Effects of Pioglitazone on Ventricular Myocyte Shortening and Ca2+ Transport in the Goto-Kakizaki Type 2 Diabetic Rat

K. A. SALEM1, V. SYDORENKO2, M. QURESHI3, M. OZ1, F. C. HOWARTH3

1Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates, 2Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine, 3Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates

Received December 5, 2016
Accepted July 21, 2017
On-line November 10, 2017

Summary
Pioglitazone (PIO) is a thiazolidindione antidiabetic agent which improves insulin sensitivity and reduces blood glucose in experimental animals and treated patients. At the cellular level the actions of PIO in diabetic heart are poorly understood. A previous study has demonstrated shortened action potential duration and inhibition of a variety of transmembrane currents including L-type Ca2+ current in normal canine ventricular myocytes. The effects of PIO on shortening and calcium transport in ventricular myocytes from the Goto-Kakizaki (GK) type 2 diabetic rat have been investigated. 10 min exposure to PIO (0.1-10 \textmu M) reduced the amplitude of shortening to similar extents in ventricular myocytes from GK and control rats. 1 \textmu M PIO reduced the amplitude of the Ca2+ transients to similar extents in ventricular myocytes from GK and control rats. Caffeine-induced Ca2+ release from the sarcoplasmic reticulum and recovery of Ca2+ transients following application of caffeine and myofilament sensitivity to Ca2+ were not significantly altered in ventricular myocytes from GK and control rats. Amplitude of L-type Ca2+ current was not significantly decreased in myocytes from GK compared to control rats and by PIO treatment. The negative inotropic effects of PIO may be attributed to a reduction in the amplitude of the Ca2+ transient however, the mechanisms remain to be resolved.

Key words
Type 2 diabetes mellitus • Goto-Kakizaki rat • Ventricular myocytes • Calcium transport • Pioglitazone

Introduction
Diabetes mellitus (DM) is a debilitating disease that is estimated to affect 366 million people by 2030 worldwide. The risk of coronary heart disease is increased in patients with T2DM and cardiovascular disease causes 80 % of all diabetic mortality and in 75 % of cases, it is as a result of coronary atherosclerosis (Schwartz 2010). PIO belongs to the thiazolidinedione group of oral antidiabetic agents and is an agonist of peroxisome proliferator-activated receptor gamma (PPAR\textgamma) (Yki-Jarvinen 2004). PIO decreases fasting and postprandial insulin concentrations and lowers blood pressure in spontaneously hypertensive rats (Grinsell \textit{et al.} 2000). In the spontaneously obese, insulin-resistant rhesus monkey PIO improved fasting and postprandial levels of insulin sensitivity, plasma glucose and lipid levels and also decreased systolic and mean arterial pressure (Kemnitz \textit{et al.} 1994). In a study to compare the risk of cardiovascular adverse effects in patients with T2DM treated with rosiglitazone, another thiazolidinedione, or PIO it was found that compared with pioglitazone, rosiglitazone is associated with an increased risk of myocardial infarction, heart failure,
and all-cause mortality in diabetic patients (Nissen and Wolski 2007, Chen et al. 2012). High oral doses of PIO (500-1,000 mg/kg) administered to mice produce hypertrophy of the heart and mild congestion of the liver and kidneys (Chinnam et al. 2012). PIO attenuates congestive heart failure-induced atrial structural remodeling and atrial fibrillation in rabbit heart (Shimano et al. 2008). PIO has been shown to reduce angiotensin II-induced cardiac hypertrophy and ameliorate ventricular hypertrophy and fibrosis in hypertensive rat heart (Ye et al. 2005, Li et al. 2010, Kato et al. 2008). In vivo biotelemetry studies have reported that daily oral PIO administration at concentrations ranging from 2.5 to 20 mg/kg over a period of 14 weeks had no significant effects on heart rate, PQ and QT intervals and QRS complex in GK rat hearts compared to controls (Salem et al. 2015). In primary cultured rat cardiac myocytes myocardial hypertrophy induced by glucose and insulin was inhibited by PIO (Liu et al. 2007). In canine ventricular myocytes action potential duration was shortened by PIO at concentrations ≥10 µM and this was accompanied by inhibition of several transmembrane ion currents including L-type Ca²⁺ current, the rapid and slow component of delayed rectifier K⁺ current and the transient outward K⁺ current (Kistamas et al. 2013). Little is known about the effect of PIO in diabetic heart. Therefore, the acute effects of PIO on ventricular myocyte shortening and Ca²⁺ transport have been investigated in GK type 2 diabetic rat.

Methods

Experimental protocol

Approval for this project was obtained from the Animal Ethics Committee, College of Medicine & Health Sciences, United Arab Emirates University.

Twelve male GK (Taconic, Germantown, NY, USA) and twelve male Wistar control rats aged 8-10 months were used in these experiments. Animals were supplied with standard rat chow and water *ad libitum*. Body weight, heart weight and non-fasting blood glucose were measured immediately prior to experiments.

Ventricular myocyte isolation

Left ventricular myocytes were isolated according to previously described techniques (Salem et al. 2013). In brief, animals were euthanized using a guillotine and hearts removed rapidly and mounted for retrograde perfusion according to the Langendorff method. Hearts were perfused at a constant flow rate of 8 ml g heart⁻¹ min⁻¹ and at 36-37 °C with cell isolation solution containing in mM: 130.0 NaCl, 5.4 KCl, 1.4 MgCl₂, 0.75 CaCl₂, 0.4 NaH₂PO₄, 5.0 HEPES, 10.0 glucose, 20.0 taurine and 10.0 creatine (pH 7.3). When the heart had stabilized perfusion was switched for 4 min to Ca²⁺-free cell isolation solution containing 0.1 mM EGTA, and then for 6 min to cell isolation solution containing 0.05 mM Ca²⁺, 0.60 mg/ml type I collagenase (Worthington Biochemical Corp, Lakewood, NJ, USA) and 0.075 mg/ml type XIV protease (Sigma, Taukirchen, Germany). Left ventricle tissue was excised from the heart, minced and gently shaken in collagenase-containing isolation solution supplemented with 1% BSA. Cells were filtered from this solution at 4 min intervals and re-suspended in cell isolation solution containing 0.75 mM Ca²⁺ and stored at 4 °C.

Measurement of ventricular myocyte shortening

Ventricular myocyte shortening was measured according to previously described techniques (Salem et al. 2013). In brief, cells were allowed to settle on the glass bottom of a Perspex chamber mounted on the stage of an inverted microscope (Axiovert 35, Zeiss, Göttingen, Germany). Cells were superfused (3-5 ml/min) with normal Tyrode (NT) containing the following in mM: 140.0 NaCl, 5.0 KCl, 1.0 MgCl₂, 10.0 glucose, 5.0 HEPES, 1.8 CaCl₂ (pH 7.4). Ventricular myocyte shortening was recorded before and after PIO treatment using a video edge detection system (VED-114, Crystal Biotech, Northborough, MA, USA). Superfusion of myocytes with NT and then NT + PIO were controlled by micropumps. Resting cell length, time to peak (TPK) shortening, time to half (THALF) relaxation and amplitude of shortening (expressed as a % of resting cell length) were measured in electrically stimulated (1 Hz) myocytes maintained at 35-36 °C before and after PIO. Myocytes with normal rod-shaped morphology and stable shortening during electrical stimulation were selected for experiments. Data were acquired and analyzed with Signal Averager software v 6.37 (Cambridge Electronic Design, Cambridge, UK).

Measurement of intracellular Ca²⁺ transient

Myocytes were loaded with the fluorescent indicator fura-2 AM (F-1221, Molecular Probes, Eugene, OR, USA) according to previously described techniques.
(Salem et al. 2013). In brief, 6.25 µl of a 1.0 mM stock solution of fura-2 AM (dissolved in dimethylsulphoxide) was added to 2.5 ml of cells to give a final fura-2 concentration of 2.5 µM. Myocytes were shaken gently for 10 min at room temperature (24 °C). After loading with fura-2 AM, myocytes were centrifuged, washed with NT to remove extracellular fura-2 and then left for 30 min to ensure complete hydrolysis of the intracellular ester. To measure intracellular Ca\(^{2+}\) transients, myocytes were alternately illuminated by 340 and 380 nm light using a monochromator (Cairn Research, Faversham, UK) which changed the excitation light every 2 ms. The resulting fluorescence emitted at 510 nm was recorded by a photomultiplier tube and the ratio of the emitted fluorescence at the two excitation wavelengths (340/380 ratio) was calculated to provide an index of intracellular Ca\(^{2+}\) concentration. Resting fura-2 ratio, TPK Ca\(^{2+}\) transient, THALF decay of the Ca\(^{2+}\) transient and the amplitude of the Ca\(^{2+}\) transient (expressed as a percentage of a Ca\(^{2+}\) transient in Control and GK myocytes perfused with NT) were measured in electrically stimulated (1 Hz) myocytes maintained at 35-36 °C before and after PIO. Data were acquired and analyzed with Signal Averager software v 6.37 (Cambridge Electronic Design, Cambridge, UK).

Assessment of myofilament sensitivity to Ca\(^{2+}\)

In some cells shortening and fura-2 ratio were recorded simultaneously (Howarth et al. 2011). Myofilament sensitivity to Ca\(^{2+}\) was assessed from phase-plane diagrams of fura-2 ratio versus cell length by measuring the gradient of the fura-2 – cell length trajectory during late relaxation of the twitch contraction before and after PIO. The position of the trajectory reflects the relative myofilament response to Ca\(^{2+}\) and hence, can be used as a measure of myofilament sensitivity to Ca\(^{2+}\) (Spurgeon et al. 1992, Howarth and Qureshi 2008).

Measurement of sarcoplasmic reticulum Ca\(^{2+}\) transport

Sarcoplasmic reticulum (SR) Ca\(^{2+}\) was assessed using previously described techniques (Howarth et al. 1999, Howarth et al. 2002, Bassani et al. 1995). After establishing steady state Ca\(^{2+}\) transients in electrically stimulated (1 Hz) myocytes maintained at 35-36 °C and loaded with fura-2, stimulation was paused for a period of 5 s. Caffeine (20 mM) was then applied rapidly using a solution switching device (Levi et al. 1996). After 10 s of caffeine, electrical stimulation was resumed and the Ca\(^{2+}\) transients were allowed to recover to steady state. SR releasable Ca\(^{2+}\) was assessed by measuring the amplitude of the caffeine-evoked Ca\(^{2+}\) transient. Refilling of SR was assessed by measuring the rate of recovery of electrically-evoked Ca\(^{2+}\) transients following application of caffeine. Measurements were made before and after PIO.

Measurement of L-type Ca\(^{2+}\) current

Voltage-dependent L-type Ca\(^{2+}\) current was measured selectively using whole-cell patch-clamp according to previously described techniques (Salem et al. 2013, Choi et al. 2002). L-type Ca\(^{2+}\) current was recorded with an Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA, USA). The analog signal was filtered using an eight-pole Bessel filter with a bandwidth of 5 kHz and digitized at a sampling rate of 10 kHz under software control (pCLAMP 8.2, Molecular Devices, Sunnyvale, CA, USA). Patch pipettes were fabricated from filamented BF150-86-10 borosilicate glass (Sutter Instrument, CA, USA). The whole cell bath solution contained the following in mM: 145.0 NaCl, 2.0 MgCl\(_2\), 2.0 CaCl\(_2\), 10.0 HEPES and 10.0 glucose (pH 7.35). The pipette solution contained the following in mM: 140.0 CsCl, 2.0 MgCl\(_2\), 10.0 TEA Cl, 10.0 EGTA, 10.0 HEPES, 1.0 MgATP (pH 7.25). Electrode resistances ranged from 3 to 5 M\(\Omega\), and seal resistances were 1-5 G\(\Omega\). Series resistances were compensated to >75 % of the uncompensated value. Experiments were performed at 34-36 °C before and after PIO. The current-voltage relationship was obtained by applying 300 ms test pulses in the range -60 mV to +70 mV in 10 mV steps from a holding potential of -50 mV. The steady-state inactivation of Ca\(^{2+}\) current was measured as the relationship of amplitude of the peak current at a test pulse of 0 mV to amplitude of peak current at 1,000 ms long pre-pulses to various voltages between -60 and +30 mV. Normalized peak currents measured after these pre-pulses were plotted against the respective pre-pulse potential. Time course of recovery from inactivation was investigated using a two-pulse protocol. Two 100 ms depolarizing pulses to +10 mV were separated by inter-pulse intervals with variable duration. Peak Ca\(^{2+}\) current amplitude measured by the second pulse was normalized to that measured by the first pulse and their ratio was plotted against the inter-pulse interval. Data were acquired and analyzed with pCLAMP software 8.2.
Drug preparation
PIO (E6910, Sigma-Aldrich) was dissolved in 100% DMSO to produce 0.5, 5 and 50 mM stock solutions which were stored at -20 °C. Experimental PIO solutions were prepared by addition of stock solutions to NT with final DMSO concentration of 0.02% in all test solutions.

Statistical analysis
Results are expressed as the mean ± SEM of ‘n’ observations. ‘n’ refers to number of animals or ventricular myocytes. Data were analyzed by the Independent samples t-test, Paired samples t-test or as appropriate using IBM SPSS Statistics for Windows, Version 20.0 (IBM Corp, Armonk, NY, USA). Statistical significance was set at \(P<0.05 \).

Results
Experiments were performed in cardiac myocytes isolated from GK rats, aged 8-10 months, and age-matched controls. Body weight, heart weight and non-fasting blood glucose were measured immediately before experiments. The results are shown in Table 1. Body weight and heart weight were significantly (\(P<0.01 \)) higher in GK compared to control rats. Non-fasting blood glucose was significantly (\(P<0.01 \)) elevated in GK compared to control rats. Heart weight to body weight ratio was not significantly (\(P>0.05 \)) altered in GK compared to control rats.

Table 1. General characteristics of Goto-Kakizaki rats.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>GK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodyweight (g)</td>
<td>352.50±11.60</td>
<td>417.83±5.10**</td>
</tr>
<tr>
<td>Heart weight (g)</td>
<td>1.20±0.03</td>
<td>1.40±0.02**</td>
</tr>
<tr>
<td>Heart weight/body weight (mg/g)</td>
<td>3.40±0.07</td>
<td>3.20±0.03</td>
</tr>
<tr>
<td>Blood glucose (mg/dl)</td>
<td>96.90±2.10</td>
<td>131.50±3.60**</td>
</tr>
</tbody>
</table>

** \(P<0.01 \), n=12 rats.

Effects of acute pioglitazone on ventricular myocyte shortening
Figure 1 shows the effects of different concentrations of PIO (0.1-10 µM) on the amplitude of myocyte shortening. Amplitude of shortening was significantly (\(P<0.05 \)) and progressively reduced in GK myocytes following treatment with 1 and 10 µM PIO and in control myocytes following treatment with 0.1, 1 and 10 µM PIO. 1 µM PIO was selected for further studies because it produced a response intermediate between 0.1 and 10 µM and is considered a concentration that is clinically relevant (Budde et al. 2003). A typical recording of shortening in a GK myocyte superfused with NT or NT + 1 µM PIO is shown in Figure 2A. Resting cell length was not significantly (\(P>0.05 \)) altered in GK myocytes compared to controls or by PIO (Fig. 2B). TPK shortening was significantly (\(P<0.05 \)) prolonged in GK and control myocytes and THALF relaxation of shortening was significantly (\(P<0.05 \)) prolonged only in GK myocytes with 1 µM PIO (Figs 2C, D). Amplitude of shortening was unaltered in GK myocytes compared to controls, PIO significantly (\(P<0.05 \)) reduced amplitude of shortening in GK (80.2±2.7 %, n=24) and control (83.84±3.16 %, n=22) myocytes (Fig. 2E).

![Fig. 1. Effects of different concentrations of pioglitazone (PIO) 0.1-10 µM on amplitude of ventricular myocyte shortening. Data are mean ± SEM, n=14-19 cells from 9-10 hearts. Horizontal lines above graph bars illustrate significant difference (\(P<0.05 \)).](image-url)
Fig. 2. Effects of pioglitazone (PIO) on amplitude and time-course of ventricular myocyte shortening. (A) Typical records of shortening in a GK myocyte superfused with either normal Tyrode (NT) or NT + 1 μM PIO. (B) Resting cell length (RCL). (C) Time to peak shortening. (D) Time to half relaxation of shortening. (E) Amplitude of shortening. Data are mean ± SEM, n=22-24 cells from 8 hearts. Horizontal lines above graph bars illustrate significant difference (P<0.05).

Effects of acute pioglitazone on ventricular myocyte intracellular Ca^{2+} transient

A typical recording of Ca^{2+} transient in a GK myocyte superfused with NT or NT + 1 μM PIO is shown in Figure 3A. Resting fura-2 ratio was not significantly (P>0.05) altered in GK or control myocytes or by PIO (Fig. 3B). TPK Ca^{2+} transient was prolonged by PIO in GK and control myocytes (Fig. 3C). THALF decay of the Ca^{2+} transient was significantly (P<0.05) shortened in GK compared to control myocytes (Fig. 3D). Amplitude of the Ca^{2+} transient was significantly (P<0.05) reduced in GK and control myocytes by PIO (Fig. 3E).
Fig. 3. Effects of pioglitazone (PIO) on Calcium transient of ventricular myocyte. (A) Typical records of Ca2+ transient in a GK myocyte superfused with either normal Tyrode (NT) or NT+ 1 µM PIO. (B) Resting fura-2 ratio. (C) Time to peak Ca2+ transient. (D) Time to half relaxation of Ca2+ transient. (E) Amplitude of Ca2+ transient. Data are mean ± SEM, n=20-24 cells from 8 hearts. Horizontal lines above graph bars illustrate significant difference (P<0.05).

Effects of pioglitazone on myofilament sensitivity to Ca2+

In some experiments myocyte shortening and intracellular Ca2+ transient were recorded simultaneously. Typical records of myocyte shortening and fura-2 ratio in NT and a typical phase plane diagram of fura-2 ratio vs. cell length in NT are shown in Figure 4A and B, respectively. The gradient of the fura-2 cell length trajectory during late relaxation of the twitch contraction was not significantly (P>0.05) altered in GK compared to control myocytes or by PIO during the periods 500-800 ms (Fig. 4C), 500-700 ms (Fig. 4D) and 500-600 ms (Fig. 4E).
Fig. 4. Effects of pioglitazone (PIO) myofilament sensitivity to Ca^{2+} of ventricular myocyte. (A) Typical records of shortening and Ca^{2+} transient recorded simultaneously in a control myocyte superfused with either normal Tyrode (NT) or NT+ 1 µM PIO. (B) Typical phase plane diagram of fura-2 ratio unit (RU) vs. cell length in a control myocyte. The solid arrow and bar in B indicate where the gradient was measured. Gradient of the fura-2-cell length trajectory during late relaxation of twitch contraction during the period (C), 500-800 ms. (D) 500-700 ms. (E) 500-600 ms. Data are mean ± SEM, n=21-26 cells from 8 hearts.

Effects of pioglitazone on sarcoplasmic reticulum Ca^{2+} transport

The effects of PIO on SR Ca^{2+} were assessed in fura-2 loaded myocytes from GK and control rat. A typical record of the experimental protocol in a control myocyte is shown in Figure 5A. Caffeine-induced Ca^{2+} release from the SR was not significantly altered in GK compared to control myocytes or by PIO (Fig. 5B). Recovery of the Ca^{2+} transient following application of caffeine was not significantly (P>0.05) altered in GK compared to control myocytes or by PIO (Fig. 5C).
Effects of pioglitazone on L-type Ca2+ current

The electrophysiological protocols (upper panel) that were used and typical current records of Ca2+ current in a control myocyte (lower panel) during activation, inactivation and restitution experiments are shown in Figure 6A, B and C, respectively. Over a range of test potentials the amplitude of L-type Ca2+ current was not significantly (P>0.05) reduced in GK compared to control myocytes or by PIO (Fig. 6D). At a test potential of 0 mV the amplitude of L-type Ca2+ current was largest in control myocytes (7.4±1.3 pA/pF, n=11), then control myocytes with PIO (6.1±1.4 pA/pF, n=9), then GK myocytes (5.8±0.9 pA/pF, n=10) and smallest in GK myocyte with PIO (5.0±0.7 pA/pF, n=9) however, these differences were not significant (P>0.05) (Fig. 6E). Inactivation of L-type Ca2+ current, was not significantly (P>0.05) altered in GK compared to control myocytes or by PIO (Fig. 6F). Similarly, the time course of recovery from inactivation was not significantly (P>0.05) altered in GK compared to control myocytes or by PIO (Fig. 6G).

Discussion

In recent years, much of the research has focused on the potential effects of PIO on cardiovascular function. At the cellular level the actions of PIO in diabetic heart are poorly understood. The effects of PIO on ventricular myocyte shortening and Ca2+ transport have been investigated in this study. The major findings were: (1) PIO in the range 0.1-10 µM reduced the amplitude of shortening to similar extents in GK and control myocytes, (2) 1 µM PIO reduced the amplitude of the Ca2+ transient to similar extents in GK and control myocytes, (3) Myofilament sensitivity to Ca2+ was not altered in GK compared to control myocytes or by PIO, (4) Caffeine-induced Ca2+ release from the SR and recovery of the Ca2+ transients following application of caffeine was not significantly (P>0.05) altered in GK compared to control myocytes or by PIO and (5) L-type Ca2+ current was not significantly altered in GK compared to control myocytes or by PIO.
Fig. 6. Effects of pioglitazone (PIO) on amplitude of L-type Ca$^{2+}$ current. Voltage protocols (upper panel) and typical records (lower panel) of (A) Activation. (B) Inactivation. (C) Restitution of L-type Ca$^{2+}$ current in a control myocyte. (D) Activation current at voltages ranging from -60 to +70 mV. (E) Mean L-type Ca$^{2+}$ current evoked by test potentials to 0 mV. (F) Inactivation curve at pre-pulse voltage ranging from -60 to +30 mV. (G) Restitution curve at inter-pulse timing ranging from 25 to 70 ms. Data are mean ± SEM, n=9-11 cells from 4-6 hearts.

Experiments were performed in GK rats, 8-10 months of age, and age-matched controls. Diabetes status was confirmed by elevated blood glucose, a finding that is consistent with previous studies (Howarth et al. 2008). It has been reported that blood glucose is elevated from as young as 1 month in GK rats (Portha et al. 1991). Body weight was higher in GK rats compared to controls. PIO belongs to the thiazolidinedione group of oral antidiabetic agents, which act as full agonists of PPARγ which is associated with glucose homeostasis (Willson et al. 1996, Zhang et al. 2007, Picard and Auwerx 2002, Gurnell et al. 2003). Many experimental and clinical studies have demonstrated the favorable effects of PIO on the modulation of cardiovascular risk factors related to T2DM (Lincoff et al. 2007, Dormandy et al. 2005, Van der Meer et al. 2009, Kim et al. 2003, Rodriguez et
al. 2006). Furthermore, previous studies have shown that the effects of PIO on the cardiovascular system are initiated at the pre-diabetes stage in type 2 diabetic rat (Tsuji et al. 2001). In this study 1 µM PIO significantly reduced the amplitude and prolonged the TPK shortening in GK and control myocytes to similar extents. Resting cell length was not altered in GK compared to control myocytes or by PIO. In a previous study PIO treatment reduced cardiac cell length in myocytes from transgenic rats over expressing renin compared to non-transgenic littermates (Hinrichs et al. 2011). It’s well known that Ca²⁺ is fundamental to the process of excitation-contraction coupling in cardiac muscle (Bers 2002). A previous study has shown that rosiglitazone was able to improve Ca²⁺ transport dysregulation in ventricular myocytes from streptozotocin-induced diabetic rat (Lee et al. 2013).

PIO decreased the amplitude and prolonged the TPK of the Ca²⁺ transient in GK and control myocytes. The effects of PIO on the Ca²⁺ transient may, at least in part, underlie the changes in shortening. Myofilament sensitivity to Ca²⁺ was assessed from phase-plane diagrams of fura-2 ratio vs. cell length by measuring the gradient of the fura-2-cell length trajectory during late relaxation of the twitch contraction (Spurgeon et al. 1992). The position of the trajectory reflects the relative myofilament response to Ca²⁺ and hence, can be used as a measure of myofilament sensitivity to Ca²⁺. Myofilament sensitivity to Ca²⁺ was not altered by PIO suggesting that the negative inotropic effects of PIO could not be attributed to altered myofilament sensitivity to Ca²⁺. Release of Ca²⁺ from the SR during the process of excitation-contraction coupling contributes greatly to the generation of the Ca²⁺ transient in cardiac myocytes (Bers 2002). Therefore, SR Ca²⁺ transport was assessed before and after PIO treatment. Caffeine-evoked SR Ca²⁺ release was not altered in GK compared to control myocytes or by PIO. The recovery of the Ca²⁺ transient, following caffeine application and resumption of electrical stimulation, was not altered in GK myocytes compared to controls or by PIO suggesting that PIO does not affect SR Ca²⁺ release or reuptake. L-type Ca²⁺ current is the primary trigger for SR Ca²⁺ release. Amplitude of Ca²⁺ current was not significantly reduced in GK compared to control myocytes or by PIO. Previous studies in canine ventricular myocytes showed that several transmembrane ionic currents including L-type Ca²⁺ current were inhibited by ≥10 µM PIO (Kistamas et al. 2013). The Na⁺/Ca²⁺ exchange provides another transport system by which Ca²⁺ can enter or exit the cell and therefore influence the generation and/or the decay of the Ca²⁺ transient. A previous study in myocytes from streptozotocin – induced diabetic rat demonstrated depressed Na⁺/Ca²⁺ exchange (Choi et al. 2002). Further studies would be required to investigate the effects of PIO on Na⁺/Ca²⁺ exchanger in myocytes from GK rat.

In conclusion, the negative inotropic effects of PIO in GK and control myocytes are similar and may partly be attributed to a reduction in Ca²⁺ transient however, the mechanisms remain to be resolved.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
The work has been supported by a grant from the College of Medicine & Health Sciences, United Arab Emirates University. Research in our laboratory is also supported by LABCO, a partner of Sigma-Aldrich.

References

