Pathological potential of astroglia

Alexandr Chvátal1,2, Miroslava Anděrová1,2, Helena Neprašová1,2, Iva Prajerová1,2, Jana Benešová1,2, Olena Butenko1 & Alexei Verkhratsky1,3

1Institute of Experimental Medicine, ASCR, Vídeňská 1083, 142 20 Prague 4, Czech Republic
2Center for Cell Therapy and Tissue Repair, Charles University, Prague
3Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK,

Send correspondence to:
Dr. Alexandr Chvátal
Institute of Experimental Medicine ASCR,
Vídeňská 1083,
142 20 Prague 4,
Czech Republic
Tel: 602 269 952
Email: chvatal@biomed.cas.cz
Abstract

Pathological potential of glial cells was recognized already by Rudolf Virchow, Santiago Ramon y Cajal and Pio Del Rio-Ortega. Many functions and roles performed by astroglia in the healthy brain, determine their involvement in brain diseases; as indeed any kind of brain insult does affect astrocytes, and their performance in pathological conditions, to a very large extend, determine the survival of brain parenchyma, degree of damage and neurological defect. Astrocytes being in general responsible for overall brain homeostasis are involved in virtually every form of brain pathology. Here we provide an overview of recent developments in identifying the role and mechanisms of pathological potential of astroglia.

Key words: Astrocyte, astrogliosis, brain pathology, brain damage and repair, ischaemia, acute brain trauma, neurodegeneration.
Introduction

Astroglial cells form a true backbone of the grey matter, by shaping the micro-architecture of the brain, creating independent neuronal-glial-vascular units (Fig. 1), providing neurons with energy and controlling extracellular ion- metabolite- and neurotransmitter homeostasis (Araque et al., 1999; Nedergaard et al., 2003; Zonta et al., 2003; Haydon and Carmignoto, 2006; Magistretti, 2006; Oberheim et al., 2006; Verkhratsky, 2006b, a; Verkhratsky and Toescu, 2006; Giaume et al., 2007; Verkhratsky and Butt, 2007). Further, astroglia actively participate in information transfer by accepting incoming information through a multitude of neurotransmitter receptors residing in astrocyte membranes (Verkhratsky et al., 1998; Verkhratsky and Steinhauser, 2000; Volterra and Meldolesi, 2005; Lalo et al., 2006; Verkhratsky and Kirchhoff, 2007a, b) and feeding information back by virtue of regulated gliotransmitter release (Bezzi et al., 2004; Volterra and Meldolesi, 2005). Information processing within astroglial networks, created by gap junctions connecting terminal processes of astrocytes, operates in an intercellular volume transfer mode (Dermietzel, 1998; Scemes and Giaume, 2006) by direct exchange of second messengers, metabolites and other yet unidentified signalling molecules. This specific signalling mode brings much of sophistication to information transfer and can potentially be relevant for higher brain functions (Allen and Barres, 2005; Verkhratsky and Butt, 2007). Finally, astrocytes control genesis, survival and death of synapses (Ullian et al., 2004) and support adult neurogenesis through "stem" astrocytes subpopulations (Barres, 1999; Berninger et al., 2006).

Pathological potential of glial cells was recognized already by Rudolf Virchow (Tower, 1992). Many functions and roles performed by astroglia in the healthy brain, determine their involvement in brain diseases; as indeed any kind of brain insult does affect astrocytes, and their performance in pathological conditions, to a very large extend, determine the survival of brain parenchyma, degree of damage and neurological defect (Fig. 2). Furthermore, brain insults trigger a specific astroglial reaction, generally known as reactive astrogliosis. Astrogliosis is a defensive reaction, which is instrumental for limiting the areas of brain damage (by forming the scar) and for aftermath of the lesions when reactive astroglia assists remodelling of neural circuitry (Pekny and Nilsson, 2005).
Astroglia and ischemic insults

As it is very often happen in nature astroglia plays dual role in brain insults, providing for both defense and destruction of neural tissue (Nedergaard and Dirnagl, 2005; Rossi et al., 2007). Indeed, incidences of reduced oxygen supply immediately triggers neuronal depolarization, with subsequent loss of ion homeostasis. Depolarization-induced \(\text{Ca}^{2+} \) influx results in massive release of glutamate, which induces further depolarization thus casing glutamate excitotoxicity, which assumes the central role in brain damage (Westbrook, 1993). Over-activation of glutamate receptors results in massive cell overload with \(\text{Ca}^{2+} \), which in turn launches multiple forms of cell death (Nicotera et al., 2007).

Astrocytes represent the main part of brain defense against glutamate excitotoxicity, because they express high densities of glutamate transporters and accumulate up to 80% of total glutamate released in the brain (Danbolt, 2001; Kirischuk et al., 2007). Moreover, astrocytes express huge amounts of major ROS scavengers and antioxidants glutathione and ascorbate, which protect the brain against oxidative stress accompanying ischemia. Finally, by virtue of both local and spatial \(\text{K}^+ \) buffering astroglia remove the excess of \(\text{K}^+ \) from extracellular space thus restraining neuronal depolarization (Giaume et al., 2007). Yet, in conditions of prolonged ischemia glutamate cannot be contained within astroglia; depolarization and alteration of sodium gradients results in reversal of glial glutamate transporters (Allen et al., 2004) and further massive release of glutamate; in addition glutamate can be released from astroglia via exocytosis or through large membrane pores formed by e.g. hemichannels or P2X7 receptors (Contreras et al., 2004).

The second important role played by astroglia in the progression of ischemic insults is associated with their intercellular connectivity which is formed by gap junctions and unifies astrocytes into functionally continuous syncytium (Giaume et al., 1991; Bruzzone and Giaume, 1999). Once more intercellular volume transmission through gap junctions plays dual role in responses to ischemic injury; as it may participate in either removal of unwanted substances (e.g. \(\text{K}^+ \) buffering) or in spreading the pathological signals. Both neuroprotective and detrimental roles of astroglial
syncytium acquired experimental support. Indeed, neuroprotective role of astroglial web is corroborated by the following observations: (i) inhibition of astroglial gap junctions by pharmacological agents enhanced neuronal vulnerability (ii) partial genetic deletion of Cx43, which forms substantial part of glial gap junctions in vivo, increased sensitivity of neural tissue to stroke, which was manifested by a significant increase of stroke volume and (iii) specific deletions of Cx43 in astrocytes also increased neuronal vulnerability to ischemia (Giaume et al., 2007). At the same time a wealth of data supporting the pathological potential of gap junctional communications has been acquired recently. First, it was shown that astroglial gap junctions remain open during ischemia, and they can propagate certain death signals (Cotrina et al., 1998; Lin et al., 1998). Second, it appeared that inhibition of Cx43 expression by specific antisense oligodeoxynucleotides reduces neuronal death in response to glucose and oxygen deprivation, and pharmacological blockade of gap junctions decreases the stroke volume following occlusion of the medial cerebral artery (Nedergaard and Dirnagl, 2005). Finally, gap junctions may participate in generation of waves of spreading depression through the penumbra, which are critical for expansion of the infarct zone (Budd and Lipton, 1998). It still remains unclear which conditions favor neuroprotective or detrimental impact of glial syncytium; they may depend on the severity of insult and brain region.

Astroglia and acute brain trauma

Mechanical brain injury or injections of toxic substances into the brain tissue (e.g. kainate lesions) trigger massive cell death and astrogliosis manifested by elevated expression of glial fibrillary acidic protein, GFAP (Bignami and Dahl, 1977; Hozumi et al., 1990). Membrane properties of astrocytes in post-traumatic brain or spinal cord were investigated in vitro, in cultures of cortical (Perillan et al., 1999; Perillan et al., 2000) and spinal cord astrocytes (MacFarlane and Sontheimer, 1997, 1998). These studies have demonstrated that reactive spinal cord astrocytes up-regulated several membrane conductances, including delayed outwardly rectifying K⁺ currents (K_{DR}), transient A-type K⁺ currents (K_{A}) and voltage-gated Na⁺ currents. Proliferating astrocytes demonstrated a down-regulation of inwardly rectifying currents (K_{IR}), whereas in non-proliferating K_{IR} currents were increased.
Since many pathological states are accompanied by an increase in [K\(^+\)]e, an early event leading to the activation of astrocytes and the subsequent formation of a glial scar, several studies have examined the astrocyte membrane properties and cell volume regulation of astrocytes after exposure to high K\(^+\) \textit{in situ} (Anderova \textit{et al.}, 2001; Vargova \textit{et al.}, 2001; Anderova \textit{et al.}, 2004; Neprasova \textit{et al.}, 2007). Neprasova and co-workers (Neprasova \textit{et al.}, 2007) found that spinal cord astrocytes, exposed to elevated K\(^+\), reacted by both morphological changes and alteration of membrane properties and cell volume regulation.

The astrocytic response to a mechanical trauma, such as cortical stab wound, is manifested by intense immunostaining for GFAP (Enclancher \textit{et al.}, 1990; Vijayan \textit{et al.}, 1990; Kálmán and Ajtai, 2000; Nolte \textit{et al.}, 2001), S-100\(\beta\), a calcium-binding protein that is predominantly found in astrocytes, and for vimentin, a cytoskeletal protein expressed in reactive astrocytes (Perillan \textit{et al.}, 1999; Perillan \textit{et al.}, 2000). Nestin expression in reactive astrocytes has been also detected (Yagita \textit{et al.}, 2002; Anderova \textit{et al.}, 2004). Astrogliosis also increases diffusion barriers in the CNS due to the hypertrophy of astrocytic processes and the increased production of extracellular matrix components (Sykova, 1997; Roitbak and Sykova, 1999; Sykova and Chvatal, 2000). This can impair the diffusion of ions, neurotransmitters, trophic factors and other neuroactive substances in the brain and thus influence the extent of CNS injury.

The voltage-dependent K\(^+\) and Na\(^+\) currents in reactive astrocytes have been extensively studied \textit{in situ} (Jabs \textit{et al.}, 1997; D'Ambrosio \textit{et al.}, 1999; Bordey \textit{et al.}, 2001). These studies have shown that reactive astrocytes express predominantly K\(_{\text{DR}}\) while the expression of K\(_{\text{IR}}\) is decreased, which may imply an impaired K\(^+\) spatial buffering capacity and a failure of ionic homeostasis in gliotic CNS tissue, followed by abnormal neuronal activity. Expression of voltage-gated K\(^+\) channels in astrocytes \textit{in vivo} is affected by astrocyte proliferation at the site of injury; similar results were found in the \textit{in vitro} models of astrogliosis (MacFarlane and Sontheimer, 1997, 1998). That is, proliferating astrocytes (identified by bromo-deoxyuridine staining) in the cortex of young rats (P16 - 24), which received a focal cortical freeze-lesion on the first postnatal day, demonstrated increased expression of K\(_{\text{DR}}\) channels, but they did
not appear to express K_{IR} channels at all (Bordey et al., 2001). Investigations of Anderova and co-workers (Anderova et al., 2004) revealed existence of two electrophysiologically, immunohistochemically and morphologically distinct types of hypertrophied astrocytes at the site of stab wound, depending on the distance from the lesion (Fig. 3). “Proximal astrocytes”, found within a distance of ~100 μm from the stab wound, showed an up-regulation of K_{DR} currents and were nestin and BrdU-positive, while nestin and BrdU-negative astrocytes, showing an up-regulation of K_{IR} currents from 6 hours to 3 days after trauma, were localized more distantly from the site of wound (> 100 μm).

Using several *in vivo* models of chemical CNS injury it was found that changes in expression of various ion channels in post-traumatic astrocytes are directly affected by both the nature and the extent of the tissue injury. For instance, injection of kainate into the ventricles caused degeneration of hippocampal pyramidal cells in the CA3 region in concert with significant reduction of functional Ca$^{2+}$ channels in astrocytes in acutely isolated hippocampal slices (Burnard et al., 1990). Lesions induced by an intraperitoneal injection of kainate resulted in a loss of tetrodotoxin-sensitive Na$^+$ channels in reactive astrocytes in the adult rat hippocampus (Jabs et al., 1997). In the rat hippocampus, fluid percussion injury induced a decrease of K_A and K_{IR} currents (D'Ambrosio et al., 1999). Similarly, K_{IR} currents were reduced in astrocytes from the dentate gyrus of adult rats subjected to an entorhinal cortex lesion (Schroder et al., 1999).

Astroglia and chronic neurodegeneration

Post-stroke dementia is a frequent outcome of the ischemic insults; neurological defects that develop after stroke to a large extent are determined by the glia, because the degree of astrogliosis and its progression directly influence the size of the infarction and posttraumatic regeneration and remodelling.

Alzheimer's disease (AD), named after Alois Alzheimer who was the first to describe this pathology in 1907 (Alzheimer, 1907) together with post stroke dementia, is the main cause of senile dementia. Progression of AD is associated with profound
neuronal loss throughout the brain which rapidly affects memory and results in severe impairment of cognitive functions. Histological hallmarks of AD are (i) formation of deposits of β-amyloid protein (Aβ) in the walls of blood vessels; (ii) accumulation of Aβ plaques in the grey matter and (iii) intra-neuronal accumulation of abnormal tau-protein filaments in a form of neuronal tangles (Dickson, 1997; Selkoe, 2001). AD is associated with prominent reactive astrogliosis and activation of microglia (incidentally, the involvement of glial cells in pathogenesis of AD was initially suggested by Alois Alzheimer himself in 1910). In fact, AD plaques are formed by Aβ deposits, degenerating neurites, astroglial processes and activated microglial cells (Wisniewski and Wegiel, 1991).

Astrocytes appear as natural scavengers of Aβ, and in particular its toxic truncated form Aβ42 (Nagele et al., 2003). Astrocytes detect Aβ deposits cover them with their processes and take up and degrade the Aβ. This ability of astrocytes to take up Aβ allowed Robert Nagele and his co-workers to propose a hypothesis about a leading role of astroglia in progression of AD (Nagele et al., 2004). According to this hypothesis at the very early stages initial production of Aβ42 in neurons trigger their initial degeneration and release of Aβ42. The latter, together with products of neuronal destruction, activates neighboring astrocytes, which in turn start to accumulate Aβ and clear the neuronal debris. Indeed, astroglial load by Aβ42 directly correlates with local density of plaques and amount of extracellular Aβ42 (Nagele et al., 2003). Incidentally, Aβ42 accumulation coincides with significant increase of concentration of neuronal nicotinic acetylcholine receptors in astrocytes, probably reflecting very high affinity of the latter to Aβ42 (Nagele et al., 2004).

Overload of astrocytes with Aβ42 compromises their function thus affecting support of other neurons within the astrocyte domain. Withdrawal of astrocytic support may initiate degeneration of synapses and trigger distant accumulation of Aβ42. In addition, astroglia may even be instrumental in accomplishing Aβ42 neurotoxicity: in vitro experiments have shown that treatment of astroglial–neuronal co-cultures with Aβ results in the generation of [Ca2+]i oscillations in astrocytes, without any apparent [Ca2+]i changes in neurons (Abramov et al., 2004b, a). These astrogial oscillations induced neuronal death in ~24 hours; inhibition of glial [Ca2+]i responses was
neuroprotective (Abramov et al., 2004b, a). Degeneration of the whole astrocyte domain results in lysis and formation of the astroglial plaque. Subsequently, neighboring astrocytes become activated and send their processes towards the plaque, trying to clear the excess of Aβ. The repetition of this process eventually recruits increasing numbers of astrocytes and through them astrocytic domains with their neurons, which in turn leads to dissemination of the plaques and neurological defects.

Amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis (ALS), also known as ‘Lou Gehrig’s disease’ (named after a baseball player who died from ALS in 1941) was initially described by Charcot in 1869. This disease is manifested by degeneration of motor neurons located in cortex, brain stem and spinal cord (Mitchell and Borasio, 2007). This neurodegeneration results in progressive paralysis and muscle atrophy. The key pathological determinant of neuronal death in ALS is associated with deficient glutamate clearance, and as a consequence, excitotoxic neuronal damage. This deficient glutamate clearance results from disappearance of astroglial glutamate transporter EAAT2 in the affected brain areas (Barbeito et al., 2004), as the consequence of gene failure and may result from aberrant RNA splicing, exon skipping and intron retention. Experimental genetic deletion of EAAT2 (GLT-1) in mice faithfully mimicked ALS, and led to degeneration of motor neurons (Barbeito et al., 2004).

Effects of elevated extracellular K⁺ concentration on astroglia

Rapid increases in extracellular K⁺ concentration ([K⁺]ₑ) in the CNS occur under many pathological states, such as ischemia, epileptical seizures, traumatic brain injury or spreading depression. In these pathological conditions the [K⁺]ₑ can be elevated up to 80 mM, which significantly contributes to the damage of the nervous tissue (Somjen, 1979; Sykova, 1983; Sykova et al., 1992; Vorisek and Sykova, 1997; Somjen, 2001). In addition elevated [K⁺]ₑ may also trigger cell proliferation (Del Bigio et al., 1994) and can induce or modify apoptotic cell death (Yu, 2003). Astroglia is responsible for extracellular K⁺ homeostasis in the CNS; astrocytes remove the excess of [K⁺]ₑ through both K⁺ uptake by K⁺ channels or transporters and through K⁺ spatial buffering within astroglial syncytium (Orkand et al., 1966;
Acute exposure of astrocytes to elevated [K+]\textsubscript{e} results in reversible membrane depolarization, accumulation of intracellular K+ and rapid cell swelling (Pasantes Morales and Schousboe, 1988; Walz, 1997).

Astrocyte swelling, which can be modelled \textit{in vitro} by exposure to hypotonic solution or to an isotonic solution with an increased [K+] (Kimelberg \textit{et al.}, 1995; Chvatal \textit{et al.}, 1999; Anderova \textit{et al.}, 2001; Vargova \textit{et al.}, 2001), evokes a large increase in extracellular K+ in the vicinity of the cell membrane after a transient depolarization, the latter resulting from an extracellular space (ECS) volume decrease around swollen astrocytes. Sykova \textit{et al.} (1999) found that incubation of the spinal cord in 50 mM K+ evokes cell swelling resulting in a decrease in the ECS volume fraction and astrocyte activation (manifested by an increase in GFAP immunoreactivity). This can lead to the impairment of both synaptic and extrasynaptic transmission, the diffusion of neuroactive substances and neuron-glia communication in the CNS (Sykova, 2005).

As has been discussed before reactive astrocytes change the pattern of K+ channels by down-regulating expression of K\textsubscript{IR} and increasing expression of K\textsubscript{DR}. Decrease in K\textsubscript{IR} may directly impair K+ buffering capacity and thus result in a failure of ionic homeostasis in gliotic CNS tissue, followed by abnormal neuronal activity. Our recent study (Neprasova \textit{et al.}, 2007) demonstrated that in complex astrocytes, pre-incubation with high K+ caused depolarization, increase in an input resistance, decrease in membrane capacitance and an increase in the densities of voltage-gated K+ and Na+ currents. Conversely, in passive astrocytes the reversal potential shifted to more positive values and densities of K+ and Na+ currents decreased. No changes were observed in astrocyte precursors.

\textbf{Conclusions}

Astrocytes are involved in virtually every type of brain pathology. They play a dual action forming the brain defense system and at the same time exacerbating brain damage when severely insulted. Astrogial performance to a very large extend determines the outcome of brain pathology and the degree of neurological damage.
Acknowledgements

Research was supported by the Grant Agency of the Czech Republic (#305/06/1316, #305/06/1464, #305/08/1384 and 309/08/1381), by the Ministry of Education, Youth and Sports of the Czech Republic (#1M0538 and #LC554) and by the Academy of Sciences of the Czech Republic (#AVOZ50390512).

A.V. research was supported by The Alzheimer Research Trust (UK), The National Institute of Health (NIH), The Royal Society and The Wellcome Trust.
References

ABRAMOV, AY, CANEVARI, L, DUCHEN, MR: Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. *Biochim Biophys Acta* **1742**: 81-87, 2004b

ALLEN, NJ, KARADOTTIR, R, ATTWELL, D: Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. *Pflugers Arch* **449**: 132-142, 2004

BERNINGER, B, HACK, MA, GOTZ, M: Neural stem cells: on where they hide, in which disguise, and how we may lure them out. *Handb Exp Pharmacol*: 319-360, 2006

CONTRERAS, JE, SANCHEZ, HA, VELIZ, LP, BUKAUSKAS, FF, BENNETT, MV, SAEZ, JC: Role of connixin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. *Brain Res Brain Res Rev* 47: 290-303, 2004

KIMELBERG, HK, RUTLEDGE, E, GODERIE, S, CHARNIGA, C: Astrocytic swelling due to hypotonic or high K+ medium causes inhibition of glutamate and aspartate uptake and increases their release. *J Cereb Blood Flow Metab* **15**: 409-416, 1995

KOFUJI, P, NEWMAN, EA: Potassium buffering in the central nervous system. *Neuroscience* **129**: 1045-1056, 2004

NEDERGAARD, M, DIRNAGL, U: Role of glial cells in cerebral ischemia. *Glia* **50**: 281-286, 2005

SOMJEN, GG: Extracellular potassium in the mammalian central nervous system. *Annu Rev Physiol* 41: 159-177, 1979

SYKOVA, E: Glia and volume transmission during physiological and pathological states. *J Neural Transm* 112: 137-147, 2005

SYKOVA, E, CHVATAL, A: Glial cells and volume transmission in the CNS. *Neurochem Int* 36: 397-409, 2000

TOWER, DB: A century of neuronal and neuroglial interactions, and their pathological implications: an overview. *Prog Brain Res* 94: 3-17, 1992

VERKHRATSKY, A: Calcium ions and integration in neural circuits. *Acta Physiol (Oxf)* **187**: 357-369, 2006a

Grey matter astrocytes occupy clearly defined territories, where they form contacts with all neuronal membranes and send endfeet to neighboring capillaries thus creating relatively independent glial-neuronal-vascular units.

1) The astroglial endfeet plaster the outer capillary wall and secrete yet unknown factors, which determine the appearance of tight junctions and hence formation of blood-brain barrier. By virtue of numerous transporters astroglial cells provide for metabolite exchange between brain parenchyma and blood vessels. Astroglial cells also release vasoconstrictive/vasodilating agents, which couple neuronal activity with local blood flow.

2) Astrocytes provide active neurons with energy substrates using “astrocyte-neuronal lactate shuttle”.

3 – 4) Astrocytes receive signalling input from neurons using a host of receptors residing in astroglial membranes forming “tripartite synapse” or in direct neuronal-glial synaptic contacts.

5) Astrocytes communicate between themselves by gap junctions or through the release of gliotransmitters.

6) Astrocytes communicate with neuronal circuits by gliotransmitters, which modulate synaptic transmission and affect neuronal excitability.
Figure 2. Pathological potential of astrocyte.
Figure 3. Two immunohistochemically and electrophysiologically distinct types of reactive astrocytes were detected in the vicinity of stab wound.

Immunohistochemistry of coronal section from the cortex of injured rat 7 days post-injury-PI (lower magnification, left). Sections of the brain slices were stained for GFAP. Note the stronger expression of GFAP in the vicinity of the stab wound. Immunostaining for GFAP and nestin (higher magnification) and double immunostaining for nestin and GFAP (bottom, high magnification) in the cortex of a wounded rat 7 days PI. Note the presence of nestin-positive astrocytes (nestin+GFAP) only in the vicinity of the wound (double stained cells are yellow) and astrocytes positive only for GFAP.

Typical membrane current patterns of astrocytes in the cortex of control rats and 7 days PI (right). Membrane current patterns in GFAP-positive and GFAP/nestin-positive were measured in response to voltage steps from a holding potential of -70 mV. To activate the currents, the membrane was clamped for 50 ms from the holding potential of -70 mV to increasing de- and hyperpolarizing potentials ranging from -160 to +20 mV, in 10 mV increments. Note the large amplitude of inwardly rectifying K⁺ currents in GFAP-positive astrocytes and large amplitude of outwardly rectifying K⁺ currents in GFAP/nestin-positive astrocytes.