Physiological Research Pre-Press Article

1	Preventive effect of L-Carnitine on the disorder of lipid metabolism
2	and circadian clock of mice subjected to chronic jet-lag
3	Xiaoxian Xie [#] , Anqi Guo [#] , Tao Wu, Qinglian Hu, Liangfeng Huang, Cencen Yao,
4	Binggong Zhao, Wanjing Zhang, Bingbing Chi, Ping Lu, Zhenzhen Zhao, Zhengwei
5	Fu [*]
6	College of Biotechnology and Bioengineering, Zhejiang University of Technology,
7	Hangzhou 310032, China
8	
9	# These authors contributed equally to the study
10	Short title: Effect of L-Carnitine on prolonged circadian disruption
11	
11 12	* Corresponding author: College of Biotechnology and Bioengineering, Zhejiang
11 12 13	* Corresponding author: College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.6 District, Zhaohui, Hangzhou, Zhejiang, 310032,
11 12 13 14	* Corresponding author: College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.6 District, Zhaohui, Hangzhou, Zhejiang, 310032, China
 11 12 13 14 15 	* Corresponding author: College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.6 District, Zhaohui, Hangzhou, Zhejiang, 310032, China Tel: 86-571-8832-0599
 11 12 13 14 15 16 	* Corresponding author: College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.6 District, Zhaohui, Hangzhou, Zhejiang, 310032, China Tel: 86-571-8832-0599 Fax: 86-571-8832-0599
 11 12 13 14 15 16 17 	* Corresponding author: College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.6 District, Zhaohui, Hangzhou, Zhejiang, 310032, China Tel: 86-571-8832-0599 Fax: 86-571-8832-0599 E-mail: azwfu@zjut.edu.cn

1 Summary

21	Key words
20	
19	disorders induced by the chronic jet-lag.
18	partly effective in preventing the disruption of circadian clock and lipid metabolic
17	the liver of mice subjected to the chronic jet-lag. As a conclusion, L-Carnitine was
16	metabolic regulator (<i>mTOR</i>) and circadian rhythm (<i>Bmal1</i> , <i>Per1</i> , <i>Cry1</i> and <i>Dec1</i>) in
15	expression which related to lipid metabolism (Srebp1, Acaca, Fasn, and Scd1),
14	supplementation would effectively counteract the negative alterations in gene
13	polymerase chain reaction (qRT-PCR) analysis indicated that L-carnitine
12	were remarkably elevated by chronic jet-lag. More importantly, quantitative real-time
11	of serum glutamic-oxaloacetic transaminase (GOT) and triglycerides (TG), which
10	weeks. Results showed that L-Carnitine administration significantly decreased levels
9	developed by reversing12h light/12h dark cycle every 4 days for a continuous 12
8	circadian clock and lipid metabolism through a chronic jet-lag mice model which was
7	unknown. Herein, we investigated the effects of L-Carnitine on conditions of
6	and circadian rhythm of mice induced by prolonged circadian disruption is still
5	whether L-Carnitine administration may affect the disturbance of lipid metabolism
4	lipid levels, and ameliorate fatty liver through regulating lipid metabolism. However,
3	disruption can evoke metabolic diseases such as obesity. L-Carnitine can reduce blood
2	Circadian clock plays an essential role in orchestrating daily physiology, and its

22 Chronic jet-lag • Circadian clock • L-Carnitine • Lipid metabolism • Mice

1 Introduction

2 The approximately 24 hour light-dark (LD) cycle drives cyclic changes in the living 3 environments for most organisms on earth from cyanobacteria to human beings. The mammalian circadian clock is composed of a master pacemaker and peripheral 4 oscillators and takes an essential role in orchestrating daily physiology, including 5 6 sleep/wake, body temperature, feeding, hormone secretion, and metabolism. Systemic 7 circadian regulation is accomplished by the central oscillator in the superachiasmatic nucleus (SCN) of the anterior hypothalamus. While, the peripheral clocks present in 8 9 most vital organs, such as heart, liver, adipose tissue, and muscle (Albrecht 2012, 10 Partch et al. 2014, Rey and Reddy 2013, van Alphen and Allada 2014). The molecular mechanism for oscillation in SCN and peripheral tissues is generated by interlocked 11 12 negative transcriptional/translational feedback loops (Brown et al. 2012, Dibner et al. 2010), which are formed by several core clock genes including Period (Per1, Per2, 13 14 and Per3) and Cryptochrome (Cry1 and Cry2) and modulated by CLOCK-BMAL1 15 proteins. Orphan nuclear receptors REV-ERB and ROR families are also reported as 16 the feedback regulative targets of CLOCK-BMAL1 (Bugge et al. 2012, Kohsaka et al. 2007). 17 18 Circadian clocks in our bodies provide time cues for activities and the 19 synchronization of the metabolic reactions (Green et al. 2008, Sahar and Sassone-Corsi 2012). Proper function of circadian clock is of great importance in 20 21 regulating physiological process. Until now, several external stimuli, such as overtime work, night eating, sleep disruption, as well as frequent shift/jet lag (Haus and 22 23 Smolensky 2006, Leloup and Goldbeter 2013), and chronic shift in LD cycles have been reported to influence the function of Circadian clock (Oike et al. 2015). Further, 24 25 the disruption can lead to internal desynchronization between the master clock and

1 other peripheral oscillators, and increase the risk of many diseases, including obesity 2 and other metabolic syndromes (Marcheva et al. 2010, Sahar and Sassone-Corsi 2009, Turek et al. 2005). Chronic jet lag leads to the dysregulation of leptin in adipose and 3 4 central leptin resistance in wild-type mice, resulting in a high and arrhythmic serum leptin level over a 24 hr period (Kettner et al. 2015), which may be associated with an 5 obvious increase in body weight and fat composition (Wu et al. 2015). Chronic jet lag 6 7 also disrupts the endogenous adipose clock, and abolishes the circadian rhythm of 8 BMAL1 binding to leptin and Per1 promoters (Kettner et al. 2015). These findings 9 demonstrate that chronic jet lag might be closely associated with lipid metabolism and 10 endogenous adipose clock in mice. 11 As known, L-carnitine is involved in long-chain fatty acids transporting from 12 cytosol to the mitochondria matrix (Marcovina et al. 2013), which is required for 13 facilitating lipid metabolism and reducing the storage of long-chain fatty acids in adipose. In our previous study, we found that L-carnitine supplementation could 14 15 prevent irregular feeding-induced lipid metabolism disorder (Wu et al. 2015). However, whether L-Carnitine may affect the disorder of circadian rhythm and lipid 16 17 metabolism of mice subjected to prolonged circadian disruption is still no reported. In the present study, we developed an experimental chronic jet-lag mice model by 18 19 reversing12h light/12h dark cycle every 4 days for a continuous 12 weeks to 20 investigate the effects of L-Carnitine on the lipid metabolism and circadian clock. The 21 results demonstrated that L-Carnitine supplementation prevented the impairment of 22 the serum markers, and effectively counteracted the negative alterations in the 23 expression of lipid metabolic genes and clock genes in mice.

24

25 Materials and Methods

1 Materials

2	L-Carnitine (Aladdin Chemistry Co. Ltd, Shanghai, China) was mixed with normal
3	commercial diet at 0.5% w/w (L-Carnitine containing diet). A feeding of this diet
4	(12.5 mg L-Carnitine/mouse/day) was equivalent to a dosage of about 400 mg of
5	L-Carnitine per kg of mouse weight each day. To ensure each mouse could consume
6	the entire 12.5 mg of L-Carnitine every day, mice were fed with 1g L-Carnitine
7	containing diet (20% of total food intake) at first 2 h, and then fed with 80% of
8	normal commercial diet after they had eaten up the L-Carnitine containing diet.
9	Animals and experimental design
10	Male C57BL/6 mice (6-weeks old) were used in this research. The mice were
11	housed in temperature-controlled (22±1 °C) quarters on a LD cycle 12:12, and
12	provided water ad libitum and food only in the dark period. The onset of light was
13	defined as zeitgeber time 0 (ZT0) and the onset of darkness at ZT12.
14	After 7 days of acclimatization, mice were randomly divided into three groups of
15	control (Con), jet-lag (JL) and jet-lag+carnitine (JL+C). The experimental design was
16	shown in Fig. S1. Mice of JL+C group were fed with L-Carnitine containing diet, and
17	other mice were fed with normal commercial diet (5.0 g/mouse/day). In Con group,
18	mice were kept under the normal LD condition. In JL and JL+C groups, mice were
19	subjected to a reversal of LD cycle every 4 days for a continuous 12 weeks. Then after
20	fasting for 12 h, the mice in all three groups were sacrificed at ZT0 and ZT12 under
21	the LD cycle.
22	The tissues of all mice were collected, frozen immediately in liquid nitrogen, and
23	kept at -80 °C for RNA extraction. Blood was also collected and centrifuged at 6000
24	g for 5 min at 4 °C, then stored at -40 °C. Every effort was made to minimize animal

25 suffering and the number of mice required for each experiment. All experiments were

1	performed according	g to institutional	guidelines, and	l the study wa	s approved by the
			0 /	2	

2 Research Committee of Zhejiang University of Technology.

3 Biochemical analysis

4 Plasma levels of glutamic-pyruvic transaminase (GPT) and glutamic-oxaloacetic transaminase (GOT) were measured by auto-biochemical analysis system (Achtection 5 c8000; Abbott, North Chicago, Illinois, USA). The levels of triglycerides (TG), total 6 7 cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) were analyzed 8 using commercial kits (Whitman Biotech, Nanjing, China). 9 Quantitative real-time PCR 10 The cDNA templates were isolated from the mouse livers as previously described 11 (Xie et al. 2014). Quantitative real-time polymerase chain reaction (qRT-PCR) was 12 performed on an Eppendrorf MasterCycler ep RealPlex4 (Wesseling-Berzdorf, 13 Germany), with the SYBR ExScript PCR Kit (TOYOBO, Tokyo, Japan). The primer sequences of the selected genes used in the present study were shown in Table S1. 14 The relative expression levels were calculated by $2^{-\Delta\Delta CT}$ method according to the 15 16 previous description (Schmittgen and Livak 2008, Wu et al. 2008). The results were 17 normalized to the expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 18

19 Western blotting

20 The proteins were isolated from hepatic samples, and their concentrations were

21 measured using BCA Protein Assay Kit (Beyotime Institute of Biotechnology, China).

22 The lysate was mixed with 5×SDS sample buffer and boiled for 10 min. Lysate

samples were separated on 6% and 12% SDS–polyacrylamide gels, and transferred to

a PVDF membrane. The blots were blocked with 5% milk blocking solution for 2 h at

room temperature and then incubated overnight with antibodies against PER1 (1:1000;

1	Abcam, USA), mTOR (mammalian rapamycin), Phospho-mTOR (1:1000; Cell
2	Signaling Technology, USA), and β -actin (1:1000; Beyotime Institute of
3	Biotechnology). HRP-conjugated anti-rabbit IgG antibody (1:1000; Beyotime
4	Institute of Biotechnology) was used as the secondary antibody. The blots were
5	visualized by ECL Western Blotting Detection Reagents (Beyotime Institute of
6	Biotechnology) and the images were performed by GEL imaging system (Bio-Rad,
7	USA). The quantification of proteins was analyzed by the software Quantity One
8	(Bio-Rad, USA).
9	Data Analysis
10	Data are presented as mean \pm SEM. The values for mRNA levels are presented as
11	relative values in all experiments. Data were checked for normality and homogeneity
12	of variance using the Kolmogorov-Smirnov one-sample test and Levene's tests,
13	respectively, before conducting statistical comparison. As the assumptions were met,
14	the data were subjected to one-way analysis of variance (ANOVA).
15	
16	Results
17	Effects of L-Carnitine on serum markers of mice subjected to chronic jet-lag
18	To investigate the effects of L-Carnitine on serum markers, the activity levels of

19 GPT, GOT, TG, TC and HDL-C at ZT12 were measured. As shown in Fig.1, the 20 activity levels of serum GPT and GOT were significantly higher in the JL group 21 (Table S2, p < 0.05) compared to those in the Con group. However, when 22 supplemented with L-Carnitine, the serum GPT and GOT activities were decreased as 23 compared with those in the JL group, and they did not exhibit obvious differences 24 (Table S2, p > 0.05) to the Con group (Fig.1A-B). Moreover, a higher serum TG and

1	TG/HDL-C ratio in the JL group were observed compared to the Con group (Table S2,
2	p < 0.05) (Fig. 1C, E), whereas there were no differences in the concentrations of
3	serum TC and TC/HDL-C ratio among three groups ($p > 0.05$; Fig. 1D, 1F).
4	Effects of L-Carnitine on hepatic mRNA levels of genes involved in adipogenesis
5	To test the effects of L-Carnitine on the lipid metabolism in mice subjected to
6	chronic jet-lag, the mRNA levels of peroxisome proliferator activated receptor γ
7	(<i>PPAR</i> γ), sterol regulatory element binding protein 1 (<i>Srebp1</i>), Acetyl-CoA
8	carboxylase (Acaca), fatty acid synthase (Fasn), stearoyl-CoA desaturase1 (Scd1) and
9	3-hydroxy-3-methyl-glutaryl coenzyme A reductase (<i>Hmgcr</i>) in the liver at ZT12
10	were analyzed. Among them, the mRNA levels of Acaca, Fasn and Scd1 were
11	significantly increased by the chronic jet-lag treatment as compared with respective
12	ones of the control, which were reduced significantly (Table S3, $p < 0.01$) by the
13	supplementation with L-Carnitine. In addition, the supplementation with L-Carnitine
14	also dramatically decreased the Srebp1 mRNA level (Table S3, $p < 0.01$) compared
15	with that of both the Con and JL groups (Fig. 2B-E). No significant change was
16	observed in the mRNA levels of <i>PPARy</i> and <i>Hmgcr</i> among the three groups at ZT12
17	(Table S3, <i>p</i> > 0.05; Fig. 2A, F).
18	Effect of L-Carnitine on the expression of lipolytic genes and glycometabolism-related
19	genes (Gck and Pck1) in the liver
20	To explore the role of L-Carnitine supplementation in the expression of lipolytic
21	genes, the mRNA levels of $PPAR\alpha$, carnitine palmitoyl transferase 1 (<i>Cpt1</i>), <i>Cpt2</i> ,
22	carnitine/acylcarnitine translocase (Slc25a20) in the liver at ZT12 were examined
23	(Fig.3).The chronic jet-lag treatment increased the mRNA level of <i>PPARa</i> and
24	significant reduction in the mRNA levels of Cpt2 and Slc25a20 when compared with
25	respective ones of the control, which were down-regulated partially (Fig. 3A and 3B)

1	or completely (Fig. 3D) by the L-Carnitine supplementation. L-Carnitine
2	supplementation had no effect on the expression of Cpt1 which was induced by the
3	chronic jet-lag (Fig. 3C).
4	Hensitic PPAR _{ν} is involved in provision of glycerol-3-phosphate (G3P) which is
·	
5	required for TG synthesis and storage (Nakamura et al. 2014). To investigate the
6	effect of L-Carnitine on the PPAR γ targeting genes, the mRNA levels of glucokinase
7	(Gck) and phosphoenolpyruvate carboxykinase 1 (Pck1) were measured (Fig. 3E, F).
8	The chronic jet-lagtreatment elevated the mRNA level of Gck at both ZT0 and ZT12,
9	with a significant difference at ZT12 as compared with that of the control (Table S4, p
10	< 0.01). These increased changes were effectively lowered by L-Carnitine
11	supplementation. Similar results were also observed for <i>Pck1</i> mRNA levels. Briefly,
12	the mice exhibited a significant up-regulation of $Pckl$ expression (Table S4, $p < 0.05$)
13	in the JL group compared with those in the Con group at ZT0 and ZT12, while they
14	exhibited a significant down-regulation of $Pckl$ expression (Table S4, $p < 0.01$) in the
15	JL+C group compared with those in the JL group at ZT12.
16	Effect of L-Carnitine on mTOR activity in the liver
17	mTOR, a metabolic regulator, promotes light-evoked protein translation (e.g.
18	PERIOD protein). It is also involved in lipid synthesis and energy metabolism (Cao et
19	al. 2010, Laplante and Sabatini 2012). To investigate the effects of L-Carnitine on
20	mTOR activity, mTOR mRNA level, total mTOR and phosphorylated mTOR
21	(P-mTOR) protein levels were examined. As shown in Fig.4A, the mRNA level of
22	<i>mTOR</i> in the JL group was significantly higher than that in the Con group at both ZTO

- and ZT12 (Table S5, p < 0.05), but was decreased by supplementation of L-Carnitine
- (p < 0.05). Protein level of mTOR was significantly lower in the JL+C group as

1	compared to that in the JL group at ZT12 (Table S5, $p < 0.05$). However, P-mTOR
2	protein levels were similar among the three groups at both ZT0 and ZT12 (Fig.4B).
3	Effect of L-Carnitine on hepatic mRNA and protein levels of circadian clock markers
4	To test whether L-Carnitine plays a role in the regulation of circadian clock, we
5	analyzed its effects on liver clock gene expression in mice subjected to a prolonged
6	circadian disruption. As shown in the Fig 5A, the expression level of circadian clock
7	genes (<i>Bmal1</i> , <i>Per1</i> , <i>Cry1</i> and <i>Dec1</i>) were increased significantly (Table S6, $p < 0.05$)
8	in the JL group compared with those in the Con group at ZT0 and ZT12. L-Carnitine
9	supplementation attenuated the impact on the expression of clock genes caused by the
10	prolonged circadian disruption, and led to a significant decrease (Table S6, $p < 0.05$)
11	in their mRNA levels as compared to that of the JL group, except the expression of
12	<i>Per1</i> at ZT0 (Table S6, $p > 0.05$). Moreover, the protein level of PER1 was increased
13	markedly (Table S6, $p < 0.05$) in the JL group compared with that in the Con group at
14	ZT0 and ZT12, which was decreased significantly (Table S6, $p < 0.01$) in the JL+C
15	group compared with that in the JL group.

17 **Discussion**

18 L-Carnitine, a nutritional element, is supplemented in foods for healthy humans. 19 It lowers lipid levels in the blood, and reduces high fat-induced obesity (Kim et al. 20 2007, Liu et al. 2015). It also ameliorates fatty liver through the regulation of carnitine-dependent lipid metabolism, and prevents lipid metabolism disorder caused 21 by irregular feeding (Wu et al. 2015), which is intertwined with circadian clock. 22 23 Moderate dietary supplementation of L-Carnitinehas a prominent effect on peripheral organs, and affects the body's daily rhythms including performance, core body 24 25 temperature, and alertness in both human and rodent studies (Asher and

Sassone-Corsi 2015, Damiola *et al.* 2000, Liu *et al.* 2015). The findings suggest that
L-Carnitine might delay the onset of degenerative syndromes caused by irregular
feeding. In the present study, we found that L-Carnitine had preventive effects on
lipid metabolism disorder and circadian clock dysfunction in mice exposed to the
prolonged reversal of 12 h photo-schedule.

Our findings showed a significant disturbance in the lipid metabolism in mice 6 7 subjected to the chronic jet-lag, being consistent with previous descriptions (Biggi et 8 al. 2008, De Bacquer et al. 2009). The enhanced levels of hepatic enzymes of GPT 9 and GOT by the chronic jet-lag could be indicative of liver injuries, possibly leading 10 to hepatic maladaptation, which might be responsible for the increased serum levels 11 of TG and TG/HDL cholesterol ratio. It is worth to point out that the supplementation 12 of L-Carnitine could effectively prevent such lipid metabolism disturbance and liver 13 injuries, suggesting that L-Carnitine might be used to protect the possible hepatic 14 maladaptation from the frequent shift-workers.

15 The significant up-regulated expression of lipogenic genes *Acaca*, *Fasn* and *Scd1*

16 was produced by the chronic jet-lag, which was similar with the previous observations

17 (Barclay *et al.* 2012). Such increased expression could be suppressed by L-carntine

18 administration, suggesting L-carntine might be beneficial for hepatic steatosis,

19 hyperlipidemia, and atherosclerosis (Li et al. 2011, Lima-Cabello et al. 2011). The

20 expression of *Hmgcr*, a susceptible gene responsible for cholesterol de novo

21 biosynthesis, was not altered by exposing to the prolonged reversal of the

22 photo-schedule, which was in line with the unaltered serum total cholesterol.

23 The carnitine palmitoyl transferase (CPT) system is mainly regulating fatty acid

24 β-oxidation, and L-Carnitine transports long-chain fatty acid into the mitochondrial

25 matrix (Priore et al. 2012). The frequent alteration of the photo-schedule had an

1 impact on the expression of clock genes, and reduced mRNA level of *Cpt1*, *Cpt2*, *Slc25a20* in this system, suggesting that it might inhibit fatty acid oxidation, which 2 was also observed by Li et al. (Li et al. 2014). However, the decreased mRNA levels 3 4 of Cpt2 and Slc25a20 could be completely counteracted by L-Carnitine supplementation, demonstrating that supplementation of L-Carnitine was of benefit 5 for long-chain fatty acids transporting into mitochondria, and thus might improve 6 7 fatty acid metabolism in hepatic tissue (Longo et al. 2006). 8 Mice subjected to the chronic jet-lag exhibited significantly higher expression of 9 Gck and Pck1 genes, the proteins of which may contribute to the activation of PPAR γ 10 and the increase of the synthesis of TG via glycerol 3 phosphate (Nakamura et al.

11 2014). The increased expression of these two genes was reduced by L-Carnitine 12 supplementation, suggesting that it might decrease TG level through inhibiting the 13 expression of genes related with glycometabolism. In addition, the mTOR protein, a serine/threonine kinase, belongs to plosphoinositide 3-kinase (PI3K) related kinase 14 15 family (Logan et al. 2012). It has been reported that the binding of insulin to the cell surface receptor activates PI3K, which positively up-regulates de novo lipogenesis by 16 17 promoting glucose uptake, the expression of genes involved in lipid biosynthesis, and the deposition of excess carbohydrates to be stored as TG in hepatic tissue (Laplante 18 19 and Sabatini 2009, Manning and Cantley 2007). These help explain our results that 20 the increased TG synthesis was accompanied by the elevated expression of mTOR in 21 the liver of mice. Thus, the decrease of mRNA and protein levels of mTOR by L-Carnitine administration, demonstrated that L-Carnitine attenuated the disruption of 22 23 lipid metabolism of mice subjected to the chronic jet-lag, which was similar with the previous description (Kettner et al. 2015), through regulating mTOR pathways. 24 Mice subjected to the frequent shift of LD cycle exhibited significantly higher 25

1	expression of hepatic clock genes (Bmal1, Per1, Cry1 and Dec1), which are indirectly
2	regulated by light as previously described (Iwamoto et al. 2014, Reppert and Weaver
3	2002). Giving the close relationship of the PER protein expression with mTOR
4	pathways, the PER1 and mTOR protein expressions were examined. The increased
5	expression of both proteins by the chronic jet-lag supports the idea that light-evoked
6	mTOR signaling may be required to augment PER protein expression (Cao and
7	Obrietan 2010). Interestingly, increased protein levels of PER1 and the increased
8	mRNA levels of <i>Bmal1</i> , <i>Per1</i> , <i>Cry1</i> and <i>Dec1</i> were clearly down-regulated by
9	L-Carnitine containing diet, suggesting that L-Carnitine might play a positive role in
10	the circadian adaptation, and might also be pivotal in stabilizing endogenous clock
11	through evoking many pathways, such as mTOR. This hypothesis could be partially
12	supported by accumulated studies on the essential role of circadian clock genes in
13	interacting with several crucial metabolic factors for regulation of metabolic processes
14	(Bugge et al. 2012, Cao and Obrietan 2010, Takeda et al. 2014).
15	In summary, the present study demonstrated that the exposure to the chronic jet-lag
16	could lead to physiological maladaption, the disturbance of hepatic lipid metabolism
17	and circadian clock in mice. L-Carnitine supplementation could effectively counteract
18	the negative alterations in the serum marker levels, and the expression of the genes
19	regulating the lipid metabolism and hepatic clock rhythm. Our findings might provide
20	the essential data toward elucidating the complicate relationship among L-Carnitine,
21	lipid metabolism and hepatic circadian clock.

23 Conflict of Interest

24 There is no conflict of interest.

1 Acknowledgements

2 This work was supported by the National Natural Science Foundation of China

3 (grant number 31200890), and the Scientific Innovation Program for University

4 Students in Zhejiang Province (grant number 2014R403060).

- 6
- 7

References

2	ALBRECHT U: Timing to perfection: the biology of central and peripheral circadian clocks. Neuron
3	74 : 246-260, 2012.
4	ASHER G, SASSONE-CORSI P: Time for food: the intimate interplay between nutrition, metabolism,
5	and the circadian clock. Cell 161: 84-92, 2015.
6	BARCLAY JL, HUSSE J, BODE B, NAUJOKAT N, MEYER-KOVAC J, SCHMID SM, LEHNERT
7	H, OSTER H: Circadian desynchrony promotes metabolic disruption in a mouse model of
8	shiftwork. <i>PloS one</i> 7 : e37150, 2012.
9	BIGGI N, CONSONNI D, GALLUZZO V, SOGLIANI M, COSTA G: Metabolic syndrome in
10	permanent night workers. Chronobiol Int 25: 443-454, 2008.
11	BROWN SA, KOWALSKA E, DALLMANN R: (Re) inventing the circadian feedback loop. Dev Cell
12	22 : 477-487, 2012.
13	BUGGE A, FENG D, EVERETT LJ, BRIGGS ER, MULLICAN SE, WANG F, JAGER J, LAZAR
14	MA: Rev-erb α and Rev-erb β coordinately protect the circadian clock and normal metabolic
15	function. Gene Dev 26: 657-667, 2012.
16	CAO R, LI A, CHO H-Y, LEE B, OBRIETAN K: Mammalian target of rapamycin signaling
17	modulates photic entrainment of the suprachiasmatic circadian clock. J Neurosci 30:
18	6302-6314, 2010.
19	CAO R, OBRIETAN K: mTOR signaling and entrainment of the mammalian circadian clock. Mol Cell
20	<i>Pharmacol</i> 2 : 125, 2010.
21	DAMIOLA F, LE MINH N, PREITNER N, KORNMANN BT, FLEURY-OLELA F, SCHIBLER U:
22	Restricted feeding uncouples circadian oscillators in peripheral tissues from the central

1	pacemaker in the suprachiasmatic nucleus. Gene Dev 14: 2950-2961, 2000.
2	DE BACQUER D, VAN RISSEGHEM M, CLAYS E, KITTEL F, DE BACKER G, BRAECKMAN L:
3	Rotating shift work and the metabolic syndrome: a prospective study. Int J Epidemiol 38:
4	848-854, 2009.
5	DIBNER C, SCHIBLER U, ALBRECHT U: The mammalian circadian timing system: organization
6	and coordination of central and peripheral clocks. Annu Rev Physiol 72: 517-549, 2010.
7	GREEN CB, TAKAHASHI JS, BASS J: The meter of metabolism. Cell 134: 728-742, 2008.
8	HAUS E, SMOLENSKY M: Biological clocks and shift work: circadian dysregulation and potential
9	long-term effects. Cancer Cause Control 17: 489-500, 2006.
10	IWAMOTO A, KAWAI M, FURUSE M, YASUO S: Effects of chronic jet lag on the
11	central and peripheral circadian clocks in CBA/N mice. Chronobiol Int 31:
12	189-198, 2014.
13	Kettner NM, Mayo SA, Hua J, Lee C, Moore DD, Fu L: Circadian Dysfunction
14	Induces Leptin Resistance in Mice. Cell Metab 22: 448-460, 2015.
15	KIM YJ, KIM K-Y, KIM MS, LEE JH, LEE KP, PARK T: A mixture of the aqueous
16	extract of Garcinia cambogia, soy peptide and l-carnitine reduces the
17	accumulation of visceral fat mass in rats rendered obese by a high fat diet. Genes Nutr 2:
18	353-358, 2007.
19	KOHSAKA A, LAPOSKY AD, RAMSEY KM, ESTRADA C, JOSHU C, KOBAYASHI Y, TUREK
20	FW, BASS J: High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell
21	<i>Metab</i> 6 : 414-421, 2007.
22	LAPLANTE M, SABATINI DM: An emerging role of mTOR in lipid biosynthesis. Curr Biol 19:
23	R1046-R1052, 2009.
24	LAPLANTE M, SABATINI DM: mTOR signaling in growth control and disease. Cell 149: 274-293,

1	2012.
2	LELOUP J-C, GOLDBETER A: Critical phase shifts slow down circadian clock recovery:
3	Implications for jet lag. J Theor Biol 333: 47-57, 2013.
4	LI X, LI Y, YANG W, XIAO C, FU S, DENG Q, DING H, WANG Z, LIU G, LI X: SREBP-1c
5	overexpression induces triglycerides accumulation through increasing lipid synthesis and
6	decreasing lipid oxidation and VLDL assembly in bovine hepatocytes. J Steroid Biochem 143:
7	174-182, 2014.
8	LI Y, XU S, MIHAYLOVA MM, ZHENG B, HOU X, JIANG B, PARK O, LUO Z, LEFAI E, SHYY
9	JY-J: AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and
10	atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13: 376-388, 2011.
11	LIMA-CABELLO E, GARCÍA-MEDIAVILLA MV, MIQUILENA-COLINA ME,
12	VARGAS-CASTRILLÓN J, LOZANO-RODRÍGUEZ T, FERNÁNDEZ-BERMEJO M,
13	OLCOZ JL, GONZÁLEZ-GALLEGO J, GARCÍA-MONZÓN C, SÁNCHEZ-CAMPOS S:
14	Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic
15	genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci 120: 239-250, 2011.
16	LIU L, ZHANG D, WANG M, FAN C, ZHOU F, WANG S, KONG L: The adverse effects of
17	long-term l-carnitine supplementation on liver and kidney function in rats. Hum Exp Toxicol
18	34 : 1148-1161, 2015.
19	LOGAN RW, ZHANG C, MURUGAN S, O'CONNELL S, LEVITT D, ROSENWASSER AM,
20	SARKAR DK: Chronic shift-lag alters the circadian clock of NK cells and promotes lung
21	cancer growth in rats. <i>J Immunol</i> 188 : 2583-2591, 2012.
22	LONGO N, AMAT DI SAN FILIPPO C, PASQUALI M: Disorders of carnitine transport and the

1	carnitine cycle. Am J Med Genet Part C Semin Med Genet 142C: 77-85, 2006.
2	MANNING BD, CANTLEY LC: AKT/PKB signaling: navigating downstream. Cell 129: 1261-1274,
3	2007.
4	MARCHEVA B, RAMSEY KM, BUHR ED, KOBAYASHI Y, SU H, KO CH, IVANOVA G,
5	OMURA C, MO S, VITATERNA MH: Disruption of the clock components CLOCK and
6	BMAL1 leads to hypoinsulinaemia and diabetes. <i>Nature</i> 466 : 627-631, 2010.
7	MARCOVINA SM, SIRTORI C, PERACINO A, GHEORGHIADE M, BORUM P, REMUZZI G,
8	ARDEHALI H: Translating the basic knowledge of mitochondrial functions to metabolic
9	therapy: role of L-carnitine. Transl Res 161: 73-84, 2013.
10	NAKAMURA MT, YUDELL BE, LOOR JJ: Regulation of energy metabolism by long-chain fatty
11	acids. <i>Prog Lipid Res</i> 53 : 124-144, 2014.
12	OIKE H, SAKURAI M, IPPOUSHI K, KOBORI M: Time-fixed feeding prevents obesity induced by
13	chronic advances of light/dark cycles in mouse models of jet-lag/shift work. Biochem Biophys
14	<i>Res Commun</i> 465 : 556-561, 2015.
15	PARTCH CL, GREEN CB, TAKAHASHI JS: Molecular architecture of the mammalian circadian
16	clock. Trends Cell Biol 24: 90-99, 2014.
17	PRIORE P, STANCA E, GNONI GV, SICULELLA L: Dietary fat types differently modulate the
18	activity and expression of mitochondrial carnitine/acylcarnitine translocase in rat liver.
19	BBA-Mol Cell Biol Lipid 1821: 1341-1349, 2012.
20	REPPERT SM, WEAVER DR: Coordination of circadian timing in mammals. Nature 418: 935-941,
21	2002.
22	REY G, REDDY AB: Connecting cellular metabolism to circadian clocks. Trends Cell Biol 23:

1	234-241,	2013.
---	----------	-------

2	SAHAR S, SASSONE-CORSI P: Metabolism and cancer: the circadian clock connection. Nat
3	<i>Rev Cancer</i> 9 : 886-896, 2009.
4	SAHAR S, SASSONE-CORSI P: Regulation of metabolism: the circadian clock dictates the time.
5	<i>Trends Endocrin Met</i> 23 : 1-8, 2012.
6	SCHMITTGEN TD, LIVAK KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat
7	<i>Protoc</i> 3 : 1101-8, 2008.
8	TAKEDA Y, KANG HS, FREUDENBERG J, DEGRAFF LM, JOTHI R, JETTEN AM: Retinoic
9	acid-related orphan receptor γ (ROR γ): a novel participant in the diurnal regulation of hepatic
10	gluconeogenesis and insulin sensitivity. PLoS Genet 10: e1004331, 2014.
11	TUREK FW, JOSHU C, KOHSAKA A, LIN E, IVANOVA G, MCDEARMON E, LAPOSKY A,
12	LOSEE-OLSON S, EASTON A, JENSEN DR: Obesity and metabolic syndrome in circadian
13	Clock mutant mice. Science 308: 1043-1045, 2005.
14	VAN ALPHEN B, ALLADA R: Knock, Knock to Reset the Clock: Mechanosensation and Circadian
15	Rhythms. Cell Metab 19: 739-740, 2014.
16	WU T, GUO A, SHU Q, QI Y, KONG Y, SUN Z, SUN S, FU Z: L-Carnitine intake prevents irregular
17	feeding-induced obesity and lipid metabolism disorder. Gene 554: 148-154, 2015.
18	WU T, JIN Y, NI Y, ZHANG D, KATO H, FU Z: Effects of light cues on re-entrainment of the
19	food-dominated peripheral clocks in mammals. Gene 419: 27-34, 2008.
20	Xie X, Ma Y, Chen Z, Liao R, Zhang X, Wang Q, Pan Y (2014) Transgenic Mice Expressing Yeast
21	CUP1 Exhibit Increased Copper Utilization from Feeds. <i>PloS one</i> 9 : e107810, 2014.
22	

After one week of acclimatization, mice were randomly divided into three groups of 4 5 control (Con), jet-lag (JL) and jet-lag+carnitine (JL+C). Mice of JL+C group were fed with L-Carnitine containing diet, and other mice were fed with normal commercial 6 diet (5.0 g/mouse/day), during their active state (dark phase). In the Con group, mice 7 were kept under LD conditions. In the JL and JL+C groups, mice were subjected to a 8 9 reversal of LD cycle every 4 days for a continuous 12 weeks. At the end of 10 experiments, the serum concentration of GPT (A), GOT (B), TG (C), TC (D), TG/HDL-C (E) and TC/ HDL-C (F) were analyzed. Values are expressed as mean \pm 11

SEM (n=5). *p < 0.05 compared with the control group; [#]p < 0.05 compared with the
 JL group. (A, B) liver enzymes (GPT, GOT): indicative of liver injury; (C-F)
 functional disturbance (TG, TC, TG/HDL-C, TC/HDL-C): compromised hepatic
 metabolism (adipogenesis).

5

⁸ adipogenesis

6

9 The mRNA levels of genes related to adipogenesise were determined by qRT-PCR in

10 the livers of Con, JL and JL+C mice. The mRNA level was normalized using GAPDH.

1 Each value represents the mean \pm SEM (n=5). *p < 0.05 compared with the control

3

5 Figure 3. Effect of L-Carnitine on hepatic mRNA levels of lipolytic genes and

- 6 glycometabolism-related genes (Gck and Pck1)
- 7 qRT-PCR was used to determine the mRNA levels of lipolytic genes and
- 8 glycometabolism-related (*Gck* and *Pck1*) genes in the liver of Con, JL and JL+C mice.
- 9 The mRNA amount was normalized to the expression of *GAPDH* mRNA. Values are
- 10 expressed as mean \pm SEM (n=5). *p< 0.05 compared with the control group; #p< 0.05
- 11 compared with the JL group. Values are expressed as mean \pm SEM (n=5).

2 Figure 4. Effect of L-Carnitine on mTOR activity

3 (A) qRT-PCR was performed to examine the mRNA level of *mTOR* gene in the liver.

4 The results were normalized to the expression level of the GAPDH gene. Each value

5 represents the mean \pm SEM (n=5).

6 (B) Western blot was performed to examine the protein levels of total mTOR and

- 1 phosphorylated mTOR in the liver of Con, JL and JL+C mice. β -actin was used for
- 2 signal normalization. The protein content was quantified by densitometric analysis of
- 3 blots. Each value represents the mean \pm SEM (n=3).

2 Figure 5. Effect of L-Carnitine on circadian clock mRNA and protein levels

3 (A) The mRNA levels of clock genes were determined by qRT-PCR in the liver of

4 Con, JL and JL+C mice. The results were normalized to the expression level of the

GAPDH gene. Values are expressed as mean ± SEM (n=5). *p < 0.05 compared with
the control group; #p< 0.05 compared with the JL group. Values are expressed as
mean ± SEM (n=5).
(B) Western blot was performed to test PER1 expression in the liver of Con, JL and
JL+C mice. The PER1 protein content was quantified by densitometric analysis of
blots. β-actin antibody served as loading control. Values are expressed the mean ±
SEM (n=3).

9

10 Fig. S1 Experimental Schedule

After seven days of acclimatization, mice were randomly divided into three groups of the Control group (Con), the Jet lag group (JL) and the Jet lag+Carnitine group (JL+C). The schedule of feeding and chronic jet-lag is shown in Fig.S1. Mice of the JL+C group were fed with L-carnitine containing diet, and other mice were fed with

normal commercial diet (5.0 g/mouse/day), corresponding feeding time during active
state (dark phase). In the Con group, mice were kept under light-dark (LD) cycle
12:12 conditions. In the JL and JL+C groups, mice were subjected to a reversal of LD
cycle every 4 days for a continuous 12 weeks.

Table 1

Gene	Accession number		Primer sequence 5' to 3'
GAPDH	NM_008084.2	Forward,	GACCTCAACTACATGGTCTACA
		Reverse,	ACTCCACGACATACTCAGCAC
PPARγ	NM_001127330.1	Forward,	CCAACTTCGGAACTCAGCTCTG
		Reverse,	AACCTGATGGCATTGTGAGACA
Srebp1	NM_011480.3	Forward,	GGCACTAAGTGCCCTCAACCT
		Reverse,	GCCACATAGATCTCTGCCAGTGT
Acaca	NM_133360.2	Forward,	TAACAGAATCGACACTGGCTGGCT
		Reverse,	ATGCTGTTCCTCAGGCTCACATCT
Fasn	NM_007988.3	Forward,	GCAGCAAGTGTCCACCAACAA
		Reverse,	CTCATCGGAGCGCAGGATAGA
Scd1	NM_009127.4	Forward,	GATAGAGCAAGTCCCCGTTG
		Reverse,	CCTGCATTAACCCCCTTCAC
Hmgcr	NM_008255.2	Forward,	CAGCTTACAGAGCCAATGATGGAG
		Reverse,	AGCCCATAAATGATTCAGTCACCAA
$PPAR\alpha$	NM_011144.6	Forward,	CCTCAGGGTACCACTACGGAGT
		Reverse,	GCCGAATAGTTCGCCGAA
Cpt1	NM_031559	Forward,	CACTGGCCGAATGTCAAG
		Reverse,	TGCAAACATCCAGCCGTG
Cpt2	NM_009949	Forward,	GACAGCCAGTTCAGGAAGACAG
		Reverse,	TATTCTGTTTATCCTGAGCGAGC
Slc25a20	NM_020520	Forward,	GAGAGGGCATCACAGGGCT
		Reverse,	CTTCCCCAGACCAAACCCA
Gck	NM_010292	Forward,	TGGACAAGCATCAGATGAAACA
		Reverse,	TGGACAAGCATCAGATGAAACA
Pck1	NM_011044.2	Forward,	GTGTTTGTAGGAGCAGCCATGAGA
		Reverse,	GCCAGGTATTTGCCGAAGTTGTAG
Bmal1	NM_007489.4	Forward,	AAGTGCAACAGGCCTTCAGT
		Reverse,	GGTGGCCAGCTTTTCAAATA
Perl	NM_011065.4	Forward,	CCCAGCTTTACCTGCAGAAG
		Reverse,	AGCTGGGGCAGTTTCCTATT
Cry1	NM_007771.3	Forward,	AGCTGGGGCAGTTTCCTATT
		Reverse,	CATCTCGTTCCTTCCCAAAA
Dec1	NM_011498.4	Forward,	GACCGGATTAACGAGTGCAT
		Reverse,	TCAATGCTTTCACGTGCTTC
mTOR	NM_020009.2	Forward,	GTCCGCCTTCACAGATACCC
		Reverse,	TGATGTCAAGTACACGGGGC

Primer sequences used for qRT-PCR amplification

3 qRT-PCR: quantitative real-time PCR

1 Table 2 Interaction between groups on serum markers of mice subjected to chronic

2					jet	-lag						
	G	GPT		GOT		ſĠ	Т	С	TG/H	DL-C	TC/HDL-C	
Groups	F	р	F	р	F	р	F	р	F	р	F	р
	value	value	value	value	value	value	value	value	value	value	value	value
JL comparing	4.482	0.031	9.325	0.022	3.441	0.0499	0.256	0.631	7.803	0.013	3.064	0.155
to Con												
JL+C	2.715	0.148	3.492	0.104	0.389	0.773	1.897	0.211	3.392	0.103	0.078	0.790
comparing to												
Con												
JL+C	2.628	0.149	3.520	0.120	2.548	0.084	0.068	0.803	2.218	0.187	3.005	0.134
comparing to												
JL												
3 (GPT: gluta	amic-pyru	vic transa	minase; C	GOT: gluta	amic-oxalo	acetic trai	nsaminase	; TG: trig	lyceride;		
4	ГС: total c	cholestero	l; HDL-C	: high-der	nsity lipop	rotein chol	esterol.					
5												
0												
7												
Q												
0												
9												
10												
10												
11												
10												
12												
13												
14												

2 adipogenesis												
	PPARγ		Sre	ebp1	Ace	аса	Fa	isn	Sc	dl	Hm	egcr
Groups	F	р	F	р	F	р	F	р	F	р	F	р
	value	value	value	value	value	value	value	value	value	value	value	value
JL	1.071	0.348	1.891	0.228	17.587	0.0041	14.868	0.0062	15.201	0.006	3.837	0.107
comparing												
to Con												
JL+C	1.881	0.229	28.59	0.0017	0.255	0.629	0.457	0.521	18.957	0.082	7.058	0.045
comparing												
to Con												
JL+C	0.805	0.404	15.24	0.0059	16.994	0.033	22.414	0.0015	40.146	0.0001	0.211	0.665
comparing												
to JL												
3	PPAR γ : peroxisome proliferator activated receptor γ ; Srebp1: sterol regulatory element binding											
4	protein	1; Acaca	a: Acetyl-	CoA carbo	xylase; Fa	sn: fatty ac	id synthas	e; Scd1: st	earoyl-CoA	4		
5	desatur	rase1; Hn	nger: 3-hy	/droxy-3-m	nethyl-glut	aryl coenz	yme A red	uctase.				
6												
7												
8												
9												
10												
11												
12												
13												

Table 3 Interaction between groups on hepatic mRNA levels of genes involved in

1 Table 4 Interaction between groups on the expression of lipolytic genes and											
		2	1	glycometa	abolism-related g	genes (Gck and P	ck1) in th	e liver			
	PP.	ARα	Cp	ot l	Gck (ZT	0, ZT12)	Cp	pt2	Slc2	5a20	Рс
	F value	p value	F value	p value	F value	p value	F value	p value	F value	p value	F valu
n	21.063	0.0059	4.699	0.0487	3.582,14.305	0.117,0.0069	22.996	0.0049	7.763	0.0317	8.83,28
Con	3.248	0.1314	5.27	0.017	23.795,0.309	0.0018,0.5954	0.124	0.7393	7.168	0.044	1.225,2
JL	0.0081	0.7877	1.558	0.4188	39.067,16.443	0.0004,0.0037	3.552	0.1084	28.223	0.0011	2.884,25
		 3 PPAI 4 gluco 5 carbo 6 7 8 9 10 11 12 13 14 15 16 17 18 	kinase; Slo	ome prome 225a20: car	nitine/acylcarnitine	e translocase; Pck1:	phosphoen	oyi transfe olpyruvate			

1 Table 5 Interaction between groups on mTOR activity in the liver														
		mTOR ((mRNA)			mTOR (protein)				P-mTOR (protein)				
	ZTO		ZT12		Z	ZTO	Z]	Г12	Z	CT0	Z	Г12		
Groups	F value	p value	F value	p value	F value	p value	F value	p value	F value	p value	F value	p value		
JL	34.559	0.0006	35.102	0.0006	7.329	0.0537	4.16	0.0533	0.487	0.5356	1.605	0.176		
comparing														
to Con														
JL+C	1.733	0.2245	17.549	0.0041	0.065	0.812	1.604	0.6582	0.003	0.9628	0.994	0.5513		
comparing														
to Con														
JL+C	31.187	0.0008	71.226	0.0001	0.843	0.414	10.551	0.0286	0.403	0.5601	3.136	0.0736		
comparing														
to JL														
2	mTOF	R: metaboli	c regulator	; P-mTOR	R: phosph	orylated m	TOR.							
3														
4														
5														
6														
7														
8														
9														
10														
11														
12														

1Table 6-1 Interaction between groups on mTOR activity in the liver												
Bmal1						Р	er1		Cry1			
	Z	ГО	Z	Г12	Z	Т0	ZT	T12 Z		<u>ГО</u> Z		Г12
Groups	F value	p value	F value	p value	F value	p value	F value	p value	F value	p value	F value	p value
JL	20.06	0.002	5.32	0.021	21.3	0.001	27.48	0.001	16.56	0.003	11.70	0.0111
comparin	3	1		2	9	7	4	2	4	6	7	
g to Con												
JL+C	2.244	0.172	1.36	0.810	4.09	0.077	0.287	0.609	0.226	0.646	0.385	0.554
comparin		5	8	4	6	6				9		5
g to Con												
JL+C	11.628	0.009	4.30	0.031	2.96	0.123	20.21	0.002	15.25	0.004	9.609	0.014
comparin		2	6	8	9	2	5			5		7
g to JL												
2												
3		Table	e 6-2 Int	eraction	between	groups o	on mTOR	activity	in the live	er		

		De	ec1		PER1 (protein)					
	ZT0		ZT12		Z	TO	ZT12			
Groups	F value	p value	F value	p value	F value	p value	F value	p value		
JL comparing to Con	33.42	0.0004	13.743	0.0076	4.941	0.00367	25.715	0.0071		
JL+C comparing to Con	1.38	0.2738	0.301	0.6005	2.597	0.3113	1.868	0.2435		
JL+C comparing to JL	43.975	0.0002	16.118	0.0039	11.154	0.0091	44.937	0.0026		