Antioxidants Aleviate Nicotine-Induced Platelet Aggregation in Cerebral Arterioles of Mice

in vivo

M.A. FAHIM1*, A. NEMMAR1, S SINGH1, MY HASSAN2

1Department of Physiology, 2Department of Pharmacology,

Faculty of Medicine, United Arab Emirates University, PO Box 17666, Al Ain, UAE

Short title: Nicotine induces cerebral microvessel thrombosis in mice

*Correspondence address to: Prof. M.A. FAHIM

United Arab Emirates University
Faculty of Medicine and Health Sciences
Department of Physiology
P.O. Box 17666, Al Ain, UAE
Phone: +971-37137535
Fax: +971 3 7671966
Email: m.fahim@uaeu.ac.ae
SUMMARY
Experimental data on the effect of nicotine on cerebral microvessel thrombosis is lacking. Therefore, this study was carried out to elucidate effects of nicotine on platelet aggregation in cerebral (pial) microcirculation of the mouse, and the possible protective effect of Vitamin C and E. Male TO mice were divided into six groups, and injected i.p. with saline as a control, Nicotine (1mg/kg), vitamin C alone (100mg/kg), vitamin E alone (100mg/kg), nicotine plus vitamin C or nicotine plus vitamin E, all for one week before the experiment. After one week, platelet aggregation in cerebral microvessels of these groups of mice were carried out in vivo. Appearance of 1st platelet aggregation and total blood flow stop in arterioles and venules were timed in seconds. In the animals treated with nicotine, venule did not show any alteration in the platelet aggregation timings in comparison to the control animals. However, in arterioles platelet aggregation timings were significantly accelerated (p<0.001) in nicotine treated animals as compared to controls. Both vitamins C and E prevented the shortening of arteriolar platelet aggregation time significantly (p <0.001) when applied with nicotine but not alone. It can be concluded that nicotine enhances the susceptibility to thrombosis in the cerebral arterioles, in vivo, and that vitamins C and E have alleviating effect on nicotine induced thrombotic events in mice pial microvessels.

Key words: Nicotine; microcirculation, thrombosis; platelets
Tobacco smoke, a health hazard most widely associated with cancer, is also a significant independent risk factor for cardiovascular disease and a leading cause of structural and functional alterations of the cardiovascular system (Rahman & Laher, 2007; Shireen et al., 2008; Bernhard et al., 2003).

Most clinical and experimental investigations of the pathophysiology of cigarette smoking have studied the effects of smoke as a whole, while a few studies focused on specific components of cigarette smoke, e.g. nicotine (Rubenstein et al., 2004). Nicotine exposure via cigarette smoking has been implicated in pathogenesis of cardiovascular disorders like atherosclerosis and hypertension (Lindenblatt et al., 2007). Nicotine causes vasoconstriction and increased blood pressure (Lindenblatt et al., 2007). A drop in blood-flow velocity in humans, endothelial damage in rats, and inhibition of platelet aggregation in rabbit's blood, have all been shown experimentally (Lindenblatt et al., 2007). Nicotine has been reported to upregulate the expression of various proteins such as basic fibroblast growth factor, tumor necrosis factor-α and plasminogen activator inhibitor-1 (Lau et al., 2006). In addition, nicotine induces mononuclear leukocyte adhesion and expression of adhesion molecules such as vascular cell adhesion molecule-1 and intracellular adhesion molecule in endothelial cells (Albaugh et al., 2004).

Circulating platelets do not normally adhere to the endothelial cells of the vascular wall or aggregate, except when activated or when damage to the endothelium is attained. Delivery of blood to various organs and proper tissue perfusion are significant for normal tissue function. Development of thrombi in the circulatory system would result in reduced blood delivery and consequently, in tissue hypoxia/ischemia. Smoking is linked to thromboembolic events (Hioki et al., 2001); however, a relationship between nicotine exposition and cerebral microvessel thrombosis has not been established.

Oxidative stress has been shown to be the major cause of atherosclerosis and smoking is considered an inducer of oxidative stress. Oxidative stress arises from an imbalance between the production of free radicals and physiological antioxidant capability. The supplementation with vitamin C and E has been reported to provide health benefits against cardiovascular diseases through its antioxidant activity, and the inhibition of platelet aggregation (Niki, 2004; Singh & Jialal, 2006; Violi et al., 2010; Sesso et al., 2008).
Therefore, the aim of this study is to examine the influence of nicotine exposure on the in vivo platelet aggregation in cerebral, pial, microcirculation of mice, and to assess the possible protective effects of vitamin C and vitamin E.

All animal treatment procedures met both the NIH and Institutional Animal Ethics Committee guidelines. Adult male mice, TO strain, weighing 30 – 35 g from a colony maintained at our animal house facility were used. Animals were group-housed in a temperature maintained (22 ± 2° C) and a light/dark cycle (12/12h) environment. They had access to standard pelleted diet and water ad libidum. Except for their intended treatment all animals were handled in the same manner.

Nicotine (sigma) aqueous solution (40%) of dose 1mg/kg animal weight was dissolved in normal saline and injected intraperitoneally (i.p) for one week everyday. Normal saline (vehicle) was injected in the same manner to the control. Concurrently with the nicotine or saline treatment, animals were treated with antioxidants via injection (i.p.), vitamin C [100 mg/kg body weight / d], or vitamin E (100 mg/kg / d) for the same week.

After the treatments, mice were anaesthetized with urethane (25%, 0.1ml/10g b.w., i.p) and trachea was intubated. Cerebral microvessels were exposed after performing craniotomy on the anaesthetized mice on the left side of the head, with the aid of a microdrill and dura was carefully removed. The body temperature was stabilized at 37° C with the help of an infrared lamp and monitored with a rectal thermoprobe (Physitemp Model RET-3). The preparation was kept moist with artificial cerebrospinal fluid (ACSF). Composition of the ACSF used was (mM): NaCl 124, KCl 5, NaH2PO4 3, CaCl 2.5, MgSO4, 2.4, NaHCO3 23, and glucose 10; pH 7.3. Preparation showing any level of trauma to the vessel or brain tissue was discarded.

The closed circuit set up used consisted of: a fluorescence microscope (Olympus, BH-2), a video camera (JVC, TK-890E), a VHS-VCR (JVC, BR-S600E) and a television monitor (JVC, TM-1500PS). All microscopic observations utilized a fiber-optic light source and were made using a 4 x objective lens and a 10 x eyepiece. Total magnification of the observed field, from the microscope stage to the television monitor was x250.

Sodium fluorescein (2%, 0.1ml /10g b.w.) was injected via the tail vein. Sodium fluorescein was allowed to circulate in the body for 30 seconds before mercury light was switched on. The combination of mercury light exposure and fluorescein dye produces a free radical which injures the endothelium of the microvessel lumen. This in turn, causes
platelets to adhere at the sites of endothelial damage and then aggregate. The aggregates fluoresced and were readily visible as they adhered to the damaged endothelium (figure 1). Platelet aggregates grow in size until complete vascular occlusion (figure 1). The time when the first observable aggregate appeared (time to first aggregate) and until full vascular occlusion (time to flow stop) in both venules and arterioles (figure 1) were measured in seconds. The time to aggregate growth was calculated as the difference between the time to flow stop and the time to first aggregate. Diameters before insult and after full vascular occlusion were measured in control and treated mice from video recordings and changes were calculated. All events were video taped for analysis and measurement of microvesel diameter changes.

All data were analyzed with GraphPad Prism Version 4.01 for Windows software (Graphpad Software Inc., San Diego, CA). Data are expressed as means ± SD. Comparisons between groups were performed using the Mann-Whitney U test. A p value <0.05 was considered to indicate statistical significance.

The effects of nicotine treatments on the time required for platelet aggregation and for full occlusion in pial microvessels are summarized in the table 1. Our results show that in the animals treated with nicotine (1mg/kg) one week before the experiment, venule did not show any alteration in the platelet aggregation timings in comparison to the control animals. But in arterioles platelet aggregation timings were significantly accelerated ($p<0.001$) in nicotine treated animals. In both arterioles and venules, vascular diameter changes throughout the photochemical insult among both groups were within a very narrow range and not statistically significant differences were present (table 1). Data of platelet aggregation revealed significant shorter times ($P<0.001$) for the appearance of the first aggregate in pial arterioles of the nicotine treated group, thus indicating an increased susceptibility to thrombosis in nicotine exposed animals. In contrast to arterioles, measured platelet aggregation parameters in venules were not significantly different in control and nicotine exposed animals.

While both vitamins C and E when injected alone decreased, yet not significantly, the time for the first observed platelet aggregation and for full occlusion in pial microvessels. However, both vitamins when injected concurrently with nicotine reduced significantly ($p < 0.001$) the time required to initiate the thromboembolic platelet aggregation and the time for full occlusion in pial microvessels when compared with nicotine treated mice (Table1).
The present study depicted that nicotine treatment accelerated the time required for both the appearance of the first aggregate and the time for full occlusion in pial arterioles. Although both vitamins C and E when injected alone decreased the timing of the pial arteriols thrombotic events not significantly, however the concurrent injection of them along with nicotine indeed have a significant effect ($p<0.001$) when compared to nicotine treatment alone (Table 1).

The nicotine dose and the duration of the treatment was selected after the excellent review that explain the approaches which have been developed, strain-dependent differences, modes of nicotine administration, each resulting in elevated blood nicotine concentration (Matta & Elberger, 2007).

The results of this study complement data from previous studies in animals and humans. For example, reported data indicate that nicotine and cotinine exert direct effects on endothelial cells and smooth muscle cells, shifting them toward a pro-thrombotic state via induction of tissue factor expression (Massberg et al., 2002). These effects on cells of the vessel wall might explain, at least in part, the deleterious cardiovascular consequences of smoking. Platelet-dependent thrombin level is enhanced in smokers, even when not smoking, when compared with non-smokers and increases immediately after smoking. Increases in nicotine and cotinine levels caused by smoking induced a prothrombotic state in smokers via increased platelet-dependent thrombogenesis (Hioki et al., 2001).

Our data show that one week of antioxidants treatments revealed that both vitamins C (100 mg/kg) and E (100 mg/kg) have a significant reduction in platelet aggregation compared with control (Table 1, $P < 0.001$). The doses of vitamin C and E used in the current study are comparable to the those reported by others in rats and mice (Komeima et al., 2006; Ocak et al., 2007; Ming et al., 2006). However, with respect to human studies, it has been reported that doses of vitamin C are generally tolerated up to a level of 2,000 mg/day (Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, 2000; Sesso et al., 2008). A dose of 400 IU/ day (~268 mg/day) vitamin E has been used in large-scale clinical trial for cancer prevention with cardiovascular disease as secondary endpoints (Lippman et al. 2005). Thus, compared to human studies, the doses of vitamin E and C used here are relatively high.

Vitamin E is the principal lipid-soluble antioxidant in human plasma, and some studies indicate that it may provide cardiovascular protection (Violi et al., 2010). Oxidative stress
has been considered to play a major role in the development of atherosclerosis. Consistent with this idea, numerous studies have shown an inverse association between atherosclerosis and antioxidant intake (Demiralay et al., 2008; Chiu et al., 2009; Golestani et al., 2006; Guney et al., 2007). The development of atherosclerosis and myocardial ischemia-reperfusion injury; both of these phenomena are associated with platelet activation (Ulker et al., 2003). It has been reported that tissue-type plasminogen activator enhanced platelet adhesion, and co-administration of vitamin E with it further decreased platelet adhesion in a model of thrombosis (Hioki et al., 2001; Cirillo et al., 2006). Moreover, clinically, an inverse relationship was found between the intake of vitamin C and risk of an acute myocardial infarction (Chiu et al., 2009; Antoniades et al., 2003). Non-toxic doses of vitamin E in treated rats can up-regulate SOD activity, but cumulative effect of the same doses can lead to attenuation of SOD activity and hence antioxidant defense (Golestani et al., 2006). Moreover, vitamin E treatments significantly reduced the rate of nicotine-induced hippocampal neural cell apoptosis (Demiralay et al., 2008).

In animal models of endothelial dysfunction, vitamin E improved the activity of endothelium-derived nitric oxide, in part due to the inhibition of protein kinase C (PKC) stimulation (Freedman & Keaney, Jr., 2001). This activity of vitamin E was examined in platelets, and vitamin E inhibited platelet aggregation in part through a mechanism that involves PKC (Freedman & Keaney, Jr., 2001).

It can be concluded that one week exposure to nicotine cause prothrombotic events in the cerebral arterioles, and that the antioxidant vitamins C and E alleviate these effects. Further experiments are needed to investigate the mechanism underlying the observed effects.
Conflict of Interest
There is no conflict of interest.

Acknowledgement
This work was financially supported by a grant from the Research Affairs Office at the UAE University. The authors wish to thank Mr Subramanian Dhanasekaran for his technical help.
Reference

Table 1: Platelet aggregation timings and diameter changes in control vs nicotine and antioxidants treated animals

<table>
<thead>
<tr>
<th></th>
<th>Control (saline)</th>
<th>Nicotine (1mg/ml)</th>
<th>Vitamin C alone</th>
<th>Vitamin E alone</th>
<th>Nicotine + Vitamin C</th>
<th>Nicotine + Vitamin E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of the animals (g)</td>
<td>33.7±1.1</td>
<td>32.6±1.9</td>
<td>31.6±1.5</td>
<td>32.5±1.6</td>
<td>31.9±1.5</td>
<td>32.5±2.4</td>
</tr>
<tr>
<td>Venules:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to first aggregate (s)</td>
<td>28.1±2.0</td>
<td>25.4±1.6</td>
<td>29.4±2.7</td>
<td>27.4±2.2</td>
<td>28.2±1.5</td>
<td>26.9±2.1</td>
</tr>
<tr>
<td>Lower 95% CI</td>
<td>26.7</td>
<td>24.3</td>
<td>27.5</td>
<td>25.8</td>
<td>27.1</td>
<td>25.4</td>
</tr>
<tr>
<td>Upper 95% CI</td>
<td>29.5</td>
<td>26.5</td>
<td>31.3</td>
<td>29.0</td>
<td>29.3</td>
<td>28.4</td>
</tr>
<tr>
<td>Flow stop</td>
<td>167.1±31.7</td>
<td>151.3±19.9</td>
<td>174.0±27.6</td>
<td>172.7±28.5</td>
<td>159.6±20.1</td>
<td>155.7±24.8</td>
</tr>
<tr>
<td>Lower 95% CI</td>
<td>144.4</td>
<td>137.0</td>
<td>154.2</td>
<td>152.3</td>
<td>145.2</td>
<td>138.0</td>
</tr>
<tr>
<td>Upper 95% CI</td>
<td>189.8</td>
<td>165.6</td>
<td>193.8</td>
<td>193.1</td>
<td>174.0</td>
<td>173.4</td>
</tr>
<tr>
<td>Arterioles:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to first aggregate (s)</td>
<td>94.3±12.9</td>
<td>54.7±9.9*</td>
<td>94.0±10.8</td>
<td>91.4±8.1</td>
<td>71.7±11.1*</td>
<td>70.5±12.0*</td>
</tr>
<tr>
<td>Lower 95% CI</td>
<td>85.1</td>
<td>47.6</td>
<td>86.3</td>
<td>85.6</td>
<td>63.8</td>
<td>62.0</td>
</tr>
<tr>
<td>Upper 95% CI</td>
<td>103.5</td>
<td>61.8</td>
<td>101.7</td>
<td>97.2</td>
<td>79.7</td>
<td>79.1</td>
</tr>
<tr>
<td>Flow stop</td>
<td>201.1±23.8</td>
<td>137.6±9.9</td>
<td>196.1±14.2</td>
<td>200.2±20.1</td>
<td>155.1±21.3*</td>
<td>154.8±25.1*</td>
</tr>
<tr>
<td>Lower 95% CI</td>
<td>184.0</td>
<td>130.5</td>
<td>185.9</td>
<td>185.8</td>
<td>139.9</td>
<td>136.8</td>
</tr>
<tr>
<td>Upper 95% CI</td>
<td>218.0</td>
<td>144.7</td>
<td>206.3</td>
<td>214.6</td>
<td>170.3</td>
<td>172.8</td>
</tr>
<tr>
<td>Venules diameter (µm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial diameter</td>
<td>42.6±3.5</td>
<td>41.0±4.4</td>
<td>39.8±3.3</td>
<td>41.1±5.0</td>
<td>44.1±2.4</td>
<td>43.2±2.4</td>
</tr>
<tr>
<td>Lower 95% CI</td>
<td>40.1</td>
<td>37.9</td>
<td>37.4</td>
<td>37.6</td>
<td>42.4</td>
<td>41.2</td>
</tr>
<tr>
<td>Upper 95% CI</td>
<td>45.1</td>
<td>44.1</td>
<td>42.2</td>
<td>44.6</td>
<td>45.8</td>
<td>44.9</td>
</tr>
<tr>
<td>Diameter after the aggregation</td>
<td>51.2±7.5</td>
<td>51.9±11.9</td>
<td>48.9±5.3</td>
<td>52.7±7.5</td>
<td>53.6±4.7</td>
<td>52.5±4.4</td>
</tr>
<tr>
<td>Lower 95% CI</td>
<td>45.8</td>
<td>43.4</td>
<td>45.1</td>
<td>47.4</td>
<td>50.3</td>
<td>49.3</td>
</tr>
<tr>
<td>Upper 95% CI</td>
<td>56.6</td>
<td>60.4</td>
<td>52.7</td>
<td>58.0</td>
<td>56.9</td>
<td>55.7</td>
</tr>
<tr>
<td>Arterioles diameter (µm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial diameter</td>
<td>41.1±4.3</td>
<td>37.8±2.0</td>
<td>39.4±5.2</td>
<td>39.9±3.8</td>
<td>41.5±3.0</td>
<td>41.7±2.8</td>
</tr>
<tr>
<td>Lower 95% CI</td>
<td>38.0</td>
<td>36.4</td>
<td>35.7</td>
<td>37.2</td>
<td>39.3</td>
<td>39.7</td>
</tr>
<tr>
<td>Upper 95% CI</td>
<td>44.2</td>
<td>39.2</td>
<td>43.1</td>
<td>42.6</td>
<td>43.7</td>
<td>43.7</td>
</tr>
<tr>
<td>Diameter after the aggregation</td>
<td>50.3±9.9</td>
<td>48.8±8.6</td>
<td>49.9±7.4</td>
<td>49.7±6.5</td>
<td>50.1±4.7</td>
<td>51.4±5.5</td>
</tr>
<tr>
<td>Lower 95% CI</td>
<td>43.2</td>
<td>42.7</td>
<td>44.6</td>
<td>45.1</td>
<td>46.8</td>
<td>47.4</td>
</tr>
<tr>
<td>Upper 95% CI</td>
<td>57.4</td>
<td>55.0</td>
<td>55.2</td>
<td>54.4</td>
<td>53.5</td>
<td>55.4</td>
</tr>
</tbody>
</table>

* P < 0.001, Number of animals n =10, Values are means ± standard deviation
Figure Legends

Figure 1. Representative pictures of a field containing cerebral pial microvessels in control group before (A) and immediately after i.v. injection of fluorescein (B), showing clearly the microvessels. Arrows indicate pial arteriole. As consequence of the photochemical reaction between fluorescein and continues illumination with mercury light, platelets start to aggregate and thrombus forms and grows in size until it causes a complete vascular occlusion (C). The differences in the occlusion times between the groups are indicated in table 1.