Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic, ³Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic

Received June 2, 2017
Accepted September 12, 2017

Summary
This study aimed at examining the secretion activity of steroid hormones progesterone and 17β-estradiol by porcine ovarian granulosa cells after addition of green tea extract. Granulosa cells were incubated with green tea extract (at doses of 0.01, 0.1, 1, 10 and 100 μg.ml⁻¹). Another set of cells were incubated with green tea extract at the above doses along with additional supplementation of follicle stimulating hormone (FSH) at 10 μg.ml⁻¹. Release of hormones by granulosa cells was assessed by EIA after 24 h exposure. Secretion of steroid hormones was not affected either by green tea extract alone or after FSH supplementation with green tea extract. Results indicate that ovarian steroidogenesis is not affected by green tea under conditions used in the experiment.

Key words
Green tea • Ovarian granulosa cells • Anti-microbial activity • FSH • Steroid hormones

Corresponding author
A. Kolesarova, Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra 949 76, Slovak Republic. E-mail: Adriana.Kolesarova@uniag.sk

Green tea (Camellia sinensis L., Theaceae) is a widely consumed beverage all over the world. Health-promoting activities of green tea extract have been attributed to flavonoid-like polyphenols known as catechins (Khan and Mukhtar 2007). The unique property of green tea catechins has the potential to improve reproductive health, including the quality of male and female gametes (Roychoudhury et al. 2017). Ovarian granulosa cells play a central role in steroidogenesis, which is critical for female reproduction (Harvey et al. 2009). Steroid hormone secretion by ovarian granulosa cells ensures a receptive environment for the implantation and development of the early embryo (Albertini et al. 2003). The aim of this in vitro study was to examine the steroid hormone (progesterone, 17β-estradiol) secretion by porcine ovarian granulosa cells after addition of green tea extract and green tea extract + follicle stimulating hormone (FSH). Briefly, 50 g plant materials (packaged leaves of Chun Mee green tea of Chinese origin) were grounded mechanically into fine powder and were extracted with 350 ml distilled water by boiling under reflux for 30 min. The extract was filtered and evaporated to dryness to yield the dry extract (yield ~ 50 %) (Chatterjee et al. 2012). Just before the addition to the cells, extract was dissolved first in DMSO (concentration 10 mg.ml⁻¹) and then in culture medium. The maximal concentration of DMSO in culture (and added to control) was 0.1 %. Ovarian granulosa cells were collected from the follicles (3-5 mm) of prepubertal gilts according to EU and Slovak guidelines for animal care, manipulation and use, were washed in sterile DMEM/F12 1:1 medium (BioWhittaker, Verviers, Belgium), and resuspended in the same medium supplemented with 10 % fetal bovine...
serum (FBS, BioWhittaker, Verviers, Belgium) with 1 % antibiotic-antimycotic solution (Sigma, St. Louis, MO, USA) at a final concentration of 10° cells.ml⁻¹ medium. Granulosa cell suspension (1 ml/well) was dispensed in 24-well culture plates (Nunc, Roskilde, Denmark) and incubated at 37 °C and 5 % CO₂ in humidified air until 60-75 % confluent monolayer was formed (3-5 days), at that point medium was renewed. Further culture was performed in 1 ml culture medium in 24-well culture plates (Kolesarova et al. 2012, Packova et al. 2015, Roychoudhury et al. 2015). After medium replacement experimental cells were cultured for 24 h without (control) or with green tea extract (at doses of 0.01, 0.1, 1, 10 and 100 μg.ml⁻¹), and green tea extract (at doses of 0.01, 0.1, 1, 10 and 100 μg.ml⁻¹) + FSH (Sigma Aldrich, Steinheim, Germany) at 10 μg.ml⁻¹. Concentrations of progesterone and 17β-estradiol were determined in duplicate in the incubation medium by EIA (Packova et al. 2015, Roychoudhury et al. 2014). All EIAs were validated for use in samples of culture medium. For progesterone, intra- and interassay coefficients of variation did not exceed 4 % and 9.3 %, respectively. For 17β-estradiol, intra- and interassay coefficients of variation did not exceed 9 % and 10 %, respectively. Each treatment group was represented by 4 wells. Assays for hormone concentration in the incubation medium were performed in duplicates. Each experiment was performed thrice. Significant differences between the experiments were evaluated using one-way ANOVA followed by paired Wilcoxon-Mann-Whitney test (Systat Software, GmbH, Erkhart, Germany). Differences from control at P<0.05 were considered significant. In culture, granulosa cells formed a monolayer and secreted progesterone and 17β-estradiol. Release of these steroid hormones was not affected by green tea extract at the doses used. FSH supplementation to green tea extract showed an increasing trend of progesterone and 17β-estradiol release in comparison to green tea alone, however, the differences were not statistically significant (Figs 1 and 2). In an earlier study, treatment with 10 ng.ml⁻¹ ovine FSH did not affect estradiol release although progesterone secretion was stimulated by bovine granulosa cells (Wrathall and Knight 1993). Experimental granulosa cells were suitable for testing and analysis of green tea extract as they formed cell monolayer and released of hormones into the culture medium. Epigallocatechin-3-gallate (EGCG), a major green tea catechin constituting more than 50 % of total catechins (catechins make up approx. 40 % of dried tea extract) was able to increase progesterone release at a dose of 10 μg.ml⁻¹, but not at higher doses. On the contrary, another study noted inhibition of progesterone as well as estradiol secretion by granulosa cells at 5 and 50 μg.ml⁻¹ EGCG (Basini et al. 2005). These differences could be explained by the differences source of ovarian cells, for example, ovaries from mature pigs versus prepubertal pigs, as used in our study. Variation in the composition of green tea may be another factor behind the different study results obtained from separate studies.

Fig. 1. Progesterone release by cultured porcine ovarian granulosa cells after addition of: (A) green tea extract (GTE), and (B) green tea extract + FSH. EIA after 24 h of culture. Each bar represents the mean (± SD) progesterone % of control.

Fig. 2. 17β-estradiol release by cultured porcine ovarian granulosa cells after addition of: (A) green tea extract (GTE), and (B) green tea extract + FSH. EIA after 24 h of culture. Each bar represents the mean (± SD) progesterone % of control.

The composition of green tea depends on factors such as geographical location (climate, soil), agricultural practices (fertilizers, deadheading) and the properties of the plant itself (variety, age of the leaf, and position of the leaf on the harvested shoot) (Cabrera et al. 2006). Ten-day infusion green tea extract showed reproductive improvement in estradiol valerate-induced polycystic ovarian syndrome in rats, including decrease in the levels of serum luteinizing hormone (LH) and testosterone, but FSH levels remained unchanged (Ghafurniyan et al. 2015). In adult albino male rats, serum levels of
gonadotropic hormones FSH and LH as well as steroid hormone testosterone were reduced by green tea extract after 26 days of treatment in vivo (Das and Karmakar 2015). Earlier in vivo study on albino male rats for 26 days reported inhibition of testicular delta(5)beta-androst-17beta-hydroxysteroid dehydrogenase, including serum testosterone and LH levels but FSH levels did not change (Chandra et al. 2011). In the present study, the inability of FSH to stimulate the release of either progesterone or estradiol by porcine ovarian granulosa cells may reflect a paucity of functional FSH receptors (Wrathall and Knight 1993).

In conclusion, our results indicate that used doses of green tea extract did not affect steroid secretion by ovarian granulosa cells but FSH supplementation to green tea extract showed an increasing trend of progesterone and 17β-estradiol release. Although these data contribute to new insights regarding the action of green tea extract, it is necessary to examine the individual steps of steroidogenesis in ovarian cells.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
This work was financially supported by the Ministry of Education, Science, Research and Sport of the Slovak Republic projects no. VEGA, 1/0039/16, KEGA 011SPU-4/2016, Slovak Research and Development Agency, APVV-0304-12, APVV-15-0543 and European Community under project no. 2622020180: Building Research Centre “AgroBioTech”.

References