Mechanisms of chronic heart failure development in end-stage renal disease patients on chronic hemodialysis

Jan Malik¹, Vladimir Tuka¹, Magdalena Mokrejsova², Robert Holaj¹, Vladimir Tesar².

¹) Third Department of Internal Medicine and ²) Department of Nephrology
General University Hospital, First School of Medicine, Charles University
Prague, Czech Republic

Short title: Heart failure in patients on chronic dialysis

Corresponding author:
Jan Malik, MD, PhD
Third Department of Internal Medicine
General University Hospital
U nemocnice 1
12808 Prague
Czech Republic
Tel./fax +420224923852
E-mail: malik.jan@vfn.cz
Summary:

More than 50% of end-stage renal disease (ESRD) patients treated by chronic hemodialysis die from cardiovascular diseases, including congestive heart failure (CHF). The incidence of CHF is rising in both general and ESRD population. However, the mechanisms, which lead to the development of CHF in dialyzed patients, differ considerably.

First, there are several factors leading to increase of the left ventricular afterload: volume overload between dialyses, hypertension, increased arterial stiffness, anemia, vascular access (arteriovenous fistula) flow and sympathetic activation. Second, hypertension, left ventricular hypertrophy, anemia and frequently present coronary artery disease worsen myocardial oxygenation. The combination of these factors explains the high incidence of CHF in dialyzed patients and their roles are reviewed in this article.

Key words: heart failure, dialysis, volume overload, pressure overload
1. Prevalence, mortality, morbidity

More than 50% of end-stage renal disease (ESRD) subjects treated by chronic hemodialysis die from cardiovascular diseases (Collins 2003). Congestive heart failure (CHF) is present in more than one-third of new dialysis patients (Stack and Bloembergen 2001) with an incidence of 71/1000 person-years. This figure is substantially greater than the incidence of acute coronary syndromes in ESRD patients (29/1000 person-years in US Renal Data System (USRDS) Morbidity and Mortality Study Wave 2) (Trespalacios et al. 2003). CHF contributes significantly to mortality and morbidity and also worsens the quality of life. For instance, the median overall survival of ESRD patients with CHF is reported to be 36 months compared with 62 months in patients without CHF (Harnett et al. 1995). Fewer than 15% of dialysis patients are alive 3 years after hospitalization for CHF (Trespalacios et al. 2003).

CHF is, by definition, a state in which the heart is unable to pump blood at a rate appropriate to the requirements of the metabolizing tissues or can do so only from an elevated filling pressures (Zipes 2005). CHF in ESRD patients differs from CHF states in subjects with preserved renal function by several factors. Interdialytic volume overload and vascular access flow are specific only for ESRD. Therefore, hemodialysis contributes also per se to the development of CHF. During continuous worsening of chronic kidney disease, nephrogenic hypertension develops. This is the source of pressure overload, especially in patients with inadequate hypertension control. Most important mechanisms of CHF in ESRD patients treated by hemodialysis are discussed below. We did not include the problems associated with peritoneal dialysis nor kidney transplantation to keep this review more transparent.
Increased left ventricular mass (hypertrophy) (LVH) is the most frequent cardiac abnormality diagnosed in patients starting hemodialysis (present is as many as 80%)(Foley et al. 1995, Herzog et al. 1998). LVH is an independent and strong risk factor for cardiovascular morbidity and mortality in both normal population(Levy et al. 1990) and in ESRD patients(Silberberg 1989). In the latter population, LVH is principally due to an increased demand in the left ventricular minute work resulting from volume/flow and pressure overload (Meeus et al.1989). Two forms of the left ventricular hypertrophy could be present and are relatively equivalent in prevalence in dialysis population: eccentric and concentric. Eccentric hypertrophy results from volume overload leading to cardiac myocyte dropout: there is myocyte to arteriolar capillary mismatch. Concentric hypertrophy is typically the result of hypertension and increased afterload and is exacerbated by anemia, hyperparathyreoidism, and high angiotensin II concentrations. In experimental renal failure, LVH was associated with reduced capillary density and subsequent interstitial fibrosis(Mall et al. 1990, Amann et al. 1990). The latter is probably a reason of diastolic and later also systolic dysfunction of the left ventricle present in LVH. While in general population hypertension is the most frequent cause of the left ventricle hypertrophy, in ESRD patients, the correlation between left ventricle mass and blood pressure is weak, and experimental and clinical studies have shown that hypertrophy develops even in normotensive ESRD subjects (London et al. 1987).

Schematically, factors contributing to the development of CHF include those increasing preload and decreasing the myocardial perfusion or oxygenation of the left ventricle (Tab. 1). Left ventricular afterload is increased by some and decreased by other mechanisms – Fig. 1.
2a. Mechanisms of CHF: volume overload between dialyses

Most subjects with ESRD have insufficiently low or even no diuresis, which leads to water retention. Excessive water is removed during dialysis sessions by ultrafiltration. Nevertheless, dialysis is usually performed only 2-3 times per week and body water accumulates and fluctuates between the dialysis sessions. This fluctuation plays a role in the development of the left ventricular hypertrophy, which in turn predisposes to CHF (London 2003). The ultrafiltration rate is targeted to reach so called dry weight of the patient. There are several methods of dry weight calculation. To simplify, dry weight is the minimal tolerated weight – without clinical signs of dehydration. Inappropriate calculation of the dry weight leads to chronic volume overload (Charra 2007).

Overhydration between the dialyses contributes to the pathogenesis of LVH in ESRD by its effects on blood pressure control and also by induction of volume overload (London 2003). The internal dimensions of the left ventricle, stroke volume, and end-diastolic pressure are directly related to circulating blood volume (Chaignon et al. 1981). Body fluid volume reduction during dialysis sessions induces a decrease in left ventricle diameter and cardiac output, and there is a direct correlation between interdialytic body weight changes and LV mass, as well as stroke volume (Harnett 1993). LV mass is correlated with the concentration of atrial natriuretic peptides, which are influenced by extracellular fluid volume (Zoccalli et al. 2001). Regression of the left ventricular dimensions and LVH can be achieved by ultrafiltration and reduced salt intake in hemodialysis patients (Ozkahya et al. 1998). Indeed, patients treated by daily dialysis have lower and steadier levels of brain natriuretic peptide (BNP), the marker of heart failure and overhydration (Odar-Cederlof, et al. 2006). A similar LVH reduction was associated with better blood pressure control, decrease in
extracellular fluid volume, and with lower volume fluctuation in patients on daily
dialysis (Fagugli et al. 2001).

2b. Mechanisms of CHF: anemia
Anemia is a frequent condition in even milder stages of chronic renal disease, mainly
due to decreased synthesis of erythropoietin. Non-hemodynamic mechanisms of
body adaptation to anemia include increased oxygen extraction in tissues, mediated
by increased 2,3-diphosphoglycerate levels. Mechanisms of hemodynamic
compensation of anemia are complex: 1. Reduced afterload due to a decrease in
systemic vascular resistance; 2. Increased preload due to an increase in venous
return; 3. Increased left ventricular function attributed to increased sympathetic
activity and inotropic factors. Increased left ventricular performance can result from
an increased preload (Frank-Starling mechanism) and from changes in inotropic state
in relation to high sympathetic activity or inotropic factors (Muller et al. 1991). In
chronic anemia, typical for ESRD, long-lasting flow/volume overload and increased
cardiac work lead to progressive cardiac enlargement and to the left ventricular
hypertrophy (Parfrey et al. 1991). The alterations in cardiac function are
accompanied by simultaneous remodelling of the large conduit arteries (London et al.
1996). Indeed, in dialysis patients, anemia is associated with LVH, left ventricular
dilatation, congestive heart failure, increased hospitalization rate, and increased
In patients on dialysis, treatment of anemia with erythropoietin alters both the function
and the structure of the left ventricle. It decreases the stroke volume and heart rate,
and decreases the cardiac output and left ventricular work (Fellner et al. 1993). Older
studies showed optimistic data of mortality risk decrease (Moecks 2000). Recent
studies compared the lower and higher target hemoglobin values (10.5-11.5 g/dl and 13.0–13.5 g/dl, respectively). They failed to show any benefit of higher target hemoglobin value except for better quality of life (Drueke et al. 2006, Singh et al. 2006). In a meta-analysis, patients in the higher target value group had higher mortality (Phrammintikul et al. 2007). It was speculatively explained by increased rate of thromboses, including infarctions as a result of both higher hematocrite, and by some direct effects of erythropoietin favoring inflammatory states.

2c. Mechanisms of CHF: hypertension and arterial wall stiffness

CKD could be both the reason and the result of hypertension. This is probably the source of the very high hypertension prevalence in ESRD subjects. For example, in our previous study, more than 70% of 258 subjects coming for vascular access examination into our department from the whole country suffered from hypertension (Malik et al. 2007). In non-ESRD patients, several studies have repeatedly confirmed that the treatment of high blood pressure decreases both cardiac and particular cerebrovascular events in patients with diabetes (Schrier et al. 2002) as well as in those without diabetes (Hansson et al. 1999). Similarly, decreasing blood pressure has been shown to prevent progression of renal disease (Bakris et al. 2000). A new light was brought by a series of subsequent studies, which were meta-analysed by the project “INDIANA” (Boutitie et al. 2002). It has been shown that lowering diastolic blood pressure is protective until a certain level and then the risk of all-cause mortality rises again: J-shaped curve. The authors have revealed a J-point at a diastolic blood pressure of 84 mmHg. There are several possible explanations of this phenomenon and 2 of them seem to be particularly important: 1. Subjects with low blood pressure suffer probably from more severe cardiac disease (heart failure
and/or coronary artery disease). 2. Because decreasing diastolic blood pressure is associated with increasing pulse pressure (= the difference between systolic and diastolic pressure), there is a possibility that an increment in pulse pressure may be culpable for these findings (Berl and Henrich 2006).

The ill effects of hypertension are usually attributed to the reduction in the caliber of arterioles, resulting in a peripheral resistance increase. Blood pressure is the easiest measurable index of opposition to left ventricular ejection (afterload). In fact, the appropriate term to define the arterial factors opposing LV ejection is the aortic impedance, which depends on: 1) the peripheral resistance, 2) the viscoelastic properties of the aorta and central arteries, and 3) the inertial forces represented by the mass of the blood in the aorta and left ventricle (Nichols and O’Rourke 2005).

Peripheral resistance, as a determinant of mean blood pressure, sets the general level at which the pressure wave will fluctuate. The amplitude of this fluctuation (pulse pressure) is influenced by the viscoelastic properties of the aorta and large arteries and by the characteristics of the left ventricular ejection (stroke volume and ejection velocity). The viscoelastic properties of the aorta can be described in terms of compliance, distensibility and stiffness (Meeus et al. 2000). Stiffening of arterial walls can increase the afterload independently of peripheral resistance. Clinically, high aortic stiffness is suspected in patients with high pulse pressure. The latter can occur in case of diastolic pressure decrease, systolic pressure increase, or both.

Arterial stiffening leads to faster pulse wave velocity, which, after the reflections at the level of the peripheral arteries, returns earlier to the aorta, amplifies aortic and even ventricular pressures during systole (aortic valve is still open) and reduces aortic pressure during diastole (Safar et al.1990). Vitious circle continues by further
stiffening of arteries. Arterial stiffening is also a result of metabolic disturbances – see below.

2d. Mechanism of CHF: Vascular pathology, coronary artery disease

Several vascular pathologies play a role in patients suffering from ESRD. These include 1. atherosclerosis; 2. arteriosclerosis; 3. vascular calcifications and remodeling.

Atherosclerosis develops rapidly in ESRD patients. Uremia produces specific atherogenic factors, e.g. secondary form of complex dyslipidemia (Madore 2003), calcium-phosphate metabolism alterations (Floege and Ketteler 2004), malnutrition, and activation of inflammation (Madore 2003). These factors are additive to the risk factors present in patients with normal renal function, such as age, hypertension, smoking, diabetes, male gender and insulin resistance (Brunner et al. 2005).

Although atherosclerosis was considered the only cause of macrovascular disease, many vascular complications arise in ESRD patients in the absence of clinically significant atherosclerotic disease.

Arteriosclerosis refers to the hardening or stiffening of arteries (or arterioles). It is typically associated with aging and involves the entire arterial tree, although it principally affects the elastic arteries. Unlike atherosclerosis, arteriosclerosis involves both intimal and medial thickening. Arteriosclerosis is associated with vascular hypertrophy characterized by increased wall thickness, lumen enlargement, and increased length of arteries, referred together as remodeling (London 2003).

Histologically, arteries from uremic patients have been reported to have fibrous or fibroelastic intimal thickening; calcification of the internal elastic lamella, medial ground substance and medial elastic fibers; and disruption and reduplication of the
internal elastic lamella (Ibels et al. 1979). These indicate the predominance of arterial calcification in uremia and provide histological evidence for the loss of elasticity in ESRD. Excessive calcification affects also the cardiac valves. Tunica media calcification is a common feature in ESRD subjects. Diabetes mellitus is the strongest risk factor, but uremia per se has also been shown to contribute. It is due to disturbed calcium/phosphate metabolism – abnormal phosphate homeostasis in the setting of ESRD markedly alters the severity, progression, and extent of vascular calcifications (Vattikuti et al. 2004). Vitamin D deficiency, as a result of kidney failure, affects cardiac contractility, vascular tone, cardiac collagen content and cardiac tissue maturation (Achinger and Ayus 2005). Reduced levels of vitamin D, hyperphosphatemia and a tendency towards hypocalcemia lead to the increased production of parathormone and the secondary hyperparathyreoidism develops (DeFrancisco 2004). Clinically, so-called calcium/phosphate product is used as a measure of calcium/phosphate metabolism. Detailed description of the mechanisms of vascular calcifications is behind the scope of this article. Higher concentrations of aldosterone, endothelin, angiotensin II, asymmetric di-methylarginine (ADMA, which is an endogenous inhibitor of nitric oxide-synthase) etc. also contribute to higher arterial stiffness.

2e. Mechanism of CHF: valvular disease

Valvular calcifications are typical for ESRD patients. They mostly occur in mitral and aortic valve and are markers of poorer prognosis. Wang et al. found that valvular calcification is an important predictor of all-cause and cardiovascular mortality in peritoneal dialysis patients (Wang et al. 2003). They hypothesized, that the poor outcome could be explained by the fact that these patients have the most severe and
advanced atherosclerosis. On the contrary, the increased mortality was not explained by the valvular obstruction. Despite the findings of Wang et al., the incidence of aortic valve stenosis increases during last 2 decades (Michel 1998). It is explained by increasing age of hemodialyzed population, but disturbances of calcium/phosphate metabolism probably also play a role together with the increased shear of aortic valve due to hyperkinetic circulation. In a general population, aortic stenosis leads to heart failure in its late stage. In ESRD patients, aortic stenosis could contribute to heart failure symptoms earlier.

Mitral valve calcifications lead only rarely to the development of significant regurgitation/stenosis.

Valvular regurgitation may be also a result of infective endocarditis. It is more common in patients dialyzed via permanent catheter (Kamalakannan et al. 2007).

2f. Mechanism of CHF: vascular access

Surgically created vascular access, either “native” (direct connection of patient’s artery and vein) or with the use of artificial graft, serves for repeated entries into the blood stream during hemodialyses. Adequate flow volume is needed for the hemodialysis procedure and also for longer patency of the access. Generally, forearm accesses have flow 400-800 ml/min, brachial accesses 800-1500 ml/min. Such flow is ensured by the sudden fall of peripheral vascular resistance just after the access creation together with further maturation of both the feeding artery and outflow vein. This systemic vascular resistance decrease leads to subsequent volume overload and –at least temporarily- to increased cardiac output and left ventricle ejection fraction (Ori et al. 1996). Bos et al. (Bos et al. 1999) studied the effects of vascular accesses on cardiac oxygen supply and demand using pressure
wave analysis. They concluded that accesses have small effect on left ventricular oxygen demand, but decrease cardiac oxygen supply considerably.

Case reports of hyperkinetic heart failure as a result of high flow access have been published, such as that of Jin et al. (Jin et al. 2006). More commonly, access flow contributes to the development of already present congestive heart failure either clinically silent or overt. Such opinion is supported by the following studies of access creation impact on heart failure parameters: Ori et al. documented an increase of cardiac output, ejection fraction, cardiac index and of atrial natriuretic peptide and a decrease of plasma renin activity in a small study (10 subjects). Similar findings were observed 2 weeks after access creation (Iwashima et al. 2002), and left ventricle diastolic function worsened after access creation together with increase of ANP and BNP. We observed statistically significant increase of BNP levels 6 weeks after the construction of vascular access with “normal” flow (709 ± 311 ml/min)(unpublished data). Unfortunately, these studies do not demonstrate the long-term effect of access flow on heart failure.

An opposite approach was used by Chemla et al: they monitored the effect of surgical access flow reduction on cardiac output in a group of high access flow patients (3135±692 ml/min)(Chemla et al. 2007). Mean ± SD access age at inclusion was 30±17 months and only accesses with flow volume exceeding 1600 ml/min were included. Cardiac output decreased significantly after the surgery together with the access flow. Similar topic (but with the use of a differet flow-reducing surgical technique) was studied in a case report (Murray et al. 2004). The most interesting finding in this study is that in high-output states (induced by high flow accesses), the necessary increase in cardiac output to sustain the high access flows must be numerically greater than the actual access flow. This phenomenon is
detectable also in the paper of Chemla et al, where access flow reduction of approx. 2 l/min led to cardiac output decrease of more than 3 l/min (Chemla et al. 2007). We could hypothesize that this numerical imbalance mirrors excessive increase of preload or, in other words, a sign of heart failure.

2g. Mechanism of CHF: other mechanisms

Hemodialysis is associated with repetitive hemodynamic instability and subsequent myocardial ischemia, which may be due to coronary microvascular dysfunction. This process may be also important for the development of heart failure in hemodialysis patients (McIntare et al. 2008).

Pericardial effusions are common in ESRD patients, but only rarely significant if chronic dialysis therapy has been established. Various arrhythmias could be present as a result of ionic imbalance. They could contribute to the CHF by impaired left ventricular filling. Sleep apnea is common in ESRD patients (Kimmel et al. 1989) and leads to nocturnal hypoxemia. Malnutrition is also common and is associated with higher risk of CHF (Foley et al. 1996). It could be estimated by the level of serum albumin.

Kidney transplantation leads (sometimes) to the regression of the left ventricular hypertrophy and systolic dysfunction (Parfrey et al. 1995). This phenomenon was explained by the decrease of “uremic toxin” levels and the term “uremic cardiomyopathy” is sometimes used to describe the complex non-coronary left ventricular changes in ESRD patients (Gross and Ritz 2008). However, patients treated by hemodialysis do not have real clinical signs of uremia and many so called uremic toxins were already discovered – aldosterone, endothelin, angiotensin II, ADMA, parathormone, cytokines, advanced glycation end-products, advanced
oxidation protein products, etc., see also a review in this journal (Cibulka and Racek, 2007).

3. Research and diagnostic limitations

The research, but also the clinical care, is limited especially by the fact that the steady state of CHF in ESRD patients does not exist. Volume load changes between dialyses could be documented by changing blood pressure, heart rate, vascular access flow, left ventricle diameter and mass (Palecek et al. 2008), by levels of natriuretic peptides etc. It is generally accepted that regular examinations should be performed at least 24 hours after last hemodialysis, some authors examine just before the next dialysis.

Conclusions

Congestive heart failure is common in ESRD patients and is associated with substantial morbidity and mortality. It is a result of a complex of mechanisms, some of them occurring solely in ESRD patients. Unfortunately, chronic hemodialysis therapy cannot fully replace functioning kidneys. Detailed understanding of the mechanisms leading to CHF could improve the outcome of ESRD.
Fig 1. Factors influencing the left ventricle afterload

Afterload increasing mechanisms are listed in the left side of the figure, afterload lowering factors on the right side.
Table 1: Factors leading to the increase of preload and to the worsening of myocardial oxygen supply

↑Preload	Interdialytic volume overload
	Anemia
	Vascular access flow
	Inflammation
↓Cardiac oxygen supply	Coronary artery disease
	Anemia
	Hypertension
	LV hypertrophy
References:

ACHINGER SG, AYUS JC. The role of vitamin D in left ventricular hypertrophy and cardiac function. *Kidney Int*. **95**: S37-S42, 2005

HANSSON L, LINDHOLM LH, NISKANEN L, LANKE J, HEDNER T, NIKLASON A, LUOMANMAKI K, DAHLOF B, DEFAIRE U, MORLIN C, KARLBERG BE, WESTLER PO, BJORCK JE. Effect of angiotensin-converting-enzyme inhibition compared with conventional...

HARNETT JD, MURPHY B, COLLINGWOOD P, PURCHASE I, KENT G, PARFREY PS: The reliability and validity of echocardiographic measurements of left ventricular mass index in hemodialysis patients. *Nephron* 65: 212–214, 1993

