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Summary 
 

Continuous normobaric hypoxia (CNH) renders the heart more tolerant to acute 

ischemia/reperfusion injury. Protein kinase C (PKC) is an important component of the 

protective signaling pathway, but the contribution of individual PKC isoforms under different 

hypoxic conditions is poorly understood. The aim of this study was to analyse the expression 

of PKCε after the adaptation to CNH and to clarify its role in increased cardiac ischemic 

tolerance with the use of PKCε inhibitory peptide KP-1633. Adult male Wistar rats were 

exposed to CNH (10% O2, 3 weeks) or kept under normoxic conditions. The protein level of 

PKCε and its phosphorylated form was analysed by Western blot in homogenate, cytosolic 

and particulate fractions; the expression of PKCε mRNA was measured by RT-PCR. The 

effect of KP-1633 on cell viability and lactate dehydrogenase (LDH) release was analysed 

after 25-min metabolic inhibition followed by 30-min re-energization in freshly isolated left 

ventricular myocytes. Adaptation to CNH increased myocardial PKCε at protein and mRNA 

levels. The application of KP-1633 blunted the hypoxia-induced salutary effects on cell 

viability and LDH release, while control peptide KP-1723 had no effect. This study indicates 

that PKCε is involved in the cardioprotective mechanism induced by CNH.  

 

Key words: Chronic hypoxia, Cardioprotection, Ventricular myocytes, Protein kinase C, 

PKCε inhibitory peptide KP-1633 
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Introduction 

The resistance of the heart to ischemia/reperfusion (I/R) injury can be increased by 

many acute and chronic stimuli such as various forms of preconditioning (Yellon and Downey 

2003), postconditioning (Ovize et al. 2010), exercise training (Powers et al. 2008), caloric 

restriction (Shinmura et al. 2005) or exposure to chronic hypoxia (Kolar and Ostadal 2004). A 

number of studies have shown repeatedly that chronic hypoxia renders the heart more tolerant 

to deleterious ischemia followed by reperfusion that was manifested by decreased infarct size 

(Neckar et al. 2002a, Neckar et al. 2002b), lower incidence of ventricular arrhythmias 

(Asemu et al. 2000, Neckar et al. 2002a) and better recovery of cardiac contractile function 

(Neckar et al. 2002b, Wang et al. 2011, Xie et al. 2005). Despite the fact that hypoxia-

induced cardioprotection has been known for many decades and its elucidation may have 

potential therapeutic repercussions, the complex mechanism underlying this form of a 

sustained protective phenotype is still a matter of debate. Among many components of 

protective signaling cascades stimulated by chronic hypoxia, various protein kinases such as 

protein kinase A (Xie et al. 2005, Yeung et al. 2007), phosphatidylinositol 3-kinase/Akt 

(Milano et al. 2013, Ravingerova et al. 2007, Wang et al. 2011), glycogen synthase kinase-3β 

(McCarthy et al. 2011), Ca2+/calmodulin-dependent protein kinase II (Xie et al. 2004, Yu et 

al. 2009), p38-mitogen-activated protein kinase and c-Jun NH2-terminal kinase (Rafiee et al. 

2002) and last but not least protein kinase C (PKC) (Ding et al. 2004, Li et al. 2007, Neckar et 

al. 2005, Rafiee et al. 2002, Wang et al. 2011, Yeung et al. 2007) have been shown to play a 

role.  

PKC is a family of serine/threonine kinases that are important components in 

processes of cellular signaling. PKC includes several isoforms usually divided according to 

structure and requirement for second messengers. The three groups are as follows: a) classical 
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(isoforms α, ßI, ßII and γ), b) novel (isoforms δ, ,  and ) and c) atypical (isoforms  and 

/) (Steinberg 2008). The discovery of general PKC inhibitors (chelerythrine, calphostin C) 

helped to reveal the essential role of PKC in the mechanism of hypoxia-induced 

cardioprotection as administration of these inhibitors abolished the protective phenotype 

(Ding et al. 2004, Neckar et al. 2005, Rafiee et al. 2002). The most frequently mentioned is 

the novel PKC isoform PKCε, but its involvement in cardioprotection induced by chronic 

hypoxia still remains to be clarified (Ding et al. 2004, Hlavackova et al. 2007, Rafiee et al. 

2002). However, the specificity of various inhibitors for individual PKC isoforms has been 

often questioned (Soltoff 2007). This was the case until recently when a PKCε-specific 

inhibitory peptide was synthesized by the Mochly-Rosen group which provided a powerful 

tool to elucidate the role of this isoform in ischemic preconditioning (Gray et al. 1997, 

Johnson et al. 1996). 

It needs to be mentioned that the expression and activation of PKC isoforms 

associated with increased myocardial I/R resistance depends on the concrete model and 

regimen of chronic hypoxia. This complicates the interpretation of diverse results gained in 

individual studies (Ding et al. 2004, Neckar et al. 2005, Uenoyama et al. 2010). Recently, we 

have shown that adaptation of rats to continuous normobaric hypoxia (CNH) reduces the size 

of myocardial infarction induced by acute I/R (Maslov et al. 2013, Neckar et al. 2013). The 

aim of this study was to analyse the effect of CNH on myocardial expression of PKC and to 

examine its involvement in the protective mechanism using PKC inhibitory peptide KP-1633 

and its inactive (scrambled) form KP-1723 (Mochly-Rosen 1995, Souroujon and Mochly-

Rosen 1998). 
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Methods 

Animals 

Adult male Wistar rats (322 ± 11 g body weight) were exposed to CNH (inspired O2 

fraction: 0.1) in a normobaric chamber equipped with hypoxic generators (Everest Summit, 

Hypoxico Inc., NY, USA) for 3 weeks. The control group of animals was kept under 

normoxic conditions (inspired O2 fraction: 0.21). All animals had free access to water and a 

standard laboratory diet and were housed with 12 hours light/12 hours dark cycle. They were 

killed by cervical dislocation 24 h after the hypoxic exposure, the hearts were removed and 

either used for cell isolation (method see below) or washed in cold saline (0°C) and dissected 

into right and left free ventricular walls and septum. All samples were frozen in liquid 

nitrogen until use. The experiments were performed in accordance with the Guide for the 

Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH 

Publication No. 85-23, revised 1996) and were approved by the Ethics Committee of the 

Institute of Physiology, Academy of Sciences of the Czech Republic.  

 

Gene expression determined by Real-Time PCR 

Total cellular RNA was extracted from each left ventricle (LV) sample using the 

Trizol Reagent (Invitrogen, Carlsbad, CA, USA). One microgram of total RNA was converted 

to cDNA using the RevertAidTM H Minus First Strand cDNA Synthesis Kit (Fermentas UAB, 

Vilnius, Lithuania) with oligo(dT) primers. Real-Time PCR was performed on a Light Cycler 

480 (Roche Applied Science, Penzberg, Germany) using Light Cycler 480 Probes Master 

according to the manufacturer’s protocol. Following specific primers together with Mono-

Color Hydrolysis Probes were designed by the Universal Probe Library Assay Design Center: 

PKCε (F): aaacacccttatctaacccaactct, PKCε (R): catattccatgacgaagaagagc, #38 and HPRT1 

(F): gaccggttctgtcatgtcg, HPRT1 (R): acctggttcatcatcactaatcac, #95.  
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The level of analysed transcripts was normalized to the level of the reference gene 

hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) gene transcript (Bohuslavova et 

al. 2010) according to Pfaffl (Pfaffl 2001). For more details see (Waskova-Arnostova et al. 

2013).  

 

Tissue fractionation and Western blot analysis  

LV samples were pulverized to fine powder with liquid nitrogen, dissolved in ice-cold 

homogenization buffer (12.5 mM Tris-HCl (pH 7.4), 250 mM sucrose, 2.5 mM EGTA, 1 mM 

EDTA, 100 mM NaF, 0.3 mM phenylmethylsulfonyl fluoride, 6 mM ß-mercaptoethanol, 10 

mM glycerol-3-phosphate, 0.2 mM leupeptin, 0.02 mM aprotinin and 0.1 mM sodium 

orthovanadate) and homogenized by Potter-Elvehjem homogenizer at 4°C. The part of the 

homogenate was centrifuged at 100,000 × g for 90 min to obtain the pellet of particulate 

fraction and cytosolic fraction (Kolar et al. 2007). The other part of the homogenate and the 

pellet of the particulate fraction were resuspended in homogenization buffer containing 1% 

Triton X-100, held on ice for 60 min, with occasionally mixing, and then centrifuged at 

100,000 × g for 90 min. Resulting supernatants were used for Western blot analyses. The 

protein concentration of individual samples was determined using the Bradford method 

(Bradford 1976).  

Samples were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis 

using 10% bis-acrylamide gel. Resolved proteins were transferred to a nitrocellulose 

membrane (Amersham Biosciences, Freiburg, Germany). Membranes were incubated with 

primary antibodies against PKCε (Sigma-Aldrich, St. Louis, MO, USA), phosphorylated 

PKCε (Upstate, Billerica, MA, USA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) and actin (Santa Cruz 
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Biotechnology, Inc., Santa Cruz, CA, USA). Horseradish peroxidase-conjugated anti-rabbit 

(Sigma-Aldrich, St. Louis, MO, USA) and anti-goat IgGs (Santa Cruz Biotechnology, Inc., 

Santa Cruz, CA, USA) were used as secondary antibodies. Bands were visualized by 

enhanced chemiluminescence and quantified using ImageQuant software (Molecular 

Dynamics, Sunnyvale, CA, USA). In order to ensure the specificity of immunoreactive 

proteins, blocking was performed with immunizing peptides and rat brain homogenate was 

used as a positive control. GAPDH and actin were used as internal loading controls. The 

results were normalized to total protein amount. 

 

Isolation of cardiomyocytes 

Cardiomyocytes were isolated as previously described (Borchert et al. 2011). The rats 

were heparinized and killed by cervical dislocation. The hearts were perfused with Tyrode 

solution at 37°C under constant flow (10 ml/min) for 5 min, followed by perfusion with 

nominally Ca2+-free Tyrode for 8 min. Tissue digestion was initiated by adding 14000 U 

collagenase (Yakult, Tokyo, Japan) and 7 mg protease type XIV (Sigma-Aldrich, St. Louis, 

MO, USA) into 30 ml of Ca2+-free Tyrode containing 50 mg BSA. All solutions were gassed 

with 100% O2. After 12-15 min, the collagenase-protease cocktail was washed out by 10-min 

perfusion with Ca2+-free Tyrode. Myocytes isolated from the left ventricle (LVM) were 

dispersed mechanically and then filtered through a nylon mesh to remove non-dissociated 

tissue. LVM solutions were adjusted to the same cell density, transferred to culture medium 

(50% Dulbecco’s modified Eagle’s medium and 50% Nutrient Mixture F12HAM, containing 

0.2% BSA, 100 U/ml penicillin and 100 mg/ml streptomycin) and kept in a CO2 incubator 

(95% air, 5% CO2, 28°C) for a 1-h stabilization period. 
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Assessment of cell viability with SYTOX Green 

The dose-response of LVM viability to the TAT-conjugated PKCε inhibitory peptide 

KP-1633 and control peptide KP-1723 (scrambled amino acid sequence) obtained from KAI 

Pharmaceuticals, Inc. (South San Francisco, CA, USA) (Mochly-Rosen 1995, Souroujon and 

Mochly-Rosen 1998) was determined. Having considered the effective concentrations of the 

KP-1633 resembling peptide εV1-2 used in other studies (Chen et al. 1999), the 

concentrations of 0.1, 1, 5, 10 and 50 μM KP-1633 and KP-1723 were tested. The percentage 

of living cells compared to the untreated control cells was assessed with SYTOX Green 

nucleic acid stain (S7020) (Invitrogen-Molecular Probes, Eugene, OR, USA) at the beginning 

of the experiment (after stabilization) and after 2, 4 and 20 h. The fluorescence signal of 

SYTOX Green, which is proportional to the number of dead cells (Hofgaard et al. 2006), was 

measured at an excitation wavelength of 490 nm and emission wavelength of 520 nm using a 

Synergy™ HT Multi-Detection Microplate Reader (BioTek, Winooski, VT, USA). 

Decreasing viability of LVM was already observed after 4-h incubation with 10 μM KP-1633 

and after 2, 4 and 20-h incubation with 50 μM KP-1723 (data not shown). Therefore, the 5 

μM concentration of peptides, which had no effect on the number of surviving cells during 

20-h incubation, has been chosen for the following experiments. 

 

Simulated ischemia/reperfusion 

LVM isolated from hypoxic and normoxic rats were pre-treated for 15 min with KP-

1633 or KP-1723 and subjected to 25 min of metabolic inhibition (MI) followed by 30 min of 

re-energization (MI/R). LVM from each treatment group were split into two parts of equal 

volumes. Control cells were incubated in a normal Krebs solution and not exposed to MI/R. 

MI was induced by the modified Krebs solution (containing 1.5 mM NaCN and 20 mM 2-
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deoxyglucose instead of glucose). The re-energization was achieved by replacing the MI 

solution with the normal cell culture medium (the same medium was applied to control cells). 

 

Cell viability and lactate dehydrogenase release 

Cell viability and lactate dehydrogenase (LDH) release were analysed at the beginning 

of the experiments (after stabilization), after MI (LDH release only) and after re-energization 

as previously described (Borchert et al. 2011). The number of viable (unstained) myocytes 

was determined by Trypan blue exclusion (Wu et al. 1999). 50-100 myocytes were counted in 

duplicates from 4-10 independent experiments. Viable myocytes were divided according to 

the cell length-to-width ratio as follows: rod-shaped myocytes (ratio > 3:1) and non-rod-

shaped myocytes (ratio < 3:1). Viability after MI/R was expressed as a percentage of rod-

shaped cells that survived the MI/R insult and normalized to the appropriate control group not 

exposed to MI/R. LDH release was measured spectrophotometrically (Buhl and Jackson 

1978) using the LDH Liqui-UV kit (Stanbio, Boerne, TX, USA). LDH released during MI 

and during re-energization was normalized to total LDH content in the cells and expressed as 

a percentage of appropriate control group not exposed to MI/R. 

 

Statistical analysis 

All values are presented as means ± SE. The results were compared using t-test or 

One-way ANOVA with Bonferroni post hoc test when appropriate. A p-value < 0.05 was 

considered as statistically significant.  
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Results 

The analysis of PKC and its phosphorylated form (P-PKC) after the adaptation to 

CNH was performed in homogenate, cytosolic and particulate fractions. Fig. 1A shows the 

hypoxia-induced increase of PKC protein level in the particulate fraction (by 15%) compared 

to the normoxic group. The level of P-PKC as well as the ratio P-PKC/PKC were not 

affected significantly (Fig. 1B and 1C, respectively). The PKC mRNA level increased after 

the adaptation to CNH by 48% compared to normoxic controls (Fig. 2). 

Fig. 3 shows the improved viability of LVM from the hypoxic group after MI/R. The 

pre-treatment of LVM with KP-1723 did not affect the salutary effect of CNH. However, the 

pre-treatment of LVM with PKCε inhibitory peptide KP-1633 blunted the hypoxia-induced 

increase in the cell survival. 

Fig. 4, A-C, respectively, show the effect of KP-1723 and KP-1633 on LDH release 

from LVM during MI, during re-energization and total LDH release during MI/R, expressed 

as a percentage of appropriate control values. In the untreated hypoxic group, LDH release 

was attenuated during MI, during re-energization and during MI/R. The pre-treatment of 

hypoxic as well as normoxic LVM with KP-1723 did not affect the LDH release and the 

salutary effect of CNH was preserved. In contrast, the pre-treatment of LVM with KP-1633 

abolished the hypoxia-induced attenuation of LDH release in the re-energization phase.  
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Discussion 

Recently, we demonstrated that the uninterrupted exposure of rats to CNH for 3 weeks 

improved myocardial resistance to acute ischemic injury. This was evidenced by reduced size 

of myocardial infarction induced by coronary artery occlusion/reperfusion in open-chest 

animals (Neckar et al. 2013) as well as by decreased LDH release and improved survival of 

isolated LVM subjected to simulated I/R (Borchert et al. 2011, Neckar et al. 2013). The 

present study shows that CNH increases PKCε mRNA expression and protein level in the 

particulate fraction of LV myocardium. To study the involvement of PKCε in CNH-induced 

cardioprotective mechanism, we used the PKCε-specific inhibitory peptide KP-1633, which 

inhibits the association of activated PKCε with its anchoring protein, receptor for activated C 

kinase 2 (RACK2 or -COP) (Mackay and Mochly-Rosen 2001, Mochly-Rosen 1995, 

Souroujon and Mochly-Rosen 1998). The pre-treatment of LVM with KP-1633 completely 

abolished the CNH-induced salutary effects on cell survival and LDH release during re-

energization without affecting cells isolated from the hearts of normoxic animals. This 

indicates that PKCε is critically involved in the CNH-induced cardioprotective mechanism.  

Our study corresponds with other reports emphasizing the involvement of PKCε in 

chronic hypoxia-induced cardioprotection (Rafiee et al. 2002, Wang et al. 2011). However, 

these studies used various hypoxic stimuli/regimens and the PKCε involvement was 

determined in different ways (analysis of translocation, phosphorylation or the loss of 

cardioprotective phenotype after the PKCε inhibition). Wang et al. perfused isolated rat hearts 

with PKCε-specific inhibitory peptide εV1-2, which abolished both PKCε translocation 

(activation) from cytosolic to particulate fractions and the improvement of postischemic 

recovery of LV contractile function induced by moderate intermittent hypobaric hypoxia 

(PO2=11.2 kPa, 4 h/day, 4 weeks) (Wang et al. 2011). Similarly, the general PKC inhibitor 

chelerythrine suppressed PKC activation and eliminated the infarct size-limiting effect in the 
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hearts of infant rabbits adapted to CNH (10% O2, 10 days) (Rafiee et al. 2002). Interestingly, 

the prenatal exposure to chronic hypoxia had an adverse effect on myocardial resistance to I/R 

injury that was associated with PKC downregulation. Adult offspring of rats exposed to 

CNH (10.5% O2) during the last trimester of gestation exhibited decreased myocardial levels 

of PKC and its phosphorylated form together with impaired postischemic recovery of LV 

function and increased infarct size compared with controls (Xue and Zhang 2009). The same 

regimen of prenatal CNH led to PKCε downregulation and abolished heat stress-mediated 

cardioprotection in the later adulthood (Li et al. 2004). In contrast, decreased myocardial 

PKCε expression was observed in our previous experiments on adult rats adapted to severe 

intermittent hypobaric hypoxia (PO2=8.5 kPa, 8 hours/day, 5 weeks), which is 

cardioprotective (Hlavackova et al. 2010, Kolar et al. 2007). However, a beneficial role of 

another novel PKC isoform, PKCδ, was identified using this hypoxic regimen as indicated by 

a negative correlation of infarct size with PKCδ protein level (Hlavackova et al. 2007) and by 

an attenuation of infarct size-limiting effect using the PKCδ-selective inhibitor rottlerin 

(Neckar et al. 2005). Therefore, the involvement of the various PKC isoforms in hypoxia-

induced cardioprotection is likely dependent on the hypoxic regimen used. 

Although the available data mostly support the involvement of PKC in chronic 

hypoxia-induced cardioprotection, the comparison of individual studies is difficult and does 

not allow an unequivocal conclusion. Apart from differences among normobaric, hypobaric, 

continuous and intermittent hypoxia regimens, the intensity and total duration of hypoxic 

stimulus as well as the frequency and duration of individual hypoxic bouts are highly variable 

among models used (Asemu et al. 2000, Kolar et al. 2007, Milano et al. 2013, Neckar et al. 

2013, Zong et al. 2004) and are likely to significantly influence the impact on myocardial 

ischemic resistance and the role of individual PKC isoforms. It is still unclear which of these 

factors plays a decisive role in terms of cardioprotection. On the other hand, the investigation 
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of different modes of chronic hypoxic exposure has its importance, because the human heart 

also can be exposed to the various hypoxic conditions. This may occur either naturally (e.g. 

during prenatal period or living at high altitude) or under disease states (cyanotic congenital 

heart defects, chronic obstructive lung disease, ischemic heart disease, sleep apnea etc.) 

(Ostadal and Kolar 2007). Apart from different hypoxic modes, other factors need to be 

considered, such as gender differences (Ostadal et al. 1984, Xue and Zhang 2009), age of 

animals (La Padula and Costa 2005, Ostadalova et al. 2002), nutrition (Hlavackova et al. 

2007) or animal species used (Manukhina et al. 2013, Wauthy et al. 2004, Zong et al. 2004). 

It is also important to take into account which part of the heart is analysed, as marked 

differences exist in the effect of chronic hypoxia on PKC expression between right and left 

ventricles (Uenoyama et al. 2010).  

The precise mechanism by which PKC activation exerts its protective effect is not 

fully understood. To date, several studies, mostly on preconditioning, identified many PKC 

target proteins that may play a role in cardioprotection. It has been demonstrated that PKC-

mediated cardioprotection is linked to phosphorylation of connexin 43 (Doble et al. 2000, 

Jeyaraman et al. 2012), which among the other effects influences the gap junctional 

intracellular communication and thereby may prevent the spreading of injury during I/R. 

PKCε also activates aldehyde dehydrogenase-2, which metabolizes toxic aldehydes formed 

during I/R (Budas et al. 2010). In addition, PKCε may play an anti-apoptotic role by 

inhibition of pro-apoptotic Bcl-2 associated death domain protein (BAD) via its 

phosphorylation (Baines et al. 2002). It has been shown that an interaction of PKCε with 

cytochrome c oxidase subunit IV improved cytochrome c oxidase activity in preconditioned 

rat myocardium (Guo et al. 2007). Interestingly, PKCε, or more precisely yin/yang effect of 

both PKCε and PKCδ was also shown to inhibit and stimulate pyruvate dehydrogenase 

complex, respectively, and may thus play an important role in the maintenance of energy 
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homeostasis in mitochondria (Gong et al. 2012). Another molecule which should not be 

omitted in connection with the mechanism of cardioprotection is nitric oxide (Ding et al. 

2005), a direct activator of PKCε (Balafanova et al. 2002). PKC-Akt-eNOS signaling 

modules were identified as critical signaling elements during PKC-induced cardiac 

protection (Zhang et al. 2005). The association of PKC and eNOS might thus represent a 

positive-feedback loop by which PKCε activity can be modulated. PKCε also phosphorylates 

glycogen synthase kinase-3β (Terashima et al. 2010) resulting in decreased mitochondrial 

permeability transition pore opening and improved resistance to myocardial infarction 

(Juhaszova et al. 2004, Juhaszova et al. 2009). The involvement of reactive oxygen species, 

PKC and glycogen synthase kinase-3β phosphorylation was observed also in 

cardioprotection induced by adaptation to moderate intermittent hypobaric hypoxia (PO2=11.2 

kPa, 4 h/day, 4 weeks) (Wang et al. 2011). 

In conclusion, adaptation of rats to CNH increased myocardial expression of PKCε 

and protected isolated ventricular myocytes against injury caused by simulated I/R. The 

salutary effects of CNH were abolished by PKCε-specific inhibitory peptide KP-1633, 

indicating the involvement of this PKC isoform in the cardioprotective mechanism.  
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Fig. 1 

Effect of continuous normobaric hypoxia (CNH) on the protein levels of PKCε (A), P-PKCε 

(Ser 729) (B) and the ratio P-PKCε/PKCε (C) in the left ventricular myocardium. 

Representative Western blots of PKCε and P-PKCε (Ser 729) are shown. The rats were 

adapted to CNH or kept under normoxic (N) conditions. The amount of protein applied to the 

gel was 10 µg (homogenate), 15 µg (cytosolic fraction) and 5 µg (particulate fraction) for 

PKCε and 40 µg (homogenate), 50 µg (cytosolic fraction) and 40 µg (particulate fraction) for 

P-PKCε. GAPDH and actin were used as loading controls. Values are represented as mean ± 

SE (n = 5/group); * P < 0.05. 

 

 

Fig. 2 

Effect of continuous normobaric hypoxia (CNH) on myocardial expression of PKCε mRNA. 

Total mRNA was extracted from left ventricles of rats adapted to CNH or kept in normoxic 

(N) conditions. The values of mRNA were normalized to the reference gene HPRT1. Values 

are represented as mean ± SE (n = 5/group); * P < 0.05.  
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Fig. 3 

Effect of the control peptide KP-1723 and the PKCε inhibitory peptide KP-1633 on survival 

of left ventricular myocytes during acute metabolic inhibition and re-energization, expressed 

as a percentage of control values. The cells were isolated from rats adapted to continuous 

normobaric hypoxia (CNH) or from rats kept in normoxic (N) conditions. Values are 

represented as mean ± SE (n = 6-10/group); * P < 0.05.  
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Fig. 4 

Effect of the control peptide KP-1723 and the PKCε inhibitory peptide KP-1633 on lactate 

dehydrogenase (LDH) release from left ventricular myocytes during metabolic inhibition (A), 

during re-energization (B), and total release (C), expressed as a percentage of corresponding 

LDH release from control cells. The cells were isolated from rats adapted to continuous 

normobaric hypoxia (CNH) or from rats kept in normoxic (N) conditions. Values are 

represented as mean ± SE (n = 6-10/group); * P < 0.05. 

 


