Analysis of expression profiles of genes involved in \(\text{F}_0\text{F}_1 \)-ATP synthase biogenesis during perinatal development in rat liver and skeletal muscle

Jana Spáčilová, Martina Hátková, Andrea Hruštincová, Václav Čapek, Markéta Tesařová, Hana Hansíková, Jiří Zeman

Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech republic

Abstract

During the process of intra-uterine mammalian foetal development, the oxygen supply in growing foetus is low. A rapid switch from glycolysis-based metabolism to oxidative phosphorylation (OXPHOS) must proceed during early postnatal adaptation to extra-uterine conditions. Mitochondrial biogenesis and mammalian mitochondrial \(\text{F}_0\text{F}_1 \)-ATP synthase assembly (complex V, EC 3.6.3.14, ATPase) are complex processes regulated by multiple transcription regulators and assembly factors. Using RNA expression analysis of rat liver and skeletal tissue (\textit{Rattus norvegicus}, Berkenhout, 1769), we describe the expression profiles of 20 genes involved in mitochondrial maturation and ATP synthase biogenesis in detail between the 16\(^{\text{th}}\) and 22\(^{\text{nd}}\) day of gestation and the first 4 days of life. We observed that the most important expression shift occurred in the liver between the 20\(^{\text{th}}\) and 22\(^{\text{nd}}\) day of gestation, indicating that the foetus prepares for birth about two days before parturition. The detailed mechanism regulating the perinatal adaptation process is not yet known. Deeper insights in perinatal physiological development will help to assess mitochondrial dysfunction in the broader context of cell metabolism in preterm new-borns or new-borns with poor adaptation to extra-uterine life.

Running title: ATPase biogenesis in rat perinatal development

Corresponding author: J. Zeman, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Ke Karlovu 2, 128 08 Prague 2, Czech Republic, Tel.: +420 224 96 7733, 7748, Tel./fax: +420 224 96 7099, e-mail: jzem@lf1.cuni.cz

Key words: ATP synthase, foetal development, mitochondrial biogenesis, rat liver, skeletal muscle

Conflict of interest: There is no conflict of interest.
Introduction

Mitochondria are important organelles in the mammalian cell due to their role in the synthesis of more than 90% of cellular ATP by oxidative phosphorylation (OXPHOS). The first four complexes create the electron transport chain, which generates a mitochondrial inner membrane (MIM) potential used by the F_oF_1-ATP synthase (complex V, EC 3.6.3.14, ATPase) to generate ATP (Boyer 1975). In cases of oxidative stress or hypoxia, ATP is hydrolysed to prevent MIM potential decrease and mitochondrial destabilization. ATPase, an approximately 60 kDa complex consisting of at least 17 subunits, is formed by a F_1 catalytic portion and F_o proton-translocating portion connected by a central and peripheral stalk. Subunits a and A6L are encoded by mtDNA (Mt-atp6 and Mt-atp8); the rest is nDNA-encoded and transported to the mitochondria during translation. ATPase biogenesis is a multi-step process assisted by assembly factors, in mammals by Atpaf1 and Atpaf2 (Wang et al. 2001) and a specific non-essential assembly factor Tmem70 (Cízková et al. 2008). A summary table of 5 ATPase subunits and the 13 other OXPHOS- or mitochondria-related factors analysed in our study is presented in the Supplement (Table S1): nDNA-encoded ATPase structural subunits; mtDNA-encoded ATPase and OXPHOS subunits; ATPase assembly factors and other expression regulators involved in the mechanism of mitochondrial metabolism acceleration.

OXPHOS capacity is highly variable to maintain energy demands in various tissues throughout ontogenetic growth of the organism (Benard et al. 2006). In mammals, foetal metabolism is glycolytic (Burch et al. 1963). The partial oxygen pressure is low in utero, and therefore, OXPHOS capacity is low (Prystowsky 1957). After birth, a rapid mitochondrial maturation occurs and the switch to oxidative metabolism must proceed (Valcarce et al. 1988). The concentration of ATP is increased two-fold in the liver of the two-hour-old new-born rat (Sutton and Pollak 1978). Mitochondrial switch to oxidative phosphorylation has been previously reported in various tissues and organisms by an increase in OXPHOS activity or mtDNA amount (Izquierdo and Cuezva 1997; Izquierdo et al. 1990; Izquierdo et al. 1995; Minai et al. 2008; Pejznochova et al. 2010; Pejznochová et al. 2008). In various tissues, distinct stoichiometry of the OXPHOS complexes was assessed (Lenaz and Genova 2007; Schägger and Pfeiffer 2001). The pool of electron carriers CoQ10 and cytochrome c is generally in excess to complexes III and IV, respectively (Lenaz and Genova 2009). These findings highlight that to establish adequate ATP synthesis machinery in mitochondria, precise regulation of OXPHOS biogenesis is necessary.
Nevertheless, few studies have analysed the expression of mitochondrial genes during perinatal development. A study reported by Izquierdo et al. shows that levels of OXPHOS transcripts remain unchanged after the first postnatal day (Izquierdo et al. 1995) and that a key role in prenatal expression regulation is played by 3’UTR region of β-F_0F_1-ATPase mRNA. Another study describes cytochrome c oxidase subunits gene expression increase in skeletal muscle, kidney, brain and heart ventricle, but only postnatally (Kim et al. 1995). Broader insight into mitochondrial gene expression changes has been reported in human foetal liver and skeletal muscle mtDNA expression and maintenance (Pejznochova et al. 2010), but adequate mapping of mitochondrial biogenesis in perinatal period is missing. Cuezva et al. (1997) showed that expression changes proceed at a transcriptional level during foetal development; as shown for only a single transcript expression - β-F_1-ATPase subunit – and its regulator miR-127-5p (Willers et al. 2012). Our pilot study describes the orchestration of the mRNA expression of 20 genes important to ATPase biogenesis and mitochondrial oxidative metabolism in liver and muscle tissue during rat perinatal development (Rattus norvegicus, Berkenhout, 1769), comparing both late foetal and early postnatal samples using a brief and simple approach for expression data analysis. We decided to apply a broad RNA microarray analysis to find specific interconnections among ATPase subunits and transcription regulators or activators. We believe that these data may later enable identification of another key factors regulating mitochondrial biogenesis, and thus improve diagnostics of inborn metabolic disorders and care of the preterm or low-birth-weight new-borns.

Materials and methods

Ethics

Rat tissues were received in collaboration with the Institute of Physiology, The Czech Academy of Sciences, Prague, where all animals were housed. All experiments with living rats were performed in agreement with the Animal Protection Law of the Czech Republic and were approved by the Ethics Committee of the Institute of Physiology, The Czech Academy of Sciences, Prague.

Tissues

A set of rat liver (n_liv = 54) and skeletal muscle (n_mus = 35) foetal and postnatal tissue samples was obtained after sacrifice of pregnant Wistar mothers between the 16th and 22nd gestational days (F16-F22)
and Wistar litters between the 1st and 4th postnatal days (P1-P4), respectively. For SDS-PAGE, samples from 5-, 7-, 13-, and 18-day-old (P5, P7, P13, and P18) and adult (P90) animals were obtained. The foetuses were delivered by Caesarean section. All tissues were frozen immediately in liquid nitrogen. For further analyses, all samples were stored at -80 °C.

Biochemical analyses

Tissue homogenization for simultaneous RNA and protein isolation was performed in TriReagent solution (MRC, Ohio, USA) using an ULTRA-TURRAX T8 homogenizer (IKA, Germany) according to the manufacturer’s protocol.

Protein concentration was determined by the method of Lowry (Lowry et al. 1951).

Tricine SDS/PAGE and Western blot (Schägger and von Jagow 1987) was carried out under standard conditions with 12% polyacrylamide and 4% (w/v) SDS gels. Samples were dissolved in sample buffer (50 mM Tris/HCl (pH 6.8), 12% (v/v) glycerol, 4% SDS, 2% (v/v) 2-mercaptoethanol and 0.01% (w/v) Bromophenol Blue for 30 min at 37 °C; 20 μg of sample protein was loaded for each lane. To choose the reference protein, we tested several proteins commonly used as the “housekeeping” loading controls. We have chosen Hprt as the best reference candidate protein for this type of study, but due to nonzero variability among foetal/postnatal samples we present the data as the relative ratio Atp5/Hprt. To analyse the protein content of the Atp5a subunit and reference Hprt protein, gels were electroblotted on Immobilon™-P PVDF membranes (Millipore, Massachusetts, USA) as previously described (Fornuskova et al. 2008). Primary detection of the blots was performed with mouse monoclonal antibodies against Atp5a and Hprt (Abcam; Atp5a ab110273, Hprt ab109021) at 1:10 000 and 1:20 000 dilutions, respectively. Secondary detection was carried out as described elsewhere (Fornuskova et al. 2008). Immunodetected protein signal was quantified by Quantity One software (Bio-rad, California, USA) twice per membrane replicate. The ratio between anti-Atp5a and anti-Hprt signals of control adult rat liver (at the age of 90 days) was set to 100%. Foetal/early postnatal ratios (average) are shown as a percentage of the control value.

RNA isolation and cDNA reverse transcription
RNA was isolated from each liver and muscle tissue sample by TriReagent solution (MRC, Ohio, USA) according to the manufacturer’s protocol. Total RNA was treated by DNase I (Ambion, Massachusetts, USA). The quality and quantity of total RNA was checked using an Agilent Bioanalyzer 2100 (Agilent Technologies, California, USA) and NanoDrop 1000 (Thermo Scientific, Massachusetts, USA). The RNA quality indicator was above 7 for all samples on a scale of 1–10. After preparation, RNA samples were stored at −80 °C until use. 1000 ng of total RNA was transcribed to cDNA using Superscript III Reverse Transcriptase (Invitrogen, Massachusetts, USA) and Oligo-dT primers (Promega, State of Wisconsin, USA). RT-minus controls were prepared (without reverse transcriptase). cDNA was stored at −20 °C until analysis by real-time PCR, but at most for 2 weeks. cDNA was thawed only twice.

Real-time PCR

TaqMan® Gene Expression Assay (25 μl) contained 2 × TaqMan® Gene Expression Master Mix (Applied Biosystems, Massachusetts, USA), 1.25 μl of TaqMan® probe FAM-MGB (Applied Biosystems, Massachusetts, USA; Mt-atp6 Rn03296710_s1, Atp5g2 Rn00821711_g1, Atp5a1 Rn01527025_m1, Atp5o Rn00756345_m1, Psmb6 Rn00821581_g1, Hprt Rn01527840_m1) and 1 μl cDNA template. Each cDNA sample was diluted so that 1 μl of cDNA correspond to 25 ng of total RNA used for reverse transcription. Thermal-cycling conditions were specified according to the manufacturer’s protocol. To assess the reaction efficiency of each probe (between 0.9 and 1.1), a calibration curve was performed with control sample dilutions 100, 50, 25, 12.5 and 6.25% of pooled cDNA. Two reference genes were chosen according to expression level quantification. The stability of gene expression was evaluated by GeNorm. Tbp and Psmb6 were the most stably expressed genes in the liver, while Hprt and Psmb6 in the skeletal muscle, similar to what was published earlier (Pejznochova et al. 2010). The reaction efficiency and the relative quantification of all genes were calculated in GenEx software. For each gene, the samples were analysed twice in duplicate. All statistical analyses were provided by STATISTICA 12.0 (StatSoft, Oklahoma, USA) and R (“R Core Team” URL: http://www.r-project.org/). Depicted illustrative expression curve profiles were obtained when performing least squares regression analysis. Results were considered significant when the corresponding $p \leq 0.05$ (Tab. 1). Constructed expression plots consisted of at least three samples quantified twice in duplicate, with each dot representing a mean value.
cDNA microarray performance and data analysis

Measurements of genome-wide mRNA expression were conducted using the GeneChip Rat Gene 1.0 ST Arrays (Affymetrix, California, USA), which covers probes for 16,557 well-annotated RefSeq genes. RNA was purified in five developmental days (16th, 20th, and 22nd foetal (F16, F20, F22) and 1st and 4th postnatal (P1, P4)) using an RNeasy Mini Kit (QIAGEN, Germany) before the analysis. Generation of labelled cDNA, hybridizations, and microarray scanning were performed under contract by the Centre for Applied Genomics in the Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children (Toronto, Canada). The data were assessed for quality and subjected to robust multi-array averaging (RMA) normalization (Affymetrix expression console; Affymetrix, California, USA) in R ("R Core Team" URL: http://www.r-project.org/).

Cluster analysis

The dendrogram analysis (clustering) of gene expression was accomplished using the programs STATISTICA 12.0 (Statsoft, Oklahoma, USA) and GenEx (MultiD Analyses AB, Sweden). The data for genes Atp5a1, Atp5d, Atp5g2, Atp5o, Atpaf1, Atpaf2, Esrra, Gabpa, Hnf4a, Mt-co1, Mt-co2, Mt-nd2, Mt-nd5, Nrfl, Ppargc1a, Ppargc1b, Pprc1, Tfam, Tmem70 and a probe for set of Mt-co3/Mt-atp8/Mt-nd3/Mt-atp6 ("Mt-genes") were exported. The expression of all genes significantly changed during development (p<0.05; ANOVA, not shown). Transposed data were auto-scaled, and Ward’s algorithm was chosen as a clustering method according to Pearson’s correlation coefficient distance. Moreover, to assess intersample differences, “heatmaps” were prepared using GenEx or R (Ward’s algorithm, Pearson’s correlation) with similar results.

Results

mRNA expression microarray data

Gene probes selected for our study were divided into four categories. The first category involved ATPase structural subunits encoded by nuclear DNA (Atp5a1, Atp5d, Atp5g2, Atp5o); the second category, ATPase and OXPHOS subunits encoded by mtDNA, generally creating catalytic core of the complex (Mt-co1, Mt-co2, Mt-nd2, Mt-nd5, a probe for set of Mt-co3/Mt-atp8/Mt-nd3/Mt-atp6); the third ATPase assembly factors (Atpaf1, Atpaf2, Tmem70); and the fourth category, other expression regulators
involved in mechanism of mitochondrial metabolism acceleration (Esrra, Nrf1, Gabpa, Ppargc1a, Ppargc1b, Pprc1, Hnf4a and Tfam). Relative expression data from rat expression microarrays were visualized by cluster analysis (Fig. 1-3) of these genes in both tissues.

The general appearance of time-course expression curve is in Fig. 1. In microarray data, the Pearson’s correlation coefficient distance clustering method was used to highlight possible similarities among the expression curve profiles during the five developmental steps (F16, F20, F22, P1 and P4; Fig. 2, 3). Pearson’s correlation coefficient-based clustering groups mRNA transcripts with remarkably similar expression profiles during the time course of the experiment regardless of the actual amount of the transcript itself. As an appropriate clustering method, Ward’s algorithm was chosen, producing tight clusters (other methods – single, complete or average linkage presented similar results). Consistent cluster members in the group regardless of the clustering method were considered significant (Fraley 1998). In liver and skeletal muscle, there were four and three distinct clusters of genes, respectively, throughout development. In liver (L; Fig. 1a), analogous expression profiles were found in clusters: (L1) Atp5a1, Atp5g2, and Atp5o; (L2) Tmem70 and Atpaf1; (L3) Atp5d, Nrf1, Atpaf2, Gabpa, Pprc1 and Tfam; (L4) Mt-co1, Mt-co2, Mt-co3/Mt-atp8/Mt-nd3/Mt-atp6, Mt-nd5, Hnf4a, Mt-nd2, Esrra, Ppargc1a and Ppargc1b. In skeletal muscle (M; Fig. 1b), the following were recognized: (M1) Atp5d, Atp5a1, Atp5g2, Atp5o, Ppargc1b, Tmem70, Esrra and Ppargc1a; (M2) Atpaf1, Atpaf2, Gabpa, Nrf1, Pprc1 and Tfam; and (M3) Mt-co1, Mt-co2, Mt-co3/Mt-atp8/Mt-nd3/Mt-atp6, Mt-nd5, Mt-nd2, and Hnf4a. Interestingly, in muscle, there was a stable but mild increase in the expression of some structural ATPase subunits (cluster M1; Fig. 1b, 3), whereas the expression of transcription regulators and other OXPHOS subunits decreased (M2) or varied (M3). The only exception is Tmem70 (M1), the expression of which rose later after birth. In contrast, in liver (Fig. 1a), all structural subunits increased except Atp5a1, Atp5g2, Atp5o (L1) and the decreasing Atp5d (L3). Moreover, according to cluster analysis, the vast majority of selected regulatory genes in skeletal muscle clustered together (M2), contrary to structural OXPHOS subunits (M1, M3). Although this co-expression tendency was not observed in liver, it could be noted that some smaller groups of genes were found in both tissues regardless of the tissue type, specifically Atp5a1, Atp5o, and Atp5g2 (L1, M1); Mt-co1, Mt-co2, and Mt-co3/Mt-atp8/Mt-nd3/Mt-atp6 (L4, M3); Ppargc1a and Ppargc1b (L4, M1); and Atpaf2, Nrf1, Gabpa, Tfam, and Pprc1 (L3, M2).
“Heatmap” cluster analysis (Fig. 2, 3) showed that samples of the same age have highly similar expression patterns in both tissues (except sample E from F22 day, F22e, Fig. 3). In contrast, in the liver, we defined two groups with significantly different expression patterns corresponding to the actual state of development. The first group consisted of samples F20 and younger, and the second of samples F22 and older (both prenatal and postnatal; Fig. 2). In skeletal muscle, only F16 samples had dissimilar expression patterns to F20 or older individuals (Fig. 3).

mRNA quantification by qPCR

To more precisely assess both the expression level and pattern of some ATPase subunits and assembly factors, qPCR was performed in at least four or more rat individuals per each foetal/postnatal day (F16-22, P1-5; Fig. 4).

In liver (Fig. 4, left columns), foetal mRNA expression generally stayed low, in contrast to diverse expression levels in foetal skeletal muscle (Fig. 4, right columns). After birth, the majority of expression patterns in both tissues showed an important shift: mRNA quantity rose. An overall increasing expression trend was significant in Atp5g2, Atp5o, Mt-atp6, Atpaf2, Atp5a1 and Tmem70 in liver (Fig. 4a, c, e, g, i, k) but only Mt-atp6 and Atpaf2 in muscle (Fig. 4b, h). Moreover, in muscle, Atpaf2 expression significantly decreased during the perinatal period. All statistics from qPCR data are summarized in Tab. 1 together with the number of analysed samples, correlation coefficient and p-value of significant trend changes.

In the liver, the Mt-atp6 (cluster L4; Fig. 2, 4a) expression profile showed massively increased mRNA levels starting approximately at the 22nd gestational day. The highest expression was acquired at the 4th postnatal day. Atp5a1, Atp5o and Atp5g2 (L1; Fig. 2, 4c, e, k) had a different progression; earlier in development, the expression of these genes was quite stable, with an increase between the 21st and 22nd gestational day, but immediately after birth, expression began to slowly diminish. Tmem70 expression (L2; Fig. 2, 5i) demonstrated a mild increase before birth, with higher expression after parturition when the expression level stabilized. In contrast, Atpaf2 (L3; Fig. 2, 4g) was a differentially expressed assembly factor, as it showed a very stable expression level prenatally and peak of high expression between the 21st gestational and first postnatal day with an on-going decrease to foetal levels by the 4th postnatal day.
In skeletal muscle, we observed a higher similarity along the course of expression. Mt-atp6 (M3; Fig. 3, 5b), Atp5a1 (M1; Fig. 3, 5f) and Tmem70 (M1; Fig. 3, 5j) all exhibited an analogous expression trend. Higher expression levels at the 16th day of gestation declined to very low levels between the 19th and 22nd gestational day. After birth, a transient increase in expression occurred. Additionally, Atp5o (M1; Fig. 3, 5d) and At5g2 (M1; Fig. 3, 5l) had similar expression profiles, but the trend was not significant. As in the liver, Atpaf2 had the most specific expression profile among other genes (M2; Fig. 3, 4h). Atpaf2 expression dramatically decreased between the 17th and 19th gestational days. Afterwards, the expression level was stabilized throughout the next three days of foetal development and the entire postnatal period. Overall, between both tissues, the expression profiles of mRNA transcripts were quite different. For example, Atp5o in liver (Fig. 4c) shows almost no change prenatally with a significant increase in the neonatal period; in contrast, in skeletal muscle, the Atp5o (Fig. 4d) expression level decreases approaching birth; however, its general expression trend remained statistically insignificant. However, the peak expression shift at the first and second postnatal day seemed to occur more generally.

Another aspect to note was that not all genes that were indicated to significantly change expression according to microarray data results appeared significantly changed by qPCR analysis. This discrepancy is an example of the crucial nature of microarray data validation.

Protein analysis

To assess the present ATPase content in the developing rat tissue ATPase α subunit (Atp5a), immunodetection by Western blot was performed. Due to high variability in common reference loading protein amounts (GAPDH, β-actin, α-tubulin and others), Hprt was used as a reference loading protein (also used for qPCR data normalization). It was shown that the relative quantity of the ATPase α subunit is slightly higher in postnatal tissues (Fig. 5) compared to prenatally obtained samples. Unfortunately, a reliable reference protein for sample loading normalization is missing, making protein analysis challenging.

Discussion

Mitochondrial biogenesis has been previously studied on both transcriptional and functional levels in mice and rats (Cuezva et al. 1997), but mainly postnatally. Studies showing expression changes
during mitochondrial biogenesis on a fewer distinct genes, e.g. beta-subunit of F1-ATPase – (Izquierdo and Cuezva 1997; Izquierdo et al. 1990; Izquierdo et al. 1995) were published. Other study shows coexpression of 13 transcripts out of 16 cytochrome c oxidase mRNAs (Kim et al., 1995). Finally, mitochondrial biogenesis was studied in prenatal human liver and muscle (Pejznochova et al., 2010) from abortions indicated due to non-mitochondrial-disease reasons. Our presented work is based on microarray and qPCR data from rat tissues obtained during the both late prenatal and early postnatal (perinatal) period and highlights expression characteristics common for this period and orchestration of expression of 20 mitochondria-related genes (ATPase subunits, mitochondrial-metabolism regulators). Unique to the tissue determination, skeletal muscle was chosen as a model tissue, the function of which stays generally unchanged throughout early mammalian ontogenesis. Contrary to skeletal muscle, liver was chosen as a model tissue with special variable functions. During the foetal period, liver plays a role not only in haematopoiesis, which should change after birth when haematopoiesis moves to bone marrow (Mikkola and Orkin 2006), but also in other metabolic pathways (e.g., fatty acids β-oxidation), which are promoted during this period (Herrera 2000).

Microarray expression data of ATPase- and mitochondria-related genes enabled us to obtain an overview into possible expression interconnections characteristic of the late foetal and early postnatal periods. These data might be useful for identification of factors playing role in the earlier postulated hypothesis about post-transcription regulation of mitochondrial mRNAs (Izquierdo and Cuezva 1997) and the role of translation inhibition proteins or small RNAs (Willers et al. 2012) in the preparation of the foetus for transition to extra-uterine conditions.

Overall, more extensive changes (over two-fold) were observed in the liver. In muscle, expression was more stable, in agreement with our initial premise of stable skeletal muscle function throughout early mammalian development. However, the main transcriptional regulators, Nrf1 and Gapba, were expressed in an analogous manner in both tissues, indicating that a pivotal regulation is dependent on tissue-specific regulators (e.g. Hnf4a).

To assess intersample variations, we created expression “heatmaps” showing tight gene expression similarities between samples of the same age. Moreover, we predicted a possible metabolic switch on the transcriptional level that occurred in the liver after F20 (the reversal of the higher expression levels of transcriptional regulators and the acceleration of the expression of structural
subunits) i.e., before birth (Fig. 2, 3). Based on this observation, we assume that the foetus undergoes key liver expression reprogramming about two days before the actual birth, which may help stimulate adequate adaptation to external conditions. We hypothesize that these expression changes are driven by multiple triggers, including oestrogen (Rosenthal et al. 2004) or other hormones, that increase during pregnancy and labour (Smith et al. 2009) and interact with both transcription factors (e.g., oestrogen receptors) or ATPase itself (Moreno et al. 2013). In skeletal muscle, only F16 samples had significantly different expression patterns. This is likely due to skeletal muscle immaturity, not a metabolic switch affected by functional or physiological development, considering that muscle fibre formation starts at F15, fibre type differentiation is initiated after F17 (Rubinstein and Kelly 1981) and major differentiation and metabolic shift occurs later during the time of weaning (Punkt et al. 2004). Nevertheless, further experiments must be performed on premature neonates to verify this interpretation.

ATPase biogenesis has mainly been studied in *S. cerevisiae* (Ackerman and Tzagoloff 2005; Rak et al. 2011). Not all homologues of yeast subunits and assembly factors are present in mammalian cells, but we propose that structural OXPHOS subunits show higher expression similarity in the specific curve pattern, especially for mtDNA-encoded genes (Fig. 1a-b), the expression of which is accelerated after birth. This process might be explained by the saturation of subunits added in the last steps of ATPase biogenesis (Wittig et al. 2010). In contrast, lower expression of Atp5o or Atp5g2 indicates possible rate-limiting subunits of ATPase biogenesis, which might serve as structural scaffolds for subsequent subunits (Houstĕk et al. 1995; Straffon et al. 1998). Moreover, lower and tissue-specific Atpaf2 expression predicts its enhancement role in ATPase activity in liver very early after birth. Similarly, Tmem70 has a non-essential assembly role in the liver that is crucial later after birth, when higher ATP demands are needed. This role might clarify why Tmem70 expression stably increases over more than 4 days of life. This increase corresponds with non-zero ATPase activities and approximately 30% ATPase concentrations in patients with homozygous mutations/deletions in Tmem70 who suffer from ATPase deficiency and have adverse clinical findings with identical mitochondrial disorder (Cízková et al. 2008; Spiegel et al. 2011).

Recently, probably a key regulator of β-ATPase subunit translation regulator was described, miR-127-5p (Willers et al. 2012), and we believe, that presented data, which describe expression of other
ATPase-related genes, may serve as a valid background for finding more factors, which start the preparation of the foetus for the transition to extrauterine conditions.

Finally, our study supports the crucial nature of the qPCR validation of microarray data. Although we found a prenatal expression switch in the vast majority of the 20 selected genes (e.g., Tmem70 in muscle, Atp5a1), not all results were consistent (e.g., minor changes of Atp5o or Atp5g2 on microarray and significant changes quantified by qPCR). Still, subsequent qPCR or immunodetection data validation represents a gold standard.

Conclusions
In this study, we present a brief characterization of complex microarray data in user-friendly graphical software, which might be useful for analysing microarray data in the broader context of cell metabolism and physiology during ontogenetic development. Moreover, a unique expression correlation among mtDNA-encoded ATPase and OXPHOS subunits and mitochondrial biogenesis regulators were shown in both liver and skeletal muscle tissue during the rat foetal-to-neonatal transition. The group of Cuezva (Cuezva et al. 1997) published the hypothesis that organized coexpression of mitochondrial mRNAs, the mRNA translation efficiency and mRNA stability are crucial for postnatal adaptation of new-born mammal. From our data, in correlation with previous this hypothesis, we can say that in rat liver, a key expression reprogramming occurs about two days before birth. We might hypothesize that in mammals (including humans) this period might determine specific critical gestational age of preterm neonates associated with early neonatal morbidity and mortality arising from mitochondrial-metabolism insufficiency. Although precise identification of this period remains to be elucidated by further research studies, we believe that these findings will be useful for further improvement in diagnostics of congenital metabolic disorders connected with mitochondrial deficiency and new-born immaturity.

Acknowledgements
We would like to thank Dr. Michal Pravenec and Dr. Petr Mlejnek from Department of Genetics and Model Diseases, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague for obtaining and providing rat tissue samples for this project. This study was supported by research grant of Charles University Grant Agency (GAUK), No. 667612, First Faculty of Medicine, Charles University in
Figures

1a) In the liver, twenty genes were divided into four groups according to general expression profile appearance in time (columns from left to right L1-L4). 1b) In the skeletal muscle, twenty genes were
divided into three groups according to general expression profile appearance in time (columns from left to right M1-M3).

Asterisks indicate which gene expressions were validated by qPCR. “Mt-genes” reflects shared probe for transcripts Mt-atp6, Mt-atp8, Mt-nd3 and Mt-co3.

Fig. 2: Heatmap clustering (liver samples).

Genes and samples were clustered according Pearson correlation coefficient distance. Left dendrogram shows clusters L1-L4 (from Fig. 1a) separated by horizontal blue lines. Upper dendrogram shows intersample variability. Samples can be identified by the letters a-d (individual littermate) and age (foetal
16-22 in days post conception F16-22; postnatal 1-4 in days after birth P1-4). All samples can be divided into two groups (separated by vertical blue line) - early foetal (F16a-F20d) and late foetal/early postnatal (F22a-P4d). “Mt-genes” reflects shared probe for transcripts Mt-atp6, Mt-atp8, Mt-nd3 and Mt-co3.

Fig. 3: Heatmap clustering (skeletal muscle samples).

Genes and samples were clustered according Pearson correlation coefficient distance. Left dendrogram shows clusters M1-M3 (from Fig. 1b) separated by horizontal blue lines. Upper dendrogram shows intersample variability. Samples can be identified by the letters a-e (individual littermate) and age (foetal 16-22 in days post conception F16-22; postnatal 1-4 in days after birth P1-4). Only samples F16a-F16e
have different expression pattern (separated by vertical blue line) compared to the riper foetal/early postnatal samples (F20-P4). “Mt-genes” reflects shared probe for transcripts Mt-atp6, Mt-atp8, Mt-nd3 and Mt-co3.

Fig: 4 (a-f): qPCR of Atp6 (a, b), Atp5o (c, d), Atp5a1 (e, f) in both liver (left column) and skeletal muscle (right column) samples. Clusters L1-L4 and M1-M3 according to Figs. 1-3 are indicated. Significant increase/decrease (p<0.05) is shown in each graph (Tab. 1). The dashed line indicates the last foetal day/birth.
Fig: 4 (g-l): qPCR of Atpaf2 (g, h), Tmem70 (i, j) and Atp5g2 (k, l) in both liver (left column) and skeletal muscle (right column) samples. Clusters L1-L4 and M1-M3 according to Figs. 1-3 are indicated. Significant increase/decrease (p<0.05) is shown in each graph (Tab. 1). The dashed line indicates the last foetal day/birth.
Fig. 5 (a-b): Immunodetection of Atp5a and reference Hprt in the liver and the skeletal muscle (SDS/PAGE, Western blot) and signal quantification.

5a) Western blot was performed in duplicate. Expression of Atp5a in the skeletal muscle was stable, whereas in the liver, a slight increase in Atp5a content was observed.

5b) Quantification of chemiluminescence signal was performed twice per each replicate (membrane), and the average is presented as % of 90-day-old adult control signal ratio of anti-Atp5a to anti-Hprt antibody (P90 100% or 50% loading means 20 or 10 ng of protein per well, respectively). The dashed line indicates the last foetal day/birth.
Tables

Tab. 1: Expression of transcripts selected for validation by qPCR. Significant expression trends are shown in bold (≤0, 05). Positive correlation coefficient implies to mRNA level increase, negative to decrease.

<table>
<thead>
<tr>
<th>p</th>
<th>Correlation coefficient</th>
<th>n</th>
<th>p</th>
<th>Correlation coefficient</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>liver</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atp5g2</td>
<td><0,05</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atp5o</td>
<td><0,05</td>
<td>0,43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atp6</td>
<td><0,05</td>
<td>0,81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atpaf2</td>
<td><0,05</td>
<td>0,44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atp5a1</td>
<td><0,05</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tmem70</td>
<td><0,05</td>
<td>0,63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>skeletal muscle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,318</td>
<td>-0,18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,326</td>
<td>0,18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,05</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0,05</td>
<td>-0,51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,97</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,585</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Notes: n – number of analyzed samples

Reference

FORNUSKOVA D, BRANTOVA O, TESAROVA M, STIBUREK L, HONZIK T, WENCHICH L, TIEZEOVA E, HANSIKOVA H, ZEMAN J: The impact of mitochondrial tRNA mutations on the
amount of ATP synthase differs in the brain compared to other tissues. *Biochim Biophys Acta.* **1782:** 317-325, 2008.

IZQUIERDO JM, CUEZVA JM: Control of the translational efficiency of beta-F1-ATPase mRNA depends on the regulation of a protein that binds the 3’ untranslated region of the mRNA. *Molecular and cellular biology.* **17:** 5255-5268, 1997.

IZQUIERDO JM, LUIS AM, CUEZVA JM: Postnatal mitochondrial differentiation in rat liver.

MIKKOLA HK, ORKIN SH: The journey of developing hematopoietic stem cells. *Development.* **133:** 3733-3744, 2006.

SMITH R, SMITH J, SHEN X, ENGEL P, BOWMAN M, MCGRATH S, BISITS A, MCLEDUFF P, GILES W, SMITH D: Patterns of Plasma Corticotropin-Releasing Hormone, Progesterone, Estradiol, and...

Supplement

Tab. S1: Summary information about genes analysed in the study. We have selected twenty mitochondria- and ATPase-related genes from GeneChip Rat Gene 1.0 ST Arrays (Affymetrix, California, USA). The selection included genes encoded by both mtDNA and nuclear DNA; ATPase and OXPHOS subunits, ATPase assembly factors and other transcription factors involved in mitochondrial metabolism regulation. Marked genes (†) were selected for analysis by qPCR to validate more precisely expression profile revealed by microarray analysis.

(part 1/2)

<table>
<thead>
<tr>
<th>Encoded in:</th>
<th>Gene:</th>
<th>Protein:</th>
<th>Cell localization:</th>
<th>Function:</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>mtDNA</td>
<td>Mt-nd2</td>
<td>NADH dehydrogenase subunit 2</td>
<td>mitochondria, complex I</td>
<td>core subunit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mt-nd5</td>
<td>NADH dehydrogenase subunit 5</td>
<td>mitochondria, complex I</td>
<td>core subunit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mt-co1</td>
<td>Cytochrome c oxidase subunit I</td>
<td>mitochondria, complex IV</td>
<td>core subunit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mt-co2</td>
<td>Cytochrome c oxidase subunit II</td>
<td>mitochondria, complex IV</td>
<td>core subunit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mt-atp6</td>
<td>ATP synthase subunit a</td>
<td>mitochondria, Fσ-ATP synthase</td>
<td>proton translocation</td>
<td>†</td>
</tr>
<tr>
<td></td>
<td>Mt-atp8</td>
<td>ATP synthase subunit A6L</td>
<td>mitochondria, Fσ-ATP synthase</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>nuclear DNA</td>
<td>Atp5a1</td>
<td>ATP synthase subunit α</td>
<td>mitochondria, F₁-ATP synthase</td>
<td>ATP synthesis, binding IF1</td>
<td>†</td>
</tr>
<tr>
<td></td>
<td>Atp5g2</td>
<td>ATP synthase subunit c</td>
<td>mitochondria, F₁-ATP synthase</td>
<td>rotor, proton translocation, “rate-limiting” subunit</td>
<td>†</td>
</tr>
<tr>
<td></td>
<td>Atp5d</td>
<td>ATP synthase subunit δ</td>
<td>mitochondria, F₁-ATP synthase</td>
<td>rotor, connects F₁ with F₀</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atp5o</td>
<td>ATP synthase subunit OSCP</td>
<td>mitochondria, Fσ-ATP synthase</td>
<td>connects stator with F₁, estrogen binding</td>
<td>†</td>
</tr>
<tr>
<td></td>
<td>Atpaf1</td>
<td>ATP synthase mitochondrial F₁ complex assembly factor 1</td>
<td>mitochondria</td>
<td>ATP synthase assembly, incorporation of subunit β (Wang et al. 2001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atpaf2</td>
<td>ATP synthase mitochondrial F₁ complex assembly factor 2</td>
<td>mitochondria</td>
<td>ATP synthase assembly, incorporation of</td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Location</td>
<td>Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tmem70</td>
<td>Transmembrane protein 70</td>
<td>Mitochondria, inner membrane</td>
<td>ATP synthase assembly, incorporation of subunit α and A6L (Torraco et al. 2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ppargc1a</td>
<td>Peroxisome proliferator-activated receptor gamma, coactivator 1α</td>
<td>Cytosol, nucleus</td>
<td>Chromatin binding, coactivator, hypoxia and fatty acid response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ppargc1b</td>
<td>Peroxisome proliferator-activated receptor γ, coactivator 1β</td>
<td>Nucleus, mitochondria</td>
<td>Estrogen receptor and AF-2 domain binding, cAMP and glucocorticoid response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pprrc1</td>
<td>Peroxisome proliferator-activated receptor γ, coactivator-related 1</td>
<td>Nucleus</td>
<td>Poly(A) RNA binding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esrra</td>
<td>Estrogen related receptor α</td>
<td>Nucleus</td>
<td>DNA binding, positive transcription regulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hnf4a</td>
<td>Hepatocyte nuclear factor 4α</td>
<td>Cytoplasm, nucleus</td>
<td>DNA and fatty acid binding, cell differentiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nrf1</td>
<td>Nuclear respiratory factor 1</td>
<td>Cytoplasm, nucleus, exosomes</td>
<td>DNA binding, interaction with estradiol, noradrenalin and others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabpa</td>
<td>Nuclear respiratory factor 2α</td>
<td>Nucleus</td>
<td>Chromatin binding (RNApol II promoter), interaction with noradrenaline, carbon monoxide, copper</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tfam Transcription factor A, mitochondrial
mitochondria, nucleus DNA binding (mitochondrial promoters)

Notes: † - analyzed by qPCR to validate microarray profile

F₁ – peripheral domain of F₀F₁-ATP synthase
F₀ – domain of F₀F₁-ATP synthase, which is integrated in the inner mitochondrial membrane
IF1 – ATPase inhibitory factor 1 (Atpif1)
AF-2 – activation function 2

Supplement references and other sources:

http://www.ensembl.org (Flicek et al. 2014)

http://rgd.mcw.edu/ (Shimoyama et al. 2015)

