Effect of Blood Pressure on L-NAME-sensitive component of relaxation in adult rats

Angelika Púžserová¹, Zuzana Csizmadiová¹,², Iveta Bernátová¹

¹Institute of Normal and Pathological Physiology, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, Bratislava, Slovak Republic, ²Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic

Running title: Blood pressure and L-NAME-sensitive relaxation

Address for correspondence: Iveta Bernátová, PhD. Institute of Normal and Pathological Physiology Slovak Academy of Sciences, Sienkiewiczova 1, Bratislava 813 71, Tel: +421-2-52926336, E-mail: Iveta.Bernatova@savba.sk
Summary

The aim of this study was to investigate nitric oxide (NO) production and L-NAME-sensitive component of endothelium-dependent relaxation in adult normotensive Wistar-Kyoto rats (WKY), borderline hypertensive rats (BHR) and spontaneously hypertensive rats (SHR). Blood pressure (BP) of WKY, BHR and SHR (determined by tail-cuff) was 111±3, 140±4 and 184±6 mm Hg, respectively. NO synthase activity (determined by conversion of [3H]-L-arginine) was significantly higher in the aorta of BHR and SHR vs. WKY and in the left ventricle of SHR vs. both BHR and WKY. L-NAME-sensitive component of endothelium-dependent relaxation was investigated in the preconstricted femoral arteries using the wire myograph during isometric conditions as a difference between acetylcholine-induced relaxation before and after acute N⁰-nitro-L-arginine methyl ester pre-treatment (L-NAME, 10⁻⁵ mol/l). Acetylcholine-induced relaxation of SHR was significantly greater than that in WKY. L-NAME-sensitive component of relaxation in WKY, BHR and SHR was 20±3%, 29±4% (p<0.05 vs. WKY) and 37±3% (p<0.05 vs. BHR), respectively. There was a significant positive correlation between BP and L-NAME-sensitive component of relaxation of the femoral artery. In conclusion, results suggest the absence of endothelial dysfunction in the femoral artery of adult borderline and spontaneously hypertensive rats and gradual elevation of L-NAME-sensitive component of relaxation with increasing BP.

Key words
endothelial dysfunction, pre-hypertensive period, borderline hypertension, spontaneously hypertensive rats, nitric oxide
Introduction

The level of tone in the vascular smooth muscle is a key determinant of local blood flow and peripheral resistance. The endothelium of blood vessels appears to play a central role in the regulation of tone and thus in blood pressure regulation via the synthesis and release of vasoactive substances (Das and Kumar 1995). Endothelial cells regulate the underlying smooth muscle layer by release of endothelium-derived relaxing factors such as nitric oxide (NO), prostacycline (PGI₂) and endothelium-derived hyperpolarizing factor (EDHF) as well as by liberation of vasoconstricting factors (Stankevičius et al. 2003). Injury of the endothelial monolayer can result in the impairment of vascular function and thus in impairment of blood pressure regulation.

NO, one of the most potent vasodilators, is synthesized from L-arginine by the enzyme nitric oxide synthase (NOS) (Moncada and Higgs 1993, Pecháňová and Šimko, 2007). There is evidence that NO is the main mediator of endothelium-dependent acetylcholine-induced relaxation in the large conduit arteries, whereas hyperpolarizing factor plays an important role in the resistance arteries (Hwa et al. 1994, Brandes et al. 2000).

The use of inhibitors of NOS showed the important role of NO in the regulation of blood pressure and in processes accompanying the development of cardiovascular disorders. It has been shown that chronic reduction of NO synthesis resulted in hypertension (Zatz and Baylis 1998, Gerová et al. 2004), reduced relaxation (Török and Kristek 2001, Bernátová et al. 2002, Paulis et al. 2006) and myocardial hypertrophy (Šimko et al. 2004).
However, observations in the spontaneously hypertensive rats (SHR), which are widely used experimental model of human essential hypertension, showed considerable differences related to NO production and/or endothelial dysfunction (Vapaatalo et al. 2000). Thus, the role of NO and endothelial dysfunction in pre-hypertensive period and established hypertension is still conflicting. For such studies, besides of spontaneously hypertensive rats with blood pressure above 180 mm Hg, a model of borderline hypertensive rats (BHR) produced by the matting of spontaneously hypertensive dams with normotensive sires can be used (Lawler et al. 1980). Resting mean arterial pressure of adult offspring in the F1 generation is in the range 130 – 150 mm Hg (Sanders and Lawler 1992, Mansi and Drolet 1997, Csizmadiová et al. 2006), which allows investigating vascular function in adult objects in pre-hypertensive period.

The purpose of this study was to determine the nitric oxide synthase activity in the aorta and left ventricle in rats with borderline and established hypertension. In addition, we investigated endothelium-dependent relaxation and L-NAME-sensitive component of this relaxation in the femoral artery of BHR and SHR in comparison with age-matched normotensive Wistar-Kyoto rats. Furthermore, we investigated relation between L-NAME-sensitive component of relaxation and blood pressure.

Methods

Animals

All rats used in the study, n = 10 in each group, were born in our animal facility in order to keep the same environmental background of all objects. Three cardiovascular phenotypes of 20 weeks old male rats were used in the study:
normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR) and borderline hypertensive rats. BHR were F1 offspring of SHR dams and normotensive WKY sires. Rats were housed at 22 - 24°C on a 12:12-h dark-light cycle and maintained on a standard pellet diet and tap water ad libitum. All procedures used were in accordance with institutional guidelines and they were approved by the State Veterinary and Food Administration of the Slovak Republic.

One week before experimentation, the rats were handled and accustomed to the tail-cuff procedure of blood pressure recording. Blood pressure (BP) and heart rate (HR) were determined between 9.00 - 12.00 h and were calculated as the average value of 5 - 6 measurements. Rats were killed by decapitation after a brief CO₂ anaesthesia. Body mass (BM) as well as the wet masses of the left ventricle (LV) and right ventricle (RV) were determined for calculation of their relative masses (LV/BM, RV/BM).

NO synthase activity

NO synthase activity was measured in the homogenates of the aorta and left ventricle by determination of [³H]-L-citrulline (L-Cit) formation from [³H]-L-arginine (MP Biomedicals, USA), as described previously (Bredt and Snyder 1990), with minor modifications. Briefly, crude homogenates of the aorta and LV containing 200 mg of wet tissue per 1 ml of homogenization solution containing 50 mmol/l Tris-HCl, pH 7.4 and 1% Protease Inhibitor Cocktail (Sigma, Germany) were centrifuged at 10 000 g for 15 min at 4°C. After centrifugation, 50 µl of supernatant was incubated in the presence of 10 µmol/l [³H]-L-arginine (specific activity 5 GBq/mmol, about 100 000 DPM), 5 µg/ml calmodulin, 0.5 mmol/l β-NADPH, 250 µmol/l tetrahydrobiopterin, 4 µmol/l FAD, 4 µmol/l FMN, 1 mmol/l Ca²⁺, 1 mmol/l Mg²⁺ in the total volume of 100 µl.
After 20-min incubation at 37°C, the reaction was stopped by 1 ml of ice-cold stop solution containing 20 mmol/l HEPES, pH 5.5, 2 mmol/l EDTA, 2 mmol/l EGTA and 1 mmol/l L-Cit and applied to 50WX-8 Dowex columns (Na+ form). [3H]-L-citrulline was eluted by 1 ml of water and determined by liquid scintillation counting. NO synthase activity was expressed as pmol/min/mg of proteins.

Vascular responses

Femoral arteries were carefully dissected out, immediately immersed in Krebs-Ringer solution and cleaned of adipose or connective tissue. Then arteries were cut into segments (approximately 1 mm long) and mounted as ring-shaped preparations in the Mulvany – Halpern’s style small vessel wire myograph (Mulvany and Halpern 1977) chamber (Dual Wire Myograph System 410A, DMT A/S, Aarhus, Denmark) to determine the vascular reactivity during isometric conditions. Relaxation was determined in the arteries (with mean normalized internal diameter 611±20 μm) with intact endothelium, as described elsewhere (Púzserová et al. 2006). To assess relaxation, dose-response curves were constructed using endothelium-dependent vasodilator acetylcholine (ACh) after the precontraction of the segments with phenylephrine (10^-4 mol/l). ACh was applied in cumulative manner (10^-9- 10^-5 mol/l) when the contractile response to phenylephrine reached a plateau. When the dose-dependent relaxing curve was completed, the drugs were washed-out (with 4x10 ml of Krebs-Ringer solution) and the same experiment was repeated after 20-min preincubation with the nitric oxide synthase inhibitor N^6-nitro-L-arginine methyl ester (L-NAME) in the bath medium. The difference between ACh-induced response before and after preincubation with L-NAME (10^-5 mol/l) represented L-NAME-sensitive component of ACh-induced vasodilatation at the given concentration of L-
The extent of relaxation was expressed as the percentage of precontraction and the average value of relaxation was calculated as a mean value of relaxation reached in the groups based on the individual dose-response curves.

All the chemicals used were purchased from Sigma-Aldrich (Germany). All drugs were dissolved in distilled water and concentrations are expressed as final concentration in the myograph chamber.

Statistical analysis

Data were analyzed using Statistica 6.0 (Statsoft, Inc., Tulsa, OK). All results are presented as mean ± SEM. Vascular function was analyzed using two-way ANOVA. All other data were analyzed using one-way ANOVA. Analyses were followed by Duncan’s post-hoc test. Values were considered to differ significantly when $p < 0.05$.

Results

Basic parameters

Basic biometric and cardiovascular parameters ($n = 8 - 10$) of WKY, BHR and SHR rats are described in the Table 1. BM was significantly reduced in SHR when compared to both WKY and BHR. Blood pressure was significantly higher in both BHR and SHR compared to age-matched WKY rats. BP of BHR was elevated by about 26% vs. WKY. In SHR, BP was elevated vs. WKY and BHR by about 66% and 31%, respectively. There were significant differences in the LV/BM ratio among WKY, BHR and SHR rats. The augmentation of BP was accompanied by increased LV/BM ratio in both BHR and SHR. Moreover, relative mass of left ventricle was elevated in
Nitric oxide synthase activity

Nitric oxide synthase activity (n = 6 in each group) in the aorta of WKY rats was 2.63±0.18 pmol/min/mg and in the left ventricle was 2.19±0.42 pmol/min/mg. NOS activity in the aorta of BHR and SHR rats was significantly higher than that in WKY rats (Fig. 1). In the left ventricle, nitric oxide synthase activity was elevated in SHR vs. both WKY and BHR.

Endothelium-dependent relaxation

The average acetylcholine-induced relaxation of the femoral artery in WKY, BHR and SHR (n = 6 in each group) was 61±5 %, 63±6 % (ns), 79±4 % (p<0.05 vs. WKY), respectively. In SHR, relaxant response to acetylcholine was markedly increased in the range of concentration 5.10^{-9} – 10^{-7} mol/l compared to normotensive group (p<0.05) and the dose-response curve to acetylcholine was shifted to the left indicating increased sensitivity to acetylcholine. There was no significant difference in relaxant response to acetylcholine between WKY and BHR. Acute blockade of nitric oxide synthesis by L-NAME (10^{-5} mol/l) significantly reduced relaxations in all groups investigated. Individual dose-response curves in the absence and presence of the NOS inhibitor L-NAME are presented in the Figure 2. The L-NAME-sensitive component of ACh-induced relaxation was significantly increased in BHR (p<0.05 vs. WKY) and SHR (p<0.05 vs. BHR) (Fig. 3A). There was a significant positive correlation between L-NAME-sensitive component of relaxation and BP (r = 0.614, p<0.007, n = 18; Fig. 3B).
Discussion

This study investigated vascular NO production and endothelium-dependent relaxation of the femoral artery in adult rats with one or two hypertensive progenitors. The most important finding of this study was that magnitude of L-NAME-sensitive component of ACh-induced relaxation in the femoral artery of adult BHR and SHR positively correlated with BP. Furthermore, vascular NO production in BHR and SHR was greater than that in normotensive rats and ACh-induced relaxation of the femoral artery of SHR rats was greater than in WKY.

In this study elevated values of blood pressure were accompanied by an increase in relative left ventricle mass in both SHR and BHR indicating left ventricular hypertrophy. The degree of blood pressure magnitude was closely associated with severity of cardiac hypertrophy. Since left ventricular hypertrophy is the result of interaction of hemodynamic overload and local non-hemodynamic factors, NO may play a significant role in its development. Indeed, pharmacological inhibition of NO production can induce hypertrophic myocardial growth (Kristek and Gerová 1996, Šimko and Šimko 2000) as well as to damage myocardial structure and function (Okruhlicová et al. 2000, Tribulová et al. 2000). However, our data showed occurrence of left ventricular hypertrophy without alterations in NO production in BHR and even simultaneously with increased NOS activity in SHR. This suggests that hemodynamic factors and/or other local growth factors rather than NO modified myocardial growth. However, it is worthy to note that local NO bioavailability in the heart may be either significantly reduced by oxidative stress (Pecháňová et al. 2007) or it may be still insufficient in relation to sympathetic activity of hypertensive rats (Kuneš et al. 2004, Pecháňová et al. 2004).
The question whether endothelial dysfunction is a consequence or a cause of hypertension remains still opened. This is documented by several studies showing impaired, unaltered or improved endothelial function in spontaneously hypertensive rats. There are many studies, which showed that reduced NO production led to attenuation of vasodilatation, elevation of vasoconstriction and to the development of hypertension in normotensive rats (Holécyová et al. 1996, Török and Kristek 2001, Šimko et al. 2004, Fialová et al. 2007). Based on this knowledge, it may be assumed that the development of hypertension in spontaneously hypertensive rats may be associated with NO deficiency and/or endothelial dysfunction. Indeed, several authors observed reduced relaxation of various conduit and resistance arteries such as the aorta, iliac artery, basilar artery and coronary and mesenteric arteries of adult SHR rats (Mayhan 1990, Wuorela et al. 1994, Küng and Lüscher 1995, Pourageaud and Freslon 1995, Čačányiová et al. 2006). Reduced relaxation of the aorta was also observed by Konishi and Su (1983). However, the same study showed the improvement of vasodilatation in the femoral artery of SHR as it was found in our study. Similarly, greater magnitude of the ACh-induced vasodilatation was observed in the mesenteric arteries of adult SHR (Chang et al. 2002). Moreover, Gerová et al. (2005) showed enhanced hypotensive response to ACh in adult SHR in vivo, which was associated with improvement of relaxation of resistance arteries but attenuated relaxation of the conduit iliac artery in vitro. In adult BHR, relaxation of the thoracic aorta was higher than in normotensive controls, while no differences were observed in the mesenteric artery (Stratton et al. 1994, Fuchs et al. 1998). In addition to above mentioned studies, no differences were observed in the magnitude of ACh-induced relaxation of the carotid artery and aorta of SHR compared with normotensive rats (Török and Kristek 2001). Altogether, these findings suggest that endothelial
dysfunction in hypertension may not be present in all parts of vascular tree and it appears to be the consequence rather than a cause of hypertension in rats.

In this study, simultaneously with elevated relaxation in SHR rats, we observed that reduction of ACh-induced relaxation after acute NO synthase inhibition (at the dose of L-NAME 10^{-5} mol/l) was more pronounced in SHR and BHR that in WKY. This elevated sensitivity to L-NAME suggests that vascular function of rats with positive family history of hypertension was more NO-dependent than in normotensive rats. Elevated sensitivity of relaxation of the femoral artery of SHR to acute NO deficiency was observed also in our previous study when we used lower dose of L-NAME (10^{-6} mol/l). Although this dose had no effect on ACh-induced relaxation in BHR rats, it significantly attenuated relaxation in SHR (Bernátová et al. 2006). Thus, the sensitivity of endothelium-dependent relaxation to acute NO deficiency was the greatest in rats with established hypertension and the lowest in normotensive rats.

Regarding NO production, reduced expression of endothelial NO synthase in coronary arterioles and aorta of SHR was demonstrated (Crabos et al. 1997, Chou et al. 1998). On the other hand, several studies showed that NO formation and/or release were upregulated in cardiovascular system of SHR (Hayakawa and Raij 1997, Nava et al. 1998, Vaziri et al. 1998). Physiological stimuli for NO production in blood vessels are shear stress (Rubányi et al. 1986), cyclic strain and intraluminal blood pressure, which may increase NO production \textit{in vitro} as well as \textit{in vivo} (Buga et al. 1991, Awolesi et al. 1994, Hoyer et al. 1996). Elevated constitutive NOS activity in SHR was observed in the aorta and left ventricle and there was a striking positive correlation between NO production and blood pressure (Hayakawa and Raij 1997). Because NO is known to counterbalance the effect of sympathetic stimulation on the peripheral as well as central level (Safar et al. 2001, Stefano et al. 2006), elevated
basal vascular NO synthesis in rats with a positive family history of hypertension may be considered an adapting mechanism, preventing them from excessive BP elevation.

In conclusion, our results showed that adult rats with borderline and established hypertension did not develop endothelial dysfunction and they were able to maintain high levels of vascular NO production. Moreover, we showed positive correlation between BP and magnitude of L-NAME-sensitive component of relaxation of adult rats with elevated blood pressure. This suggests that reduction of cardiovascular NO production and endothelial dysfunction do not participate in the initiation of hypertension in these experimental models.

Acknowledgments

This study was supported by the grants Nos. APVT-51-018004, APVT-51-059505 and VEGA 2/7064/26. The authors would like to thank Mrs. Yvonne Hanáčková and Mrs. Jana Peťová for their excellent technical assistance.
References

FIALOVÁ M, DLUGOŠOVÁ K, OKRUHLICOVÁ L, KRISTEK F, MANOACH M, TRIBULOVÁ N: Adaptation of the heart to hypertension is associated with maladaptive gap junction connexin-43 remodelling. accepted by *Physiol Res* 2007, in press.

KONISHI M, SU C: Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension 5: 881-886, 1983.

Table 1. Basic biometric and cardiovascular parameters of Wistar-Kyoto rats (WKY), borderline hypertensive rats (BHR) and spontaneously hypertensive rats (SHR).

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>WKY</th>
<th>BHR</th>
<th>SHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM (g)</td>
<td>10</td>
<td>390±11</td>
<td>400±10</td>
<td>339±5**</td>
</tr>
<tr>
<td>BP (mm Hg)</td>
<td>10</td>
<td>111±3</td>
<td>140±4*</td>
<td>184±6**</td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>10</td>
<td>403±11</td>
<td>411±9</td>
<td>448±10*</td>
</tr>
<tr>
<td>LV/BM (mg/100g)</td>
<td>8</td>
<td>148±3</td>
<td>161±3*</td>
<td>226±5**</td>
</tr>
<tr>
<td>RV/BM (mg/100g)</td>
<td>8</td>
<td>58±1</td>
<td>58±2</td>
<td>69±5**</td>
</tr>
</tbody>
</table>

BM- body mass; BP- blood pressure; HR- heart rate; LV- left ventricle; RV- right ventricle; Results are mean ± SEM. *p<0.05 vs. WKY, +p<0.05 vs. BHR.
Figure captions

Figure 1 Nitric oxide synthase activity in Wistar-Kyoto (WKY), borderline hypertensive (BHR) and spontaneously hypertensive (SHR) rats. Results are mean ± SEM. *p<0.05 vs. WKY; †p<0.05 vs. BHR.

Figure 2 Concentration-response curves of acetylcholine (ACh)-induced relaxation of the femoral arteries of Wistar-Kyoto (WKY), borderline hypertensive (BHR) and spontaneously hypertensive (SHR) rats in the absence (A) and in the presence (B) of Nω-nitro-L-arginine methyl ester (L-NAME, 10⁻⁵ mol/l). Results are mean ± SEM. *p<0.05 vs. WKY at the same concentration of ACh; †p<0.05 vs. BHR at the same concentration of ACh.

Figure 3 Average values of acetylcholine-induced relaxation (entire column) of the femoral artery and L-NAME-sensitive component of relaxation (black column) of Wistar-Kyoto (WKY), borderline hypertensive (BHR) and spontaneously hypertensive (SHR) rats (A) and correlation between L-NAME-sensitive component of relaxation and blood pressure (B). Results are mean ± SEM. *p<0.05 vs. WKY; †p<0.05 vs. BHR.
Figure 1

Aorta

<table>
<thead>
<tr>
<th></th>
<th>WKY</th>
<th>BHR</th>
<th>SHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmol/min/mg</td>
<td></td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

* indicates significant difference

Left Ventricle

<table>
<thead>
<tr>
<th></th>
<th>WKY</th>
<th>BHR</th>
<th>SHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmol/min/mg</td>
<td></td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

+ indicates significant difference
Figure 2

A

- **WKY**
- **BHR**
- **SHR**

B

- **WKY**
- **BHR**
- **SHR**

* ACh (mol/l) vs. Relaxation (%) graph showing the response of WKY, BHR, and SHR to ACh at different concentrations.
Figure 3

A

![Bar chart showing relaxation (%)]

- **WKY**
- **BHR**
- **SHR**

- Relaxation (%)
- Blood pressure (mm Hg)

B

![Graph showing L-NAME-sensitive component (%) vs. Blood pressure (mm Hg)]

- $r = 0.614$
- $p < 0.007$
- $n = 18$