Diabetes and thyroid hormones affect connexin-43 and PKC-ε expression in rat heart atria.

Marcela Mitašíková, Hai Lin1, Tomáš Soukup2, Issei Imanaga1, Narcisa Tribulová

Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic,

1Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan,

2Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic

Short title: diabetes and thyroid hormones affect atrial connexin-43

Corresponding author:

Narcisa Tribulová, DSc.

Institute for Heart Research, Slovak Academy of Sciences

Dubravska cesta 9, POBOx 104

840 05 Bratislava, SK

Email: narcisa.tribulova@savba.sk
Summary

We have examined changes of the intercellular electrical coupling proteins, connexin-43 (Cx43) and PKC-ε in diabetes and/or after a triiodothyronine (T₃) administration in the rat heart atria. Diabetes was induced in Wistar Kyoto rats by streptozotocin (50mg/kg, i.v.) and atria were examined 5 (acute stage) and 10 (chronic stage) weeks thereafter. T₃ (10μg/100g/day) was applied via gastric tube during the last 10 experimental days to non-diabetic and to a part of diabetic rats. Expression and phosphorylated status of Cx43, as well as expression of PKC-ε have been analyzed by Western blots using mouse monoclonal anti-Cx43 and rabbit polyclonal anti-PKC-ε antibodies. Results have shown that the Cx43 expression was significantly increased due to T₃-treatment and acute diabetes. However, both diabetes and T₃ treatment markedly suppressed phosphorylated isoforms of Cx43 when compared to non-diabetic and T₃-untreated controls and this down-regulation was less pronounced in diabetic rats after the T₃-treatment. The expression of atrial PKC-ε was increased due to diabetes (this increase was suppressed by T₃ administration) and decreased in T₃-treated non-diabetic rats. Based on our results, we suggest that the reduced Cx43 phosphorylation in diabetic and hyperthyroid rats can deteriorate a cell-to-cell coupling and consequently facilitate a development of atrial tachyarrhythmias in diabetic or hyperthyroid animals.

Key words
Connexin-43, PKC-ε, rat heart atria, diabetes, triiodothyronine, atrial fibrillation
Introduction

Basic underlying mechanisms of an atrial fibrillation (AF), the most common cardiac arrhythmia seen in the clinical practice and one of the major causes of stroke, are still not fully elucidated. However, understanding the mechanisms behind the disease is a prerequisite for designing the best treatment. Epidemiological studies have shown that diabetes mellitus and hyperthyroidism increase a risk for AF and its prevalence in an aged population (Shimizu et al. 2002, Miyasaka et al. 2006). Both clinical and experimental studies suggest that age-related myocardial structural alterations and intercellular gap junction abnormalities can facilitate an occurrence and persistence of AF (Spach and Starmer 1995, Tribulová et al. 1999, Kostin et al. 2002). A gap junction remodeling, often associated with fibrosis and/or hypertrophy of the atrial tissue, is characterized by an altered topology and/or alterations in number and size of the gap junctions. Since cardiac gap junctions are crucial for the electrical impulse propagation throughout the myocardium and cell-to-cell synchronization, remodeling of intercellular junctions creates anatomic substrates for derangement of the electrical conduction (Spach and Heidlage 1995, Kano and Saffitz 2001). In addition to gap junction remodeling, diseased or aged heart is characterized by alterations of a gap junction channel protein expression and/or its phosphorylation (Severs 1994, Tribulová et al. 2002, 2005, Lin et al. 2006). Several types of channel proteins, connexins, are expressed in the heart. Connexin-43 (Cx43) is the major gap junction protein abundant in the atrial as well as ventricular myocardium. Potential mechanisms controlling the level of intercellular gap junctional communication in the heart include a regulation of Cx43 dynamics and its phosphorylation. The latter has been shown implicated in the regulation of the channel conductance and its degradation (Dhein et al. 2002).

It has been reported that the incidence of AF in humans or in experimental animals is linked with the alterations in Cx43 or Cx40 expression (Tribulová et al. 1999, Polontchouk et al.
2001, Kostin et al. 2002, Kanagaratnam et al. 2006). However, data on whether diabetes or hyperthyroidism affects the expression of Cx43 and/or its phosphorylation are missing. In the Cx43 phosphorylation, several protein kinases, such as PKA, PKG, MAPK and PKC, have been implicated. Furthermore, it was found that an acute stage of diabetes led to a PKC activation and to an increase of PKC-ε isoform expression in cardiovascular tissues (Inoguchi et al. 2001, Lin et al. 2006). On the other hand, the cardiac expression of PKC-ε has been found to be decreased due to hyperthyroidism (Rybin and Steinberg 1996, Hamasaki et al. 2000).

High glucose was shown to induce inhibition of gap junction channels permeability through excessive phosphorylation of Cx43 in cultured aortic smooth muscles cells (Kuroki et al. 1998). Likewise, we have shown recently that acute diabetes suppress electrical cell-to-cell coupling and decrease conductivity in heart ventricles (Lin et al. 2006). Diabetes is known to be accompanied with reduced plasma thyroid hormone levels (Ferrer et al. 2006). Hypothyroidism itself is associated (as is diabetes) with an increase of PKC-ε expression (Rybin and Steinberg 1996), while hypothyroidism can be reversed by thyroid hormone replacement therapy.

Taken together, the goal of this study was to examine how are the expression and phosphorylation of Cx43 and PKC-ε levels altered in rat heart atria due to diabetes, hyperthyroidism and especially by the combination of both treatments.

Material and Methods

All experiments were performed in accordance with the regulations of the Animal Research and Care Committees of Fukuoka University and Institute for Heart Research. Diabetes was induced in male Wistar Kyoto rats (8-week-old, 300-330g) by a single streptozotocin injection (STZ, Sigma, 50mg/kg, i.v.). Hyperglycemia was confirmed by a blood glucose assay and the animals were housed with free access to water and standard food. Triiodothyronine (Sigma, T₃, 10 μg/100g/day) was applied by gavage to non-diabetic and diabetic rats, for last 10 days prior
ending of the experiments. Age-matched non-diabetic rats with and without the T₃ treatment were used as well. There were two main experimental groups of rats that differ in stage of diabetes, i.e. we examined acute (5 weeks lasting) and chronic (10 weeks lasting) stages due to possible time-related differences in arrhythmia susceptibility. In both experimental groups, rats were divided into four subgroups: 1. non-diabetic rats (N, n=6); 2. diabetic rats (D, n=6); non-diabetic treated with T₃ (T3, n=6) and diabetic treated with T₃ (DT3, n=6). At the end of the experiment, fasting blood samples were taken to measure the glucose and thyroid hormone concentrations (total serum levels of T₃ and T₄ were measured by the RIA method using Immunotech kits for rat and human sera in order to check the thyroid status). Hearts were excised from ether anesthetized rats into ice-cold saline solution to stop beating, they were quickly weighed and atria were snap frozen in liquid nitrogen for Cx43 and PKC-ε immunoblotting.

Western blot analysis of Cx43 and PKC-ε. Tissue samples taken from both right and left atria were homogenized in the Tris-HCl buffer containing phenylmethane-sulphonyl fluoride on ice and centrifuged at 2000 g for 15 min at 4 °C. The supernatants were mixed with a 10% Triton X-100 followed by a centrifugation at 100 000g for 30 min. The pellets were used for WB assays. Twenty micrograms of total protein were run on a 10% SDS-PAGE electrophoresis and separated proteins were transferred onto PVDF membranes. After blocking with 5% skimmed milk in a T-PBS buffer (containing 0.1% Tween 20), the membranes were incubated with the primary monoclonal mouse anti-Cx43 antibody (Chemicon, Int., Inc., USA) at a dilution of 1: 4000 for an hour at room temperature. Secondary anti-mouse IgG antibody (Amersham Pharmacia Biotech., U.K) coupled with a fluorescent dye was used at a dilution of 1: 5000. Detection of PKC-ε was performed using a rabbit polyclonal antibody Lot. No. J1503, C-15, sc-214 (Santa Cruz Biotechnology, Inc.) at a dilution 1: 1000 and a secondary donkey anti-rabbit IgG (Chemicon, AP182P) coupled with a fluorescent dye at a dilution of 1: 2000. A low molecular weight
calibration kit (Amersham Pharmacia Biotech., U.K.) was used for detection of molecular weights of proteins.

Statistics: Data were expressed as mean ± SD and unpaired Student t-test was used to analyze the statistical significance determined at p<0.05.

Results.

Data characterizing examined animals.

Fasting blood glucose levels were markedly elevated and serum T₄ and T₃ significantly decreased in diabetic rats 5 and 10 weeks after the STZ application in comparison to non-diabetic littermates. Diabetes resulted in a decrease of both body and heart weight. Treatment of non-diabetic and diabetic rats with T₃ (biologically active form of thyroid hormone) led to its elevation and suppression of T₄ levels in the serum of STZ treated animals. Heart weight was significantly increased in T₃-treated compared to control rats (Tables 1 and 2).

Cx43 and PKC-ε Western blot analysis.

The treatment of WKY rats with T₃ led to a significant increase of total the Cx43 expression in atrial tissues of both used experimental groups (Fig. 1B, 2B). An increase of Cx43 was detected also in diabetic rat heart atria and it was significant in the acute (Fig. 1B), but not in the chronic stage of diabetes (Fig. 2B). However, both diabetes (regardless the stage) and T₃ treatment resulted in a dramatic decrease of phosphorylated isoforms of Cx43 (Fig.1A, 2A) compared to non-diabetic or T₃-untreated rats. Interestingly, the decline of the phosphorylated status of Cx43 was less pronounced in the atria of diabetic rats treated with T₃. The atrial expression of PKC-ε (Fig. 3A,B) was significantly increased in the acute as well as in the chronic stages of diabetes, but suppressed in diabetic rats treated with T₃. In contrast to diabetes, T₃ administration markedly decreased PKC-ε expression in atria of non-diabetic rats.
Discussion.

In our study we have focused on changes in the expression of phosphokinase C-ε isoform and phosphorylation of the gap junction channel protein Cx43 in the rat heart atria. We have found that experimental diabetes and/or the T₃ treatment significantly affect the expression of Cx43 and PKC-ε, as well as the phosphorylation status of Cx43 isoforms.

It has been shown that cardiovascular risk factors associated with a development of AF include diabetes and the hyperthyroidism. While the initiation of AF is usually associated with an ectopic pulse formation (i.e. a triggered electrical activity often originating in the cardiomyocytes in the area of the pulmonary veins), sustaining of this arrhythmia is linked to a presence of proarrythmia substrates facilitating re-entry mechanism (Wang *et al.* 1996, Olson 2001). The former has been shown promoted by thyroid hormones (Chen *et al.* 2002). The latter was likely associated with the structural and gap junction remodeling (Tribulová *et al.* 1999, Kostin *et al.* 2002) that has been correlated to an electrical remodeling, i.e. changes in an intra-atrial and inter-atrial conduction (Spach and Starmer 1995, Spach and Heidlage 1995). Once established, AF is not only self-perpetuating but also self-destructive, thus prompting a rapid treatment. Using ventricular tissues of the same animals as in the present study (Lin *et al.*, to be published) we have found that the T₃ administration led to a hypertrophy of ventricular cardiomyocytes, while chronic diabetes was accompanied with a focal fibrosis of ventricular tissue. Since early (acute) and late (chronic) stage of diabetes differ in the degree of cardiomyopathy and susceptibility to ventricular arrhythmias (Lin *et al.*, to be published) we examined atria in both stages. It can be expected that both interventions diabetes and T₃ administration affect the structure of atrial tissues as well.

A comparison of the Cx43 expression in the atria and ventricles supports this expectation. It shows the decrease of phosphorylated isoforms of Cx43 in both atria and ventricles of T₃-treated
rats, as well as in the atria of diabetic rats, in which ventricular Cx43 was, in contrast, hyper-
phosphorylated (i.e. excessively phosphorylated). An increase of phosphorylating status of Cx43 in
the ventricles due to acute diabetes has been shown previously (Lin et al. 2006).

Cx43 is phosphoprotein (as recognized using alkaline phosphatase treatment) and changes in
its phosphorylating status can modulate function of connexin channels (Lampe et al. 2000).
Western blot analysis revealed two phosphorylated forms of Cx43 and one nonphosphorylated in
atria, similarly as in ventricles (Lin et al. to be published, Lin et al. 2006). However, the T₃
administration to diabetic rats suppressed the Cx43 phosphorylation in the ventricles while not in
the atria (see representative western blots showing phosphorylating and nonphosphorylating Cx43
forms in Fig. 4).

Diabetes also affected differently a total level of Cx43 that was significantly increased only
in the atria, but it remained either unchanged (Lin et al., to be published) or decreased (Lin et al.
2006) in the ventricles of diabetic rats. It suggests a chamber-specific regulation of Cx43
expression. Deterioration of the Cx43 mediated cell-to-cell communication and a reduced signal
transduction was thus found in diabetic cardiac (Lin et al. 2006) and vascular tissues (Inoguchi et
al. 2001). Also a mild hyperthyroidism, induced by the administration of T₃, was accompanied by
an increased expression of Cx43 only in the atria, but not in the ventricles (Lin et al., to be
published). Exposure of neonatal cultured cardiomyocytes to T₃ for 24-48 hrs resulted in an
elevation of total Cx43 (Tribulová et al. 2004). However, the administration of thyroid hormone
to old male and female rats did not affect significantly the Cx43 expression (Tribulová et al.
2005). It has been reported that thyroid hormone receptors bind to an element in a connexin 43
promoter in a tissue specific manner (Stock and Sies 2000). Perhaps this process can be
influenced or can interfere with age-related alterations in intracellular signaling pathways.
Different from the up-regulation of Cx43 expression in the rat atria, its phosphorylation was markedly decreased by both diabetes and the T₃ treatment. It is likely that dramatic abnormalities in the phosphorylation status may affect the Cx43 channel properties and function (Stag and Flechter 1995, Lampe et al. 2000) and consequently influence cardiac arrhythmia susceptibility. It should be noted that a decline of Cx43 phosphorylation found in ventricular tissue was indeed associated with an increased susceptibility of T₃-treated rats to a ventricular fibrillation (Lin et al., to be published). On the other hand, the diabetes induced increase of the Cx43 phosphorylation in rat heart ventricles, which resulted in a decreased susceptibility to life-threatening cardiac arrhythmia. Since there was the significantly decreased phosphorylation of Cx43 in the atria of diabetic or T₃-treated rats, we can assume that it likely promotes the appearance and sustaining of AF in such rats. It remains, however, not clear, how the treatment of diabetic rats with T₃ prevents a dramatic decline in Cx43 phosphorylation observed after the STZ administration. Accordingly, further studies are also needed to examine how the modulation of Cx43 phosphorylation affects the vulnerability of diabetic and/or T₃-treated rats to AF.

It has been previously shown (Doble et al. 2000, Lampe et al. 2000, Bowling et al. 2002, Lin et al. 2006) that PKC-ε is one of the protein kinases, which directly phosphorylates Cx43. We have found its increased expression both in the atria (this study) and in the ventricles (Lin et al. 2006) of diabetic rats. However, the phosphorylation of Cx43 (supposed to be most likely PKC-ε-related) was increased only in the ventricles (Lin et al. 2006), but surprisingly not in the atria of diabetic rats (cf. Fig. 3). This difference remains also to be elucidated. Different from diabetes, the T₃ administration resulted in a decrease of PKC-ε in both the atria (this study) and the ventricles (Lin et al., to be published). It was associated with the decrease of the Cx43 phosphorylation in both tissues and this could affect the gap junction channel mediated intercellular communication (Stagg and Flechter 1990).
In conclusion, our findings indicate that diabetes and mild hyperthyroidism in rats up-regulate the Cx43 atrial expression, but they significantly decrease the Cx43 phosphorylation. Decline in the phosphorylation status of Cx43 may contribute to the deterioration of the cell-to-cell electrical coupling promoting occurrence of AF.

Acknowledgements.

This work was supported by grants of Japanese Society for Promotion of Science, Slovak Research Agencies (APVV-51-059505, VEGA 2/6064/27) and by MYORES No. 511978, GACR 304/05/0327, 304/08/0256 grants and by the Research project AV0Z 50110509.

References

Address for reprints: Narcisa Tribulová, DSc., Institute for Heart Research, Slovak Academy of Sciences, Dubravská cesta 9, POBox 104, 840 05 Bratislava, Slovakia. E-mail: narcisa.tribulova@savba.sk
Text to Figures

Fig. 1. A representative Western blot (upper panel) and densitometric quantification of Cx43 immunoblots (bottom panel) in the atria of non-diabetic (N), T₃ treated non diabetic rats (T3), 5 weeks diabetic (D) and 5 weeks diabetic T₃-treated (DT3) rats. Note the significant decrease of the Cx43 phosphorylated (P1+P2) to unphosphorylated (P0) ratio in T₃-treated and especially in diabetic rat heart atria. Interestingly, the Cx43 phosphorylation is not suppressed in T₃ treated diabetic rats. The total Cx43 levels are increased in T₃-treated as well as diabetic rat heart atria and partly in diabetic T₃ treated rats. Data (n=6) are means ± SD and *p<0.05 vs N, #p<0.05 vs D

Fig. 2. A representative Western blot (upper panel) and densitometric quantification of Cx43 immunoblots (bottom panel) in the atria of non-diabetic (N), T₃-treated non-diabetic (T3), 10 weeks diabetic (D) and 10 weeks diabetic T₃-treated (DT3) rats. Note a dramatic decrease of the phosphorylated (P1+P2) to unphosphorylated (P0) Cx43 ratio in T3 and D groups, while the administration of T₃ to diabetic rats (DT3) partly attenuates the effect of diabetes. The total Cx43 levels are significantly increased due to the T₃ treatment. Data (n=6) are means ± SD and *p<0.05 vs N, #p<0.05 vs D

Fig. 3. Representative Western blots of PKC-ε and their quantitative densitometric analysis in the atria of non-diabetic (N), T₃-treated non-diabetic (T3), diabetic (D) and diabetic T₃ treated (DT3) rats. The upper panel represents the acute diabetic stage (5 weeks after the STZ administration) and bottom panel the chronic diabetic stage (10 weeks after the STZ administration). Note that the expression of PKC-ε was significantly suppressed in T₃-treated rats (bottom panel), but increased in both groups with diabetes. The T₃ treatment in acute diabetic rats almost attenuated PKC-ε level
increased due to diabetes, but in chronic diabetic rats it suppressed only partially the PKC-ε increase observed in diabetic rats. Data (n=6) are means ± SD and *p<0.05 vs N, #p<0.05 vs D

Fig. 4. Representative immunoblots showing the Cx43 expression in the atria (upper panel) and for comparison in the ventricles (bottom panel) of non-diabetic (N), T3-treated non-diabetic (T3), diabetic (D) and diabetic T3-treated (DT3) rats. Note the decrease of phosphorylated P1 and P2 isoforms of Cx43 both in the atria and ventricles of T3-treated rats, as well as in the atria of diabetic rats in which, in contrast, ventricular Cx43 isoforms are hyper-phosphorylated. The T3 administration to diabetic rats suppressed the Cx43 phosphorylation in the ventricles, but not in the atria. P0 – non-phosphorylated isoform of the Cx43.
Table 1.

Main characteristics of the 13-week-old non-diabetic (N), non-diabetic treated with T₃ for 10 days (NT3), 5 weeks diabetic (D) and 5 weeks diabetic rats treated with T₃ (DT3).

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>NT3</th>
<th>D</th>
<th>DT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>450±33.7</td>
<td>420±23.6</td>
<td>345±45.9*</td>
<td>307±43.5*</td>
</tr>
<tr>
<td>Heart weight (g)</td>
<td>1.18±0.06</td>
<td>1.53±0.10*</td>
<td>1.26±0.28</td>
<td>1.17±0.23</td>
</tr>
<tr>
<td>BG (mmol.l⁻¹)</td>
<td>4.73±0.4</td>
<td>5.53±0.5*</td>
<td>26.8±4.5*</td>
<td>29.76±3.9*</td>
</tr>
<tr>
<td>Serum T₃ (nmol/L)</td>
<td>1.46±0.15</td>
<td>1.77±0.10*</td>
<td>1.08±0.21*</td>
<td>1.85±0.00*#</td>
</tr>
<tr>
<td>Serum T₄ (nmol/L)</td>
<td>56.93±11.84</td>
<td>15.44±0.17*</td>
<td>34.11±2.14*</td>
<td>14.16±1.51*#</td>
</tr>
</tbody>
</table>

Values are means ± SD of 6 rats in each group. *Significantly different from N (P<0.05), # significantly different from D (P<0.05), BG – fasting blood glucose

Table 2.

Main characteristics of the 18- week-old non-diabetic (N), non-diabetic treated with T₃ for 10 days (NT3), 10 weeks diabetic (D) and 10 weeks diabetic rats treated with T₃ (DT3).

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>NT3</th>
<th>D</th>
<th>DT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>497±42.8</td>
<td>463±16.6</td>
<td>375±25.2*</td>
<td>321±50*#</td>
</tr>
<tr>
<td>Heart weight (g)</td>
<td>1.22±0.05</td>
<td>1.59±0.11*</td>
<td>1.18±0.99</td>
<td>1.38±0.15*#</td>
</tr>
<tr>
<td>BG (mmol.l⁻¹)</td>
<td>5.47±0.6</td>
<td>4.94±0.6</td>
<td>28.44±5.5*</td>
<td>30.00±4.7*</td>
</tr>
<tr>
<td>Serum T₃ (nmol/L)</td>
<td>1.46±0.08</td>
<td>1.89±0.12*</td>
<td>1.08±0.14*</td>
<td>1.32±0.06*#</td>
</tr>
<tr>
<td>Serum T₄ (nmol/L)</td>
<td>67.18±6.44</td>
<td>19.05±3.22*</td>
<td>37.58±10.89*</td>
<td>13.64±1.61*#</td>
</tr>
</tbody>
</table>

Values are means ± SD of 6 rats in each group. *Significantly different from N (P<0.05), # significantly different from D (P<0.05), BG – fasting blood glucose
Fig. 1. A, B.

(P1+P2)/P0 (relative value)

- **N**
- **T3**
- **D**
- **DT3**

* * *

TOTAL Cx43 PROTEIN

- **N**
- **T3**
- **D**
- **DT3**

* * *
Fig. 2. A, B.
Fig. 3 A, B
Fig. 4