Effect of pre- and post-weaning high-fat dietary manipulation on intestinal microflora and alkaline phosphatase activity in male rats

Zuzana Šefčíková
Dobroslava Bujňáková
Institute of Animal Physiology, Slovak Academy of Sciences,
Šoltésovej 4-6
040 01 Košice
Slovak Republic

Corresponding author
Zuzana Šefčíková
Institute of Animal Physiology, Slovak Academy of Sciences,
Šoltésovej 4-6
040 01 Košice
Slovak Republic
Telephone number: +421 55 7287841
Fax: +421 55 7287842
E-mail: sefcikz@saske.sk

Running title: Gut microbial/functional changes and diet-induced obesity
Summary

We investigated the impact of a high-fat (HF) diet during pre- and post-weaning periods on the intestinal microbiota and alkaline phosphatase (AP) activity in male rats. Nutrition from birth was influenced by feeding rat dams with either a standard or HF diet. After weaning male pups nursed by control dams continued on a standard diet (CC) or HF diet (C→HF), while offspring nursed by HF dams continued on HF diet (HF) or standard diet (HF→C). The numbers of Bacteriodes/Prevotella (BAC) and Lactobacillus/Enterococcus (LAB) in the gut were determined by FISH technique.

HF pups displayed enhanced adiposity and increased AP activity (19%), as well as higher LAB (P<0.001) and lower numbers of BAC (P<0.001) in the jejunum and colon than controls. In HF→C rats, post-weaning lower fat intake resulted in decreased fat deposition accompanied by reduced AP activity (20%) compared to HF rats. Composition of the intestinal microbiota in these rats was not influenced. In contrast, in comparison with controls, C→HF rats displayed higher LAB (P<0.001) and lower BAC (P<0.001) together with increased adiposity and AP activity (14%). These results indicate that consumption of diet with different fat content could modulate gut microbial/functional conditions depending on the period when the nutritional manipulation occurs.

Key words: diet-induced obesity, intestinal microflora, alkaline phosphatase activity
Introduction

Life-style changes, especially the consumption of high-fat (HF), caloric-dense foods combined with reduced physical activity, have led to an alarming increase in the incidence of obesity around the world. Obesity as a multifactorial disease results from interaction between genetic and environmental factors. The gastrointestinal tract is an important organ responsible for food intake, nutrient digestion and absorption. At present there are still many unanswered questions about intestinal participation in obesity development. The evidence from experimental studies suggests that sustained exposure of rats to a high-fat diet results in permanently increased intestinal alkaline phosphatase (AP) activity (Možeš et al. 2007, 2008 a, b). AP is a crucial enzyme highly expressed in the brush border-bound duodenal enterocytes, decreasing longitudinally to the large intestine (Akiba et al. 2007). Alkaline phosphatase participates in a broad range of physiological processes in the intestine, including regulation of lipid absorption (Lallès 2010). In rats, its activity displays circadian fluctuations closely related to food intake (Martinková et al. 2000), and decreased after food deprivation (Raček et al. 2001, Možeš et al. 2015).

In the last decade the gut microbiota has also become considered as an environmental factor that contributes to the development of obesity and associated metabolic disease. It has been found that colonization of adult germ-free mice with microbiota from the distal intestine of conventionally raised mice resulted in increase in body fat content despite reduced food intake. The same study also revealed that the intestinal microbiota promotes absorption of monosaccharides from the gut lumen and *de novo* hepatic lipogenesis (Bäckhed et al. 2004). Deeper analysis of the distal intestinal microbiota in genetically obese ob/ob mice, lean and wild-type siblings demonstrated differences in quantity and proportion of two major bacterial phyla, namely the Firmicutes and the Bacteroidetes. Compared with lean mice, however, obese animals have a reduced abundance of Bacteroidetes and a proportional increase in
Firmicutes despite a similar diet (Ley et al. 2005). Switching from standard chow to a high-fat diet resulted in decreased number of Bacteroidetes and an increase in Firmicutes (Mozeš et al. 2008 a, Hildebrandt et al. 2009, Šefčíková et al. 2010, Jiang et al. 2016). The variability of methods analyzing which microbial groups are increased or reduced in the gut after high-fat feeding conditions has led to new animal and human studies with inconsistent findings. For example, based on sequence analysis Lecomte et al. (2015) reported a relative decrease in the abundance of Firmicutes (especially reduced numbers of Lactobacillus species) and an increase in the abundance of Bacteroidetes in rats fed on a high-fat diet. According to Fåk et al. (2015), low- and high-fat diet rats did not significantly differ in their levels of the three bacterial genera (Lactobacillus, Bifidobacterium and Bacteroides) in caecal samples. Contradictory results were also observed in a human study, where a significantly increased proportion of Bacteroides in obese and overweight subjects compared with lean controls were reported (Schwiertz et al. 2010), whereas the evidence from another study suggests no difference between obese and non-obese individuals in the proportion of Bacteroidetes measured in fecal samples (Duncan et al. 2008).

At the present time, however, information about the impact on gut microbial composition and small intestinal functionality of varied pre- and post-weaning dietary manipulation using an obesogenic diet is lacking. The purpose of this study was, therefore, to determine the consequences of elevated fat intake during the mentioned periods for body growth parameters, differences in the numbers of two microbial groups, i.e. Bacteroides/Prevotella (members of the Bacteroidetes) and Lactobacillus/Enterococcus (members of the Firmicutes) in the small and the large intestine, as well as differences in the jejunal brush border-bound alkaline phosphatase activity in rats exposed to high fat/energy diet.

Material and Methods
Animals and experimental protocol

Sprague-Dawley virgin rat dams (Charles River Laboratories, Prague) were mated at 10 weeks of age and individually housed in Plexiglass cages in a temperature-controlled environment of 22±2 °C, relative humidity (55 ± 10%) and 12 h light/dark cycle (light on 06:00-18:00 h). Within 24 h of parturition, litter size was adjusted to 10 pups per nest. To induce postnatal over-nutrition or normal nutrition in their offspring, rat mothers were divided after parturition into two dietary groups: a) a control (C) group with free access to a standard laboratory diet (Laboratory diet M1, Říčmanice, Czech Republic; containing 3.2 kcal/g, with 26.3% energy as protein, 9.5% as fat and 64.2% as carbohydrate) and b) a high-fat diet (HF) group which were given access to the same standard diet ad libitum but were additionally given access to a high-fat/energy diet (high-energy nutritional liquid product Ensure Plus containing 1.5 kcal/ml, with 16.7% energy as protein, 30% energy as fat and 53.3% energy as carbohydrate).

The weaned male rats (day 21) from Control and HF mothers were randomly divided into two dietary groups. Half of the rats (10) nursed by control dams continued on a standard pellet diet (C), while the other half (10) were exposed to the standard diet as well as liquid high-fat diet Ensure Plus until day 40 (C→HF). Half of the rats (10) nursed by HF dams continued on HF diet (HF), whereas the other half (10) were given access to standard pellet diet only (HF→C). The animals from all four groups were individually housed in Plexiglass cages under the same conditions (water, temperature, relative humidity, light/dark regime) as before weaning. The food intake in all groups was monitored daily. The animals were killed on days 20 and 40 between 08:00 and 09:00 h by decapitation followed by removal of the bilateral epididymal plus perirenal adipose depots and jejunal segments for enzyme assay and for enumeration of bacteria.

Milk composition
The dams were milked on day 11 of lactation. Milk fat concentration was determined using the crematocrit method of Lucas et al. (1978) and expressed in g/100 ml milk using the formula given by Nagasawa et al. (1989).

FISH analysis

Each removed jejunum was sectioned into small pieces, cut longitudinally, washed thoroughly with sterile phosphate-buffered saline (PBS; pH 7.4), and the intestinal mucosa were removed for homogenization. Homogenized mucosa were fixed in 4% paraformaldehyde (Fluka, Switzerland) overnight at 4 °C and then stored in equal volumes of phosphate-buffered saline and 96% ethanol at -20 °C. The numbers of intestinal microbial communities were assessed using the Fluorescent In Situ Hybridisation method with probes (VBC-Genomics, Austria) Lab158 for Lactobacillus/Enterococcus sp. group Cy3 - 5’ GGTATTAGCA(C/T)CTGTTTCCA 3’ (Harmsen et al. 1999), or Bac303 for Bacteriodes/Prevotella group FITC - 5’ CCAATGTGGGGGACCTT 3’ (Manz et al. 1996).

An aliquot volume of fixed cells was added to 100 µl permeabilization solution Tris/HCl buffer (10 mM Tris, 1 mM EDTA) at pH 6.5 with 100 mg/ml lysozyme and treated for 1 h at 37 °C. Permeabilized samples were mixed with hybridization solution (900 mM NaCl, 20 mM Tris-HCl, pH 8.0, 0.01% sodium dodecyl sulfate [SDS]), contained a probe (0.5 pmol/µl) and placed in a hybridization apparatus at appropriate temperatures overnight (Bac 303 at 46 °C and Lab 158 at 50 °C). The hybridized samples were vacuum filtered onto 0.2 µm polycarbonate membrane filters. A microscope (Olympus, BX 51) fitted with appropriate filters for Cy3 dye and FITC dye was used for enumeration of bacteria. A minimum of 20 fields were counted for each filter. The number of bacteria was calculated using this formula:

\[
\text{number of bacteria/gram of samples} = \frac{X \times M \times Df}{S}, \text{ where } X=\text{number of positive bacteria per field of view}; \ M=\text{Total number of fields per effective filter surface different for each microscope and magnification used}; \ Df=\text{Dilution factor}; \ S=\text{Weight amount of samples in}
\]
grams. Values of microbiota in jejunal and colonic samples are given as log [no. of bacteria (0.1 g mucosa and content)-1] respectively.

Enzyme assays

For enzyme assay, small (0.5 cm) segments of the middle part of the jejunum were immediately removed; the lumen was rinsed in distilled water and samples were frozen in liquid nitrogen. Segments of frozen tissue were cut (8 μm) in a cryostat at –25°C, and the tissue slices were transferred to glass slides and air-dried. Analysis of alkaline phosphatase activity was performed using a modified simultaneous azocoupling method (Lojda et al. 1979). The incubation medium contained 2.0 mM naphthol AS-BI phosphate (Sigma, Deisenhofen, Germany), 0.8 mM Hexazotized New fuchsin (Serva, Heidelberg, Germany), and 0.05 M veronal acetate buffer. The sections were incubated at 37 °C for 10 min at pH 8.9 (Mozeš et al. 1998). Histochemically-stained slides were visualized by means of image analysis and the quantification of the enzyme activity (pixel intensities) was carried out in a whole section of at least four jejunal slides, and then the mean values recorded were referred to one animal (Šefčíková et al. 2008).

Ethics statement

All animal experiments were reviewed and approved by the Ethical Committee for animal experimentation of the Institute of Animal Physiology, approved by the State Veterinary and Food Administration of the Slovak Republic, and were performed in accordance with Slovak legislation (Law No. 377/2012) on the protection of animals used for experimental and other scientific purposes.

Statistical analysis

Statistical analyses were carried out using the Statistica AXAZ software package (StatSoftCR, Czech Republic). Data were expressed as mean ± SEM and statistical significance was accepted at the P<0.05 level. Statistical evaluation of the somatic and small intestinal
responses to standard diet vs. HF diet receiving groups was carried out with two-way ANOVA, and Tukey's post-hoc test was used to test the effects of age and diet, and their interaction. For comparison of the post-weaning energy intake and weight gain differences between standard and HF diet groups, one-way analysis of variance (ANOVA) followed by Tukey's test was used.

Results

Milk Composition

Exposure of rat dams to HF diet resulted in significantly-increased milk fat concentration on postpartum day 11. Comparing control dams with HF dams, the mean values of milk fat concentration expressed in g/100 ml milk were 13.0 ± 0.58 versus 18.3 ± 0.92 g/100 ml respectively (p<0.001).

During lactation period in HF diet-receiving dams as compared with those fed the control diet significantly increased mean energy intake 213.5±8.7 kcal/day versus 168.5±4.1 kcal/day, (p<0.01) was recorded, respectively.

Effect of pre-weaning dietary manipulation

There were no significant differences in the average body weight between pups of control and HF dams on postpartum day 1 (7.6 ± 0.13 vs. 7.6 ± 0.22 respectively). Whereas during the suckling as well as pre-weaning periods HF pups showed accelerated growth resulting in significantly higher (p<0.001) body weight and weight gain compared with the Controls (Table 1), in the subsequent post weaning period however these body weight differences disappeared (Table 2). In HF animals epididymal and perirenal fat pads (expressed in g and in % body weight) significantly exceeded the values recorded in control rats on day 20 (Fig. 1A, 1B). Moreover, in these rats significantly-elevated (11%) jejunal brush-border-bound AP activity was recorded as compared with the controls (Fig. 2A, 2B). HF feeding led to an early appearance of diversity in development of gut microbial composition. Due to these changes
higher numbers of Lactobacillus/Enterococcus (LAB) and lowered number of Bacteroides/Prevotella (BAC) were found in the jejunum and colon in HF rats (Table 1). The previously acquired differences in body fat accretion, intestinal AP activity as well as microbial composition persisted between Controls versus HF rats until the end of the experiment on day 40 (Table 2, 3). Moreover, in the HF rats in comparison with the standard diet–receiving rats (C), significantly higher food intake (expressed in kcal/day) was recorded during the postweaning period (Table 2).

Effect of post-weaning dietary manipulation

High-fat diet feeding after weaning resulted in higher fat pad weights expressed as the percentage of body weight in C→HF rats (Table 2). Increased energy intake by 25% in these rats led to significantly-elevated alkaline phosphatase activity in the jejunum. Dietary manipulation also significantly influenced the intestinal microbial parameters. In C→HF rats higher numbers of Lactobacillus/Enterococcus group (LAB) and reduced numbers of Bacteroides/Prevotella group (BAC) in the jejunum and colon were discovered on day 40, whereas control rats on the standard diet were characterized by lower LAB and elevated BAC numbers (Table 3).

On the other hand, transfer of rats from high-fat diet to control diet (HF→ C) from day 21-40 led to a significant reduction in body fat pads expressed in g/b.w. (p<0.05) as well as to significantly decreased food intake (kcal/day) at about 31% as compared to HF rats (Table 2). Moreover, in these HF→ C rats decreased alkaline phosphatase activity in jejunal brush border bound enterocytes was recorded as compared to the HF group. In HF→ C rats no significant differences in gut microbiota composition were observed after nutritional challenge in the post-weaning period (Table 3).

Discussion
Obesity and overweight are major public health problems resulted from long-lasting disbalance between energy intake and expenditure. The purpose of this study was therefore to determine whether the transfer of (a) normal-fed rats before weaning to obesogenic high-fat/energy diet after weaning and (b) HF-fed rats during the pre-weaning period to control diet after weaning could affect their previously acquired gut microbial composition, enzyme activity and related parameters of growth.

In the current study we observed that HF feeding from birth until weaning contributed to the development of obesity, i.e. in pups nursed by HF mothers in comparison with normal-fed controls we found significantly increased fat deposition on day 20 and 40 accompanied with elevated alkaline phosphatase (AP) activity in jejunal enterocytes. Regarding the role of intestinal enzymes, AP is considered as a brush border-bound representative enzyme that participates in lipid absorption (Lallès 2010), and it is stimulated by fat consumption (Kaur et al. 2007, Lallès et al. 2012, Šefčíková and Raček 2016). Besides this function, AP also plays a role in the maintenance of normal gut microbial homeostasis (Malo et al. 2010, 2014). With respect to the gut microflora, it was previously reported that mice deficient in the brush-border intestinal alkaline phosphatase enzyme displayed dramatically fewer and also different types of aerobic and anaerobic microbes in their stools compared with their wild-type littermates (Malo et al. 2010).

Although the gut microbiota remains relatively stable throughout life, changes in the host diet may markedly influence its composition. This was supported by significantly reduced relative abundance of Bacteroidetes and higher Firmicutes to Bacteroidetes ratio in obese animals and humans after increased fat intake (Zhang et al. 2012, Kasai et al. 2015). Moreover, a previous study performed on a humanized mouse model (germ-free mice received human gut microbiota) indicated that switching from a low-fat, plant polysaccharide–rich diet to a high-fat, high-sugar “Western” diet changed the microbiota within a single day (Turnbaugh et al.
Similarly, the results from the current work reveal reduced numbers of Bacteroides/Prevotella (BAC) and higher numbers of Lactobacillus/Enterococcus (LAB) in the small and large intestine of HF animals in comparison with controls.

Although based on the recent studies it has been demonstrated that the gut microbiota plays an important role in the control of energy homeostasis and obesity development, these data are conflicting. On the one hand Bäckhed et al. (2007) reported that, in contrast to mice with gut microbiota, germ-free animals were protected against obesity that develops after consuming a Western-style, high-fat, sugar-rich diet. On the other hand, it was observed that the absence of gut microbiota did not provide general protection from diet-induced obesity; i.e. germ-free mice on the high-fat diet gained more body weight and body fat than conventional mice, and had lower energy expenditure (Fleissner et al. 2010).

Our study also indicates that exposure of control rats to a diet with higher fat content (C→HF) after weaning from day 21 to day 40 led to significantly elevated fat pads accretion and substantially higher jejunal AP activity. Consumption of HF diet modified not only the somatic and enzymatic/functional status of our rats, but also their quantitative and proportional gut microbiota, i.e. in C→HF animals higher LAB and lower numbers of BAC were found compared to the control rats. This is in accordance with a previous study in which post-weaning consumption of a high-fat diet resulted in jejunal microbial and functional alterations in obese rats (Šefčíková et al. 2010). On the other hand, transfer from high-fat to control diet after weaning in HF→C rats resulted in evidently decreased body fat deposition (expressed in g/b.w.) as well as significantly lower brush border-bound AP activity in jejunal enterocytes compared to HF rats. Our data also show that these fat-reducing and enzymatic changes were not accompanied with apparent differences in microbial quantity and composition in HF→C rats compared to HF rats. This is in contrast to another study, where after switching to normal chow feeding, the gut microbiota in the DIO group soon moved
back to control values, and differences in the diversity, overall structure and composition of
the gut microbiota were not recorded between the two groups (Zhang et al. 2012). These
contradictory data may result from different age of tested animals and various experimental
periods and methods used in the experiments.
In the future it would be interesting to focus on the complex interaction between diet,
intestinal microbial/enzymatic adaptability and their impact on gut health.
In summary, our present study provides information about altered composition of the gut
microbiota and enzyme activity in response to consumption of a high-fat diet by male
Sprague-Dawley rats during pre- and post-weaning periods. Changing from an obesogenic
diet to normal feeding conditions in the post-weaning period did not improve acquired gut
microbial alterations. To produce more conclusive data, another study is needed to establish
the importance of gut microbiota for the control of body weight and energy homeostasis in
overfed rats. Knowledge about potential variations in microbial composition in the context of
obesity may be helpful for novel pharmacological and dietary strategies in prevention or
attenuation of obesity and its related metabolic disorders.

Conflict of interest
The authors declare no conflict of interest.

Acknowledgments
The authors thank Andrew Billingham for his revision of the English text and Dr. Štefan
Mozeš for his useful comments. This study was supported by VEGA grants 2/0011/14 and
2/0001/14 of the Slovak Academy of Sciences.
References

HILDEBRANDT MA, HOFFMANN C, SHERRILL-MIX SA, KEILBAUGH SA, HAMADY M, CHEN YY, KNIGHT R, AHIMA RS, BUSHMAN F, WU GD: High-fat diet
determines the composition of the murine gut microbiome independently of obesity.

Figure legends

Figure 1A Epididymal and perirenal fat pads (g); 1 B Epididymal and perirenal fat pads (% b.w.) in 20 days old pups nursed by control or HF dams. Values are means ± SEM (n=8 animals/groups). Significantly different from control group ***P<0.001 by Tukey’s comparison test after one-way ANOVA.

Figure 2 Histochemical demonstration of jejunal alkaline phosphatase activity in cryosections of 40-day-old CC (control) and HF rats. The enzyme activity is expressed in the brush-border of absorption cells of the intestinal villi in CC (2 A) and HF (2 B) rats, (bars=100 µm).
Table 1 Somatic and intestinal parameters in 20 days old male pups nursed by Control or HF diet dams.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>HF</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final body weight (g)</td>
<td>45.90±1.22</td>
<td>57.55±1.62 ***</td>
<td></td>
</tr>
<tr>
<td>Weight gain (g) (day 1-20)</td>
<td>38.33±1.14</td>
<td>49.96±1.45 ***</td>
<td></td>
</tr>
<tr>
<td>Alkaline phosphatase (AP)</td>
<td>15.33±0.20</td>
<td>17.13±0.34 ***</td>
<td></td>
</tr>
</tbody>
</table>

Jejunum

<table>
<thead>
<tr>
<th>Microbiota</th>
<th>Control</th>
<th>HF</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus/Enterococcus</td>
<td>5.48±0.06</td>
<td>6.64±0.04 ***</td>
<td></td>
</tr>
<tr>
<td>Bacteroides/Prevotella</td>
<td>5.97±0.10</td>
<td>5.69±0.10</td>
<td></td>
</tr>
</tbody>
</table>

Colon

<table>
<thead>
<tr>
<th>Microbiota</th>
<th>Control</th>
<th>HF</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus/Enterococcus</td>
<td>6.85±0.17</td>
<td>7.73±0.10 ***</td>
<td></td>
</tr>
<tr>
<td>Bacteroides/Prevotella</td>
<td>7.09±0.10</td>
<td>6.72±0.12 *</td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SEM (8 animals/group). Brush-border-bound jejunal AP activity is given as density values (pixel intensities) at wavelength 520 nm. Values of microbiota in jejunal and colonic samples are given as log (numbers of bacteria /0.1 g jejunal mucosa) or 0.1 g colonic content). Significantly different from control group * P<0.05, *** P<0.001 by Tukey’s comparison test after one-way ANOVA.
Table 2 Effect of pre- and post-weaning dietary manipulation on somatic and feeding parameters in 40 days old male rats.

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>C→HF</th>
<th>HF→C</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final body weight (g)</td>
<td>179.3±4.1</td>
<td>183.6±4.7</td>
<td>181.7±5.3</td>
<td>192.1±6.9</td>
</tr>
<tr>
<td>Weight gain (g) (day 1-40)</td>
<td>172.8±4.1</td>
<td>177.0±4.5</td>
<td>175.1±5.3</td>
<td>185.4±6.8</td>
</tr>
<tr>
<td>Mean caloric intake (kcal/day)</td>
<td>46.7±1.1</td>
<td>58.5±1.7</td>
<td>45.7±1.4</td>
<td>59.9±2.4*** †††</td>
</tr>
<tr>
<td>Caloric intake (kcal) on day 40</td>
<td>58.91±1.78</td>
<td>69.30±2.75</td>
<td>58.27±2.02</td>
<td>72.75±3.09 ** ††</td>
</tr>
<tr>
<td>Body fat (% b. w.)</td>
<td>0.62±0.03</td>
<td>0.85±0.07</td>
<td>0.64±0.06</td>
<td>0.87±0.06 **†</td>
</tr>
</tbody>
</table>

Values are means ± SEM (10 animals/group). Body fat represents epididymal plus perirenal fat pads. Differences between CC vs. HF groups ** P<0.01, *** P<0.001; CC vs. C→HF groups a P<0.05, c P<0.001 and HF vs. HF→C groups †P<0.05, †† P<0.01, ††† P<0.001 by Tukey’s multiple comparison test after two-way ANOVA.
Table 3 Effect of pre- and post-weaning dietary manipulations on intestinal parameters in 40 days old male rats.

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>C→HF</th>
<th>HF→C</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline phosphatase (AP)</td>
<td>12.32±0.48</td>
<td>14.00±0.46</td>
<td>12.22±0.5</td>
<td>14.64±0.29</td>
</tr>
<tr>
<td>Jejunum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus/Enterococcus</td>
<td>8.16±0.05</td>
<td>8.64±0.05</td>
<td>8.68±0.05</td>
<td>8.79±0.03</td>
</tr>
<tr>
<td>Bacteroides/Prevotella</td>
<td>8.72±0.06</td>
<td>8.10±0.07</td>
<td>7.78±0.08</td>
<td>7.97±0.10</td>
</tr>
<tr>
<td>Colon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus/Enterococcus</td>
<td>9.13±0.06</td>
<td>9.53±0.04</td>
<td>9.66±0.05</td>
<td>9.83±0.03</td>
</tr>
<tr>
<td>Bacteroides/Prevotella</td>
<td>9.69±0.08</td>
<td>9.13±0.07</td>
<td>8.80±0.08</td>
<td>8.96±0.11</td>
</tr>
</tbody>
</table>

Values are means ± SEM (10 animals/group). Brush-border-bound jejunal AP activity is given as density values (pixel intensities) at wavelength 520 nm. Values of microbiota in jejunal and colonic samples are given as log (numbers of bacteria /0.1 g jejunal mucosa) or 0.1 g colonic content). Differences between CC vs. HF groups ** P<0.01, *** P<0.001; CC vs. C→HF groups a P<0.05, c P<0.001 and HF vs. HF→C groups †† P<0.01 by Tukey's multiple comparison test after two-way ANOVA.
Figure 2 A

Figure 2 B