
MITOCHONDRIAL ADAPTATIONS IN AGED SKELETAL MUSCLE: EFFECT OF 

EXERCISE TRAINING 

Mohammad Mosaferi Ziaaldini1*, Seyed Reza Attarzadeh Hosseini1, Mehrdad Fathi1  

1. Faculty of Sport Science, Ferdowsi University of Mashhad, Mashhad, Iran 

* Corresponding author: Mohammad Mosaferi Ziaaldini, Faculty of Sport Sciences, Ferdowsi University of 

Mashhad, Azadi square, Mashhad, Iran. E-mail: m.mosaferi@hotmail.com 

Skeletal muscle mitochondria, aging and exercise training 

 

Abstract 

The aging process is associated with a decline in mitochondrial functions. Mitochondria dysfunction is involved in 

initiation and progression of many health problems including neuromuscular, metabolic and cardiovascular diseases. 

It is well known that endurance exercise improves mitochondrial function, especially in the elderly. However, recent 

studies have demonstrated that resistance training lead also to substantial increases in mitochondrial function in 

skeletal muscle. A comprehensive understanding of the cellular mechanisms involved in the skeletal muscle 

mitochondrial adaptations to exercise training in healthy elderly subjects, can help practitioners to design and 

prescribe more effective exercise trainings. 
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1. Introduction 

 

Aging is an intricate phenomenon characterized by progressive decline in physiological functions and increase in 

mortality that is often accompanied by many pathological diseases (Cui et al. 2012). Mitochondrial dysfunction is 

heavily implicated in the ageing process (Trifunovic and Larsson 2008). Many studies have demonstrated that a 

disruption of mitochondrial integrity leads to the initiation and progression of many health problems including 

neuromuscular (Jones et al. 2003, Wallace 1989), metabolic (Lowell and Shulman 2005, Saxena et al. 2006) and 

cardiovascular diseases (Hall et al. 2014, Mercer 2014). Mitochondria are intracellular organelles whose main duty is 

to provide cellular energy requirements (Verdin et al. 2010). Mitochondrion contain a double membrane layer and 

hundreds of protein and 2-10 copies of mitochondrial DNA (mtDNA) are surrounded in matrix by the mitochondrial 

inner layer (Lee and Wei 2005). Although the mitochondrion has its own genome, it codes just 13 mitochondrial 

proteins, hence mitochondrial biogenesis arises from a coordinated regulation of nuclear and mitochondrial genes 

(Goffart and Wiesner 2003). In addition to ATP synthesis, mitochondria are involved in pyrimidines and hemes 

biosynthesis (Atamna 2004, Sherman 2008), apoptosis (Estaquier et al. 2012, Wang and Youle 2009) as well as 

transcription, translation and replication of mtDNA (Clayton 2000). Mitochondrial network is also a major source of 

reactive oxygen species  (ROS) (Murphy 2009). Reduced mitochondrial function as a result of aging in skeletal 

muscle (Hebert et al. 2010, Picard et al. 2011, Sahin and Depinho 2010) could support the claim that mitochondria 

play a critical role in the survival of the cells.  

It is well recognized that acute and chronic of endurance training (ET) (Holloszy and Coyle 1984, Holloszy et al. 

1970, Willis and Jackman 1994, Wright et al. 2007b) and resistance training (RT) (Shepherd et al. 2014, Wang et al. 

2011)  have effects on mitochondrial function in young and adults subjects. Despite a large body of literature on 

many aspects of the role of exercise training and mitochondria on different tissues such as heart, kidney and liver and 

also age related pathologic condition and diseases such as neuromuscular (Abresch et al. 2012, Nardin and Johns 

2001), metabolic (Newman et al. 2012, Tjonna et al. 2008) and cardiovascular (Jenkins et al. 2012, Lesnefsky et al. 

2001) disease, little is known about the impact of exercise training on skeletal muscle mitochondrial (SM-mito) 

adaptations in healthy aged mammalian cells.  



In this article, first we will have a short overview on mitochondrial function. Then mitochondrial changes in healthy 

aged subjects will be discussed and finally we will review studies in relation with the effect of exercise training on 

SM-mito in the elderly. This review solely concerns studies that have investigated the influence of exercise training 

on SM-mito responses in healthy elderly subjects including humans and animals. 

2. A brief Overview of Mitochondria Function 

2.1. Mechanism controlling mitochondria dynamic 

 

Mitochondrial function is dependent on a number of factors including mitochondrial biogenesis and mitochondrial 

dynamics (Shabrokh et al. 2014). Mitochondria are highly dynamic organelles (Westermann 2012) and are 

recognized as important constituents of cellular quality control (Westermann 2010). This dynamic behavior of 

mitochondria includes mitochondrial fission and fusion: the two events controlling mitochondrial shape, size, and 

number (Scott and Logan 2011). Fusion involves the mixing of mitochondrial material, whereas fission divides the 

organelle into smaller components (Iqbal and Hood 2014). In mammalian cells, three large GTPases are important 

for mitochondrial fusion, which requires the coordinated fusion of the outer and inner membranes. The mitofusins, 

Mfn1 and Mfn2, are located on the mitochondrial outer membrane and are involved in early steps in membrane 

fusion. The dynamin-related protein OPA1 is associated with the inner membrane and is essential for inner 

membrane fusion (Chen et al. 2010). The opposing process of mitochondrial fission depends on the dynamin-related 

protein Drp1 (Chan 2006). The fusion process requires three steps: docking, mitochondria outer membrane (MOM) 

fusion and mitochondria inner membrane (MIM) fusion. Mfn1 and Mfn2 are thought to play an important role in 

docking and MOM fusion. Optic atrophy 1 (Opa1) seems to be involved in the formation of cristae junctions as well 

as in MIM fusion, which occurs in a GTP-dependent manner. Mitochondrial fission 1 (Fis1) is a MOM protein and is 

thought to recruit Drp1 to the MOM by means of adaptor proteins (Seo et al. 2010). Upon stimulation, Drp1 is 

activated and translocates to the scission sites of OMM through interaction with Fis1, where they oligomerize and 

form spirals to constrict OMM through GTP hydrolysis, resulting in mitochondrial fission (Zhan et al. 2013) (Fig 1. 

A). 

 

 



 2.2. Mechanism controlling mitochondria biogenesis 

 

Mitochondrial biogenesis is a key physiological process that is required for normal growth and development and for 

maintenance of ongoing cellular energy requirements during aging (Stefano et al. 2012). Mitochondrial biogenesis is 

now recognized as a vital and exciting area of cell biology and can be defined as the growth and division of pre-

existing mitochondria (Jornayvaz and Shulman 2010, Joseph et al. 2006). Mitochondrial biogenesis is a highly 

regulated process that requires a close coordination between both nuclear and mitochondrial gene expression and 

recruitment or import of new mitochondrial proteins into preexisting mitochondrial compartments (Sharma et al. 

2014, Wright et al. 2008). Controlling the biogenesis of mitochondria and the maintenance of mtDNA is a complex 

biological process.(Lee and Wei 2005). It involves changes in the expression of more than 1000 genes, the 

cooperation of two genomes, and alters the level of approximately 20% of cellular proteins (Lopez-Lluch et al. 

2008). At the molecular level, several transcription factors and cofactors are involved in the activation and regulation 

of mitochondrial biogenesis (Lopez-Lluch et al. 2008). Expression of genes promoting mitochondrial biogenesis is 

predominantly controlled by the global principles of gene regulation, that is, transcription initiation and interaction at 

the gene promoter Therefore, transcription factors and transcriptional coactivators represent critical regulators of 

mitochondrial biogenesis (Hawley 2009). Transcription factors involved in this process are mitochondrial 

transcription factor A (TFAM), nuclear respiratory factors (Nrf1, Nrf2), cyclic AMP-activated protein kinase 

(AMPK), peroxisome proliferator-activated receptors (PPARs) and peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC-1α) (Bori et al. 2012) (Fig 1. B). 

3. Signals controlling mitochondrial biogenesis: central role of Pgc-1α 

 

Despite the complexity of the various signaling pathways that converge to regulate mitochondrial biogenesis, they all 

seem to share the common key component of the PGC-1 family of co-transcription factors (Lopez-Lluch et al. 2008). 

PGC-1α is preferentially expressed in muscles enriched in slow-twitch type I fibers and drives the formation of slow-

twitch fibers (Li et al. 2011). Overexpression of PGC-1α in the mouse skeletal muscle and heart has been shown to 

increase mitochondrial biogenesis and function (Dillon et al. 2012). There is growing evidence to suggest that PGC-

1α is a major regulator of mitochondrial biogenesis (Davinelli et al. 2013, Dillon et al. 2012, Lee and Wei 2005) (Fig 

1. B).  



3.1. Pgc-1α downstream signaling pathways 

 

Most relevant to the onset of mitochondrial biogenesis is the interaction of PGC-1a with the nuclear respiratory 

factors NRF-1 and NRF-2 (Hood 2009). Furthermore, NRF-1 is implicated in the interaction with several 

mitochondrial genes including the TFAM, one of the most important mammalian transcription factors for mtDNA 

(Davinelli et al. 2013) that directly stimulates mtDNA replication and transcription (Kang et al. 2013). TFAM binds 

to mtDNA at both the heavy- and light-strand promoters to initiate the transcription of genes. It also leads to an 

increase in mtDNA copy number (Huang and Hood 2009) (Fig 1. B). 

 3.2. Pgc-1 up-stream signaling pathways 

 

Multiple endogenous and exogenous factors regulate mitochondrial biogenesis through the PGC-1α (Lopez-Lluch et 

al. 2008). PGC-1α expression and activity are largely regulated by upstream signaling pathways of protein kinases 

(Yan et al. 2012) such as p38 mitogen-activated protein kinase (p38 MAPK) (Hood 2009, Joseph et al. 2006, Kang 

et al. 2013, Li et al. 2011),  AMPK (Jager et al. 2007, Reznick et al. 2007, Zong et al. 2002). Moreover, it was 

demonstrated that changes in intracellular Ca2+ concentrations stimulate calcium/calmodulin-dependent protein 

kinase IV (CaMK). Thus, CaMK overexpression appeared to induce a coordination of the nuclear and the 

mitochondrial genomes through PGC-1 α (Joseph et al. 2006, Lee and Wei 2005, Lopez-Lluch et al. 2008). 

PGC-1α is also regulated by post-translational modification, such as phosphorylation and deacetylation. The NAD-

dependent deacetylase silent mating type information regulation 2 homolog-1 (Sirt1) is also purported to have a key 

role in mitochondrial biogenesis via functional regulation of PGC-1α (Palmer 2010, Yan et al. 2012). Recently, nitric 

oxide (NO) was shown to regulate mitochondrial biogenesis through the transcriptional activation of PGC-1α 

(Lopez-Lluch et al. 2008). In addition, targeted disruption of the endothelial nitric oxide synthase (eNOS) gene in 

vivo resulted in significant reduction in the level of mitochondrial mass (Lee and Wei 2005, Nisoli et al. 2003) (Fig 

1. B). 

 

 



4. Ageing-induced SM-mito dysfunction 

 

Mitochondrial net has an essential role in energy production (Bori et al. 2012) and an impaired in mitochondrial 

health, including reducing the size and content associated with decreased muscle mass and mtDNA mutation 

(Konopka et al. 2014, Menshikova et al. 2006). Studies on humans and animals have shown that aging leads to a 

decrease in the several complexes of electron transport chain I, II, III and IV 28% - 42% (Hood 2009, Kumaran et al. 

2004), a decrease in oxidative phosphorylation capacity in muscle (Coggan et al. 1992a, Cooper et al. 1992),  low 

mitochondria enzyme activity such as citrate synthase (CS), succinate dehydrogenase (SDH) and Beta-

hydroxyacylcoA dehydrogenase (B-HAB) (Melov et al. 2007), decreased mtDNA content (Short et al. 2005) and 

increased oxidative stress (Huang and Hood 2009, Parise et al. 2005). Electron microscopy analysis showed a 

reduction in the volume and density (66% and 25% respectively) of mitochondria in skeletal muscle in older adults 

compared to young (Huang and Hood 2009). Also significant decrease observed in muscle protein content of 

Cytochrome C and Cox4 of old rats compared to young ones which was an indicating of decreased mitochondria 

content (Ziaaldini et al. 2015). It has also shown that the mitochondria in aging muscles are abnormally rounded 

(Terman et al. 2010). Specific mechanisms leading to the changes of aging are unclear now (Menshikova et al. 

2006). Studies on human and animal models have shown that mitochondrial dysfunction is associated with excessive 

production of ROS and metabolic changes (Bori et al. 2012, Ziaaldini et al. 2015). Mitochondrial theory of aging, 

which was first introduced in 1979 by Herman Denham suggest that leakage of free radicals and attack neighboring 

mtDNA leading to mitochondrial mutations that undermine mitochondrial function (Cobley et al. 2013, Nisoli and 

Carruba 2006). In fact, mtDNA has no protective histones and has substantially less repair mechanisms than nuclear 

DNA. Thus, ROS-induced accumulations in faulty proteins, oxidized fatty acids, and mtDNA mutations would result 

in a progressive, feed-forward, and irreversible cycle of cellular dysfunction that leads to the onset of phenotypes 

associated with aging (Huang and Hood 2009). Functional and dynamic changes of mitochondria associated with 

aging may contribute to mitochondrial dysfunction. Mitofusion (MFN1, MFN2) and mitofission (Fis1, Drp1) 

proteins act as morphological mechanisms and remove the mutant and damaged proteins out of mitochondrial for 

disintegration and contribute to new organelles synthesis (Lee and Wei 2005).  However, the impact of aging on 

these genes is still poorly understood. Konopka et al. , reported that there was no difference in levels of MFN1, 

MFN2 and fis1 between old (74±3 y) and young men (20±1 y) (Konopka et al. 2014). Joseph et al. , acheived similar 

results where there was no significant difference in levels of MFN2, Drp1 and Fis1 but an increase in OPA1 among 



older (81±1 y) rather then young (23±1) men and women (Joseph et al. 2012).  In line with the previous research, 

Bori et al.  reported which significant differences were not observed in the mRNA levels of young and old sedentary 

individuals for Fis1, Mfn1 (Bori et al. 2012). However, animal model studies have shown an age-related increase  in 

protein levels of Drp1 and Fis1 (Bo et al. 2013, Lanza and Nair 2009) and a decreas in levels of MFN1 (Estaquier et 

al. 2012). Among the many factors that affect the aging process, malnutrition and decreased mitochondrial 

biogenesis appear to be of potential contribution to aging. The exact cause of decreased mitochondrial biogenesis 

during aging is currently unknown, but it seems the internal and external regulatory factors are involved (Lopez-

Lluch et al. 2008). In accordance, it has been reported that there is no difference between AMPK and p38MAPK, 

two key signaling molcules, but levels of PGC-1α were reduced by ∼50% in skeletal muscle of elderly participants 

compared to young ones (Joseph et al. 2012). Nonetheless, Lanza et al. , couldn’t find any significant difference in 

levels of PGC-1α in older men compared with young men(Lanza et al. 2008). Howevere, both of these studuies have  

reported which levels of the PGC-1α targeted proteins, nuclear respiratory factor 1 (NRF-1) and mitochondrial 

transcription factor A (Tfam) did not differ across groups (Joseph et al. 2012, Lanza et al. 2008). Interestingly, data 

from recent studies suggest a significant decrease in PGC-1α levels in skeletal muscle of aged animal models (Dillon 

et al. 2012, Ljubicic et al. 2009). For more details about age-related SM-mito, there are quality review papers which 

are recomnded for conuslation (Chistiakov et al. 2014, Gaziev et al. 2014, Johnson et al. 2013) (Fig 1. C).                                               

5. Age- related SM-mito responses to exercise training  

5.1.  Endurance training adaptions 

5.1.1 SM-mtio dynamic responses to ET 

Mitochondrial dynamic plays a critical role in vertebrate cells during cell division, differentiation, and development 

and could also be involved in the mitochondrial response to skeletal muscle challenge (Garnier et al. 2005, Liu et al. 

2014) . The machinery involved in mitochondrial dynamics requires the participation of several proteins (Yan et al. 

2012).  In both human and animal model studies, it has been shown that acute and chronic exercise affect markers of 

mitochondrial content and dynamics in young and adult subjects (Cartoni et al. 2005, Ding et al. 2010, Koltai et al. 

2012, Perry et al. 2010, Slivka et al. 2012a, Slivka et al. 2012b). Nevertheless, limited data exist about the impact of 

the exercise training on SM-mito in healthy age groups. Bori et al.  (Bori et al. 2012) studied mitochondria response 

to acute effect of exhausted aerobic exercise on active and sedentary old healthy men. They found that in the old 

sedentary group mRNA levels of both Mnf1 and Fis1 significantly decreased (p<.05) after exercise. In old active 



group, mRNA levels of Fis1 also decreased (p<.01) but there was no change for Mfn1. In contrast to acute aerobic 

exercise, Konopka et al.  (Konopka et al. 2014) reported that twelve weeks aerobic training on a cycle ergometer 

significantly increased (p < .05) mitochondrial protein contents of  Mfn1, Mfn2 and Fis1 in the  in healthy old 

subjects (93% ± 44%, 36% ± 8% and 201% ± 98% respectively). However, there was no change in mRNA levels of 

Opa1 (Konopka et al. 2014). At variance with humans' studies, endurance training led to a significant decrease in 

protein levels of Mfn1 in SM-mito of old rats (Bo et al. 2013, Koltai et al. 2012). Nevertheless, twelve weeks 

treadmill training increased (p<.05) Drp1 expression in old rats (Bo et al. 2013). Ziaaldini et al (2015) also reported 

that six weeks of treadmill running at the intensity of 60% of VO2max eliminated the age-associated loss of muscle 

cytochrome C and COX4 protein content in old rats (Fig 1. D).  

 

5.1.2 SM-mtio biogenesis responses to ET 

It is well established that endurance exercise training not only increases physical performance (Yan et al. 2012) but 

also induces a numbers of adaptations in aged SM-mito including increased aerobic capacity (Holloszy 1967, 

Holloszy and Coyle 1984), number and size (Palmer 2010, Yan et al. 2012) and consequently mitochondria 

biogenesis (Joseph et al. 2006, Little et al. 2010) in young and adult of both humans and animals. However, several 

studies have investigated acute and chronic effects of ET on SM-mito adaptations on old subjects (Huang and Hood 

2009, Kang et al. 2013, Li et al. 2011, Menshikova et al. 2006, Palmer 2010, Russell et al. 2014, Toledo and 

Goodpaster 2013, Yan et al. 2012) and have reported a wide range of structural and functional adaptations in SM-

mito such as an increased protein content and volume (Coggan et al. 1992b, Jubrias et al. 2001, Sharman et al. 

2001), oxidative, krebs cycle and electron transport chain enzymes activity (Kang et al. 2013, Li et al. 2011, 

McArdle et al. 2001, Menshikova et al. 2006). Despite the fact that mitochondria biogenesis requires a coordinated 

regulation between nuclear and mitochondria encoded gens, the main mechanism involved in SM-mito adaptation in 

older humans is not well understood yet. 

In recent years, PGC-1α has widely been investigated in cell metabolism (Hood 2009).As mentioned before, PGC-1α 

is one of the main regulators of mitochondria adaptations and involves in regulation and expression of gens which 

are involved in mitochondria biogenesis including NRF-1 and NRF-2 and consequently TFAM and mtDNA 

replication (Broskey et al. 2014). However, data from studies in connection with expression and content levels of 

PGC-1α in SM-mito in response to ET, is inconsistent as they show increase (Hood 2009, Kang et al. 2013, Konopka 



et al. 2014, Yan et al. 2012), decrease (Bori et al. 2012, Koltai et al. 2012, Lanza et al. 2008) and no change 

(Konopka et al. 2010). For example, Kang et al., have demonstrated 12 weeks of ET (five days/week, 45 

minutes/day, 10% slope and 17.5 m/minute) resulted an increase to 2.3 folds of PGC-1α protein content in aged rat 

soleus muscle compared with the control group (Kang et al. 2013).  Whereas, the study by Konopka et al. , revealed 

that 12 weeks ET on bicycle ergometer led to a reduction of approximately 20 percent (p<0.05) in protein content of 

PGC-1α SM-mito in old women (Konopka et al. 2010).  Finally, Bori et al., studied mitochondria protein expression 

in response to an acute exhaustive ET health active and sedentary aged men.  Results from vastus lateralis before and 

after exercise intervention showed there was not difference in mRNA levels of PGC-1α neither of the two groups 

(Bori et al. 2012). However, large number of studies have reported that PGC-1α downstream transcription factors, 

NRF-1 and TFAM, increased following the ET (Broskey et al. 2014, Hood 2009, Kang et al. 2013, Lanza et al. 

2008, Russell et al. 2014). Interestingly, some studies which reported significant decreased (Konopka et al. 2010) or 

unchanged (Bori et al. 2012) level of protein content and mRNA expression of PGC-1-α showed unaltered levels in 

mRNA of TFAM and decreased level of NRF-1 respectively.  

Under normal conditions, control and regulation of PGC-1α in skeletal muscle in response to ET mainly occurs by 

activation of CaMK, p38MAPK, AMPK and NAD+ (Gerhart-Hines et al. 2007, Irrcher et al. 2009, Wright et al. 

2007a, Zhang et al. 2014). ET induces p38 MAPK phosphorylating and activating transcription factor-2 (ATF-2), 

allowing the latter to bind to the cAMP-response element-binding protein (CREB) site on the PGC-1α promoter and 

induce PGC-1α gene expression (Russell et al. 2014). In this regard, Kang et al. , have demonstrated 12 weeks ET 

significantly increased p-p38mapk expression in old rats which was along with elevated levels of CREB 

phosphorylation and DNA binding (Kang et al. 2013).  However, among p38 isoforms (i.e. α, β and γ), it seems 

p38γMAPK plays an important role for normal metabolic adaptation to ET inside skeletal muscle (Yan et al. 2012). 

Kang et al., also reported p-AMPK, containing another upstream enzyme which regulates CREB activity, 

significantly increased in response to ET (Kang et al. 2013). In another study, it was demonstrated that age related 

reduction in total p-AMPK reversed following 6 week ET and significantly increased in old rats (Koltai et al. 2012).  

It has been shown that Sirtuin family, especially Sirt1, can be involved in SM-mito adaptations to ET (Radak et al. 

2013). Mechanical stretch promote Sirt 1 transcription by Early growth response protein 1 (Egr1) recruitment to the 

Sirt1 promoter (Pardo and Boriek 2011). Exercise diminish the ATP/AMP ratio, activate AMPK which leads to an 

increase in NAD availability by inducing Nicotinamide phosphoribosyltransferase (Nmpt) expression (Pardo and 

Boriek 2011). The consequent increase in Sirt1 content and/or activity modulates the transcriptional activity of PGC-



1 (Pardo and Boriek 2011)  It has been well established that Chronic and acute ET increased mRNA expression and 

protein content of Sirt1 in SM-mito in both old human and animals (Bori et al. 2012, Kang et al. 2013, Koltai et al. 

2012, Lanza et al. 2008). Koltai et al., reported Sirt1 activity significantly increased following 6 weeks ET in the 

cytoplasmic and nuclear extracts of quadriceps muscle in 28 old rats. They also found exercise increased NAMPT 

level and prevented the age-dependent decrease in NAD+ level in muscles of aged animals suggesting that the age-

associated decreases in NAD+ and NAMPT levels were reversed with regular exercise, leading to increased specific 

activity of SIRT1 (Koltai et al. 2010) (Fig 1. D).  

5.2 Resistance training adaptation 

Resistance training is well known for increasing strange, fat free mass and protein synthesis in difference ages 

(Tarnopolsky 2009), although a number of studies have documented some SM-mito adaptations to RT such as 

improved endurance capacity (Ades et al. 1996), increased mitochondria capacity and abundance of translation 

(Tarnopolsky 2009). Also an increase in mitochondrial volume has been reported following the 12 months RT in old 

women (% of mitochondria = 0.86% at baseline, 1.19% at six months and 1.04% at 12 months, p<0.05) (Manfredi et 

al. 2013). These findings along with other studies that demonstrated RT leads to an increase in mitochondrial ATP 

production and mitochondrial protein gene expression in healthy old subjects (Melov et al. 2007, Williams et al. 

2007), support the hypothesis that RT results in structural and functional adaptation in SM-mito network  (Hiona et 

al. 2010, Marzetti et al. 2013, Wu et al. 2009). 

It has been proposed that the loss of autophagy with age leads to accumulation of damaged mitochondria, which 

promote cell death and inflammation, both of which are otherwise limited by autophagy (Green et al. 2011). 

Recently it has been shown by Luo et al., that following the 9 weeks RT in old rats, levels of autophagy regulatory 

proteins, including Beclin 1, Atg5/12, Atg7, and the lysosomal enzyme cathepsin L increased. They also have shown 

RT reduced cytochrome c level in the cytosol but increased its level in mitochondrial fraction, and inhibited cleaved 

caspase 3 production and apoptosis. Furthermore, RT upregulated the expression of IGF-1 and its receptors, the 

expression of total AMPK, phosphorylated AMPK, and FOXO3a (Luo et al. 2013). The exact molecular mechanism 

of this adaptations are not well understood yet. However, one possibility mechanism for SM-mito adaption to RT can 

be by activation of IGF-1/MAPK pathway. It is well established that RT increases levels of IGF-1 in the elderly 

(Caetano et al. 2008, Cassilhas et al. 2010, Hameed et al. 2004). MAPK pathways regulate diverse processes ranging 

from proliferation and differentiation to apoptosis (Qi and Elion 2005). The MAPKs consist of growth factor-

regulated extracellular signal related kinases 1 and 2 (ERK1/2), and the stress-activated MAPKs, c-jun NH2-terminal 



kinase (JNK) and p38 MAPK and increased MAPK activity after exercise has been shown to be important for 

exercise-mediated gene expression, which may contribute to the role of exercise ameliorating the effects of aging in 

skeletal muscle (Flach and Bennett 2010).  

Another possibility, as recent studies have reported, could be the expression of new transcription form of PGC-1α 

(PGC-1α4), which abundantly expressed in skeletal muscle, increased after RT in human and animals (Millay and 

Olson 2013, Ruas et al. 2012, Ydfors et al. 2013). However, it is questionable whether biological effects of PGC-1α4 

is limited to skeletal muscle hypertrophy (Ruas et al. 2012) or it is also involved in SM-mito adaptation to RT 

(Ydfors et al. 2013) (Fig 1. D). 

6. Conclusion 

A decline in mitochondrial function including impaired biogenesis and dynamics of mitochondria not only endangers 

the performance of the cell but also along with other factors such as increased systemic inflammation and reduced 

growth factors (such as IGF-1) associated with aging (Marzetti and Leeuwenburgh 2006, Roubenoff 2000), leads to 

the development of programmed cell death and ultimately cell senescence (Chabi et al. 2008, Hiona et al. 2010). 

Investigations done on healthy elderly, suggest the decrease in gene expression and the content of PGC-1α is 

associated with mitochondrial dysfunction in skeletal muscle of elderly subjects (Lopez-Lluch et al. 2008, Wenz et 

al. 2009). This decline in activity and content of PGC-1α can be, at least in part, due to age-related disruption in the 

upstream pathways of AMPK (Salminen and Kaarniranta 2012) and NAD+/NADH (Braidy et al. 2011). Exercise has 

been shown to effectively improve mitochondrial function in the healthy elderly. Although the exact mechanism of 

this adaptation is not well understood, however, it can be, at least in part, due to an increased activity of AMPK (Bori 

et al. 2012, Hardman et al. 2012, Li et al. 2012) and NAD+/NADH ratio due to the increasing energy requirements 

(Hipkiss 2010, Koltai et al. 2010), as well as increased levels of growth factors (Craig et al. 1989, Vale et al. 2009, 

Yarasheski et al. 1995, Ziaaldini et al. 2015) followed both endurance and resistance exercise. Finally, despite the 

beneficial health effects of exercise in the elderly, in order to prescribe the optimal physical activity, future research 

should answer the following questions: 

Which type of training can lead to more favorable effects? How about concurrent training? 

In order to achieve the greatest impact, how it should be designed the intensity, duration and frequency of exercise? 

Is nutritional and pharmaceutical interventions can enhance the effects of physical activity? 



 

 

 

 

Fig 1. Diagrammatic summary of the interaction between aging and exercise training and its effect on mitochondria 

function in healthy mammalian skeletal muscle cell. A: Fission and fusion. Fis1 is localized uniformly to the 

mitochondrial outer membrane, whereas Drp1 is localized to the cytosol and associates with Fis1, forming an 

oligomeric ring-like structure leading to separation of the mitochondria. Fusion is regulated by Mfn1 and Mfn2 

isoforms in the outer mitochondrial membrane and by OPA1 protein in the inner mitochondrial membrane. B: 

mitochondria biogenesis. PGC-1α is known as a master regulator of mitochondria biogenesis which its gene 

expression is mediated by other factors such as AMPK, Sirt1, CaMk, NO and p38. PGC-1α gene expression along 

with the expression of NRF-1 and NRF-2 induce the expression of TFAM, which is imported into mitochondria. 

TFAM regulates the expression of the mtDNA gene products, including proteins such as cytochrome c oxidase 

subunit I (COX I) and also is involved in ATP synthesis. C: aging reduced mitochondria function by several ways. 

Increasing ROS accumulation in cytosol due to an increased O-2 leaking from ETC decreases PGC-1α activity. Also, 

increased ROS level inside mitochondria leads to mtDNA mutation and consequently negative effects on 

mitochondria dynamic and efficiency. Aging is also along with a decrease in PGC-1α upstream signaling pathways 



such as the levels of eNOS, Ca+, AMP: ATP and NAD+: NADH as well as decreased growth factor levels like IGF-

1. D: Both type of ET and RT exercise-induced initiation and propagation of mitochondrial biogenesis in muscle. 

Intracellular levels of Ca2+, cAMP, NO, and the ATP/AMP ratio are modulated by exercise and induced up-

regulation of PGC-1 expression. PGC-1 also seems to regulate its own transcription.  Increased expression and 

activity of PGC-1α stimulate mitochondrial biogenesis by activating relevant transcription factors (e.g., NRF-1, 

NRF-2, and TFAM) resulting in an increase in mitochondrial volume and biogenesis. RT can also positively regulate 

mitochondria biogenesis. One potential mechanism can be due to the activation of IGF-1/MAPK pathway following 

RT. 
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