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Summary  

We present a custom-made multielectrode array for the recording of evoked potentials during 

acute experiments in rats, which offers a quick and reliable estimation of the cortical 

tonotopy. The array consists of electrodes represented by insulated copper wires of 0.09 mm 

diameter fixed in epoxy resin in a 3 x 5 arrangement, with final impedances of 410 - 800 k 

Ohm. The array was placed on the brain surface of anaesthetized rats approximately at the 

location of the auditory cortex (AC) and the cortical evoked potentials  (middle-latency 

responses, MLR) were elicited by a series of tone pips of different frequencies at 50 dB SPL 

intensity. The frequency that evoked the highest MLR amplitude (best frequency, BF) was 

identified for each electrode. The obtained distribution of the BFs characterised the cortical 

tonotopy, and it correlated with the frequency selectivity of neurones recorded at the same 

positions by an extracellular microelectrode. Although the space resolution of the array did 

not allow for the identification of AC sub regions, the array proved to be a reliable tool for a 

quick estimation and prediction of areas of interest for the subsequent measurements of 

neurones by more precise techniques. 

 

Key words: electrode array; auditory cortex; rat; middle-latency responses; multiple-unit 

activity  

 

Main body of the text  

The main criterion for the functional parcellation of the AC is its tonotopy, which is a 

systematic spatial arrangement of neurones tuned to individual sound frequencies. According 

to the original study by Sally and Kelly (1988), the primary auditory field in the rat (AI) was 



characterised by its tonotopic gradient with high frequencies represented rostrally, and low 

frequencies caudally. In subsequent electrophysiological investigations, this basic finding was 

confirmed (Doron et al. 2002, Kalatsky et al. 2005). In addition to the AI, other adjacent 

auditory cortical areas were described in rats and other rodents as an anterior auditory field 

(AAF), the posterior auditory field (PAF), and the suprarhinal auditory field (SRAF) (Thomas 

and Tillein 1997, Rutkowski et al. 2003, Pandya et al. 2008, Profant et al. 2013). 

In electrophysiological recordings with microelectrodes, the basal orientation for the 

placement of the electrode in AC is usually made with respect to the vascular architecture. In 

our experience however, the variability of its pattern among animals is vast, and in many 

cases the inserted electrode failed to register any response to sound stimulation. Explanations 

for such recordings could be either the pathological state of the AC, or false electrode 

positioning, i.e. outside the AC. To minimise the risk of incorrectly positioned 

microelectrodes, we designed a surface electrode array, which allows for a fast and reliable 

estimation of the AI tonotopy and determination of the AI boundary in the rat cortex.  

 

 

 

The array consisted of 15 insulated copper wires of 0.09 mm diameter, arranged in a matrix of 

5 x 3 with the overall size of approximately 2 x 1 mm. The fabrication of the array was 

completed in a few simple steps. First, the electrode layout was printed on a thin plastic film, 

which was put on a piece of modelling clay and pierced with a sharp needle under the 

microscope in the positions of the future electrodes. The wires were inserted in the created 

pinholes and fixed with epoxy resin. After curing the plastic film was removed, the resin was 

flattened and smoothed using very fine sandpaper and the opposite ends of all 15 wires were 



soldered to a 16-pin connector (dual-in-line, DIL 16). The 16th pin was reserved for a ground 

electrode. Finally, individual electrodes were checked for impedance, which varied between 

410 – 800 k Ohm. This complete process of array fabrication takes approximately 24 hours, 

including the epoxy resin curing time. 

The data presented here were obtained in eight Long-Evans rats aged 3-4 months. The use of 

animals was approved by the Ethics Committee of the Institute of Experimental Medicine, 

Academy of Sciences of the Czech Republic, and followed the guidelines of the EU Directive 

2010/63/EU for animal experiments.  

The rats were anaesthetised with an intramuscular injection of a mixture of 35 mg/kg 

ketamine (Calypsol 50 mg/mL; Gedeon Richter, Budapest, Hungary) and 6 mg/kg xylazine 

(Rometar 20 mg/mL; Bioveta, Ivanovice na Hane, Czech Republic). The craniotomy in the 

right temporal region was performed between the temporo-parietal suture and linea 

temporalis. After removal of the dura mater (Fig. 1A), a transparent sham array with printed 

marks in places of electrodes was placed in the opening, gently touching the cortex surface, 

and photographed at 200 x magnification (Fig. 1B). As the sham array was transparent, the 

pattern of blood vessels below was clearly visible. The sham array was placed and 

photographed in 1-3 locations to cover the entire surface of the craniotomy (Fig. 1C). These 

pictures subsequently served as a reference for the orientation of the real array placement and 

for the reconstruction of AC tonotopical maps (Fig. 1D). MLRs were recorded in each 

location. MLRs were elicited by a series of tones of 60 ms duration in the frequency range of 

1 to 45 kHz with 2/octave step, a stimulation rate was 1.3 Hz and the responses were 

calculated as an average of 15 repetitions. A sound intensity of 50 dB SPL was chosen after a 

series of optimisation tests as a compromise between being too low (evoked small MLR 

amplitudes with poor signal-to-noise ratio) and too high (large responses but poor frequency 

tuning). The stimuli were generated and the MLR was analysed by TDT hardware (Tucker-



Davis Technologies System III, Alachua, USA) using Brainware software in ʻlocal field’ 

mode. Stimuli were presented in free-field conditions via ribbon tweeter RAAL 70-20XR and 

mid-bass woofer Selenium 6W4P, placed 70 cm in front of the animal’s head. In the recorded 

MLR waveform the first positive peak P1, and the first negative peak N1 (Fig. 2A) were 

automatically detected (own script in Matlab, MathWorks) and the P1-N1 amplitude 

difference was defined as the amplitude of MLR. The frequency of the stimulus that evoked 

the highest MLR amplitude at 50 dB SPL stimulation intensity in a given position was taken 

as the local best frequency (BF). Finally, using our own JavaScript programme, the results 

were plotted into a photograph of the cortex as dots. The BFs were color-coded, the diameter 

of the dots corresponded to the MLR amplitudes and their positions were assessed from the 

sham electrode photographs taken earlier. The locations where MLR amplitude did not exceed 

100 µV were regarded as non-responsive to tonal stimulation and were depicted as crosses. 

Experiments were performed in a sound-attenuated anechoic room. During MLR recordings, 

the body temperature of the animal was maintained at 37–38 °C using an electrically 

controlled heating pad. 

The distribution of BFs of MLRs on the cortical surface roughly corresponded to the known 

tonotopy of the primary auditory cortex (AI), i.e. low frequency-tuned MLRs predominated in 

ventro-caudal regions, higher BFs gradually appeared rostro-dorsally. The recorded locations 

were divided into 3 groups according to the BF: low-frequency places (L, BF < 4 kHz), 

middle-frequency places (M, BF 4 -16 kHz) and high-frequency places (H, BF > 16 kHz). 

Among these three groups, a significant decrease was observed in amplitudes (ANOVA, p < 

0.001) as well as a shortening of the P1 and N1 latencies (ANOVA, p < 0.001) dependent on 

BF. Amplitudes (average ± SD): 323 ± 211 µV (L), 251 ± 98 µV (M) and 166 ± 64 µV (H). 

P1 latency: 21.0 ± 3.1 ms (L), 20.6 ± 2.0 ms (M), 19.2 ± 1.6 ms (H). N1 latency: 36.2 ± 3.8 

ms (L), 34.8 ± 3.0 ms (M), 32.8 ± 1.6 ms (H). Areas containing positions with L, M and H 



characteristics are compared in Fig. 3A for all animals. It is notable how much the position 

and size of the areas differed among individuals. For example, the comparison of the large L 

area of animals 4 and 8 to the dimension of the same area in animal 3. Additionally, in animal 

5, only two individual isolated points were found to have L characteristics. 

Apart from AI, there are several other well-known tonotopically organised regions in the 

vicinity of AI (Rutkowski et al. 2003, Profant et al. 2013). Unfortunately, no reliable evidence 

of these secondary auditory fields could be found by MLR analysis in our experiments, 

although in principle, evoked potentials here can be detected (Ohl et al. 2000, Takahashi et al. 

2005). Since these regions are substantially smaller than AI and their dimensions are 

comparable to the inter-electrode distance of our array, we cannot exclude that they might 

have remained below the spatial resolution of our mapping. On the other hand, in a unique 

case we saw distinct low-frequency-tuned MLRs frontally (Fig. 3A, animal 6, blue dots) and a 

reversal of the tonotopical order caudally (Fig. 3A, animal 1, arrows) which might represent 

responses of some of these secondary auditory fields. 

To verify the ability of predicting cortical tonotopy from MLR data, the extracellular activity 

of individual neurones was recorded in selected locations of the AC. Five to eight points of 

interest were selected in the MLR map of each animal based on the highest MLR amplitude, 

together with the highest ratio between the response at BF and an average response to stimuli 

other than BF. Such recordings were usually found in the central part of the MLR map. In 

these locations, multiple-unit activity was recorded between 100 and 1200 µm beneath the 

surface using a commercial 16-channel electrode probe (Neuronexus, Ann Arbor, USA). The 

stimulation consisted of 60 ms tone pips at 0.5 – 45 kHz frequency (4 steps per octave) and -

10 to +60 dB SPL intensity in 10 dB steps. The response was defined as a total spike count in 

the interval 10 – 70 ms after the stimulus onset, an average of 5 stimulations was calculated. 

Fig. 2C shows examples of neuronal receptive fields (i.e. frequency-intensity plots with the 



response magnitude coded as shades of grey) compared with bar graph representation of MLR 

amplitudes obtained in the same location. Two frequency parameters were derived from the 

multiple-unit data for comparison to MLR-based maps; 1) the frequency at which the lowest 

stimulus intensity is required to evoke a response (characteristic frequency, CF) and 2) the 

best frequency (BF) at 50 dB SPL, defined as the frequency of the stimulus that resulted in the 

highest response at this stimulation intensity. Fig. 3B shows the correlation between BF of 

MLRs and BFs and CFs of 115 nearby recorded neurones. Approximately half (48.9 %) of the 

neuronal BFs fell into a half-octave range around the BF of the local MLR and 78 % of the 

neuronal BFs were within one octave distance from its respective BF of MLR. Nevertheless, 

there were also around 3.5 % of neurones that showed a BF more than two octaves apart from 

the BF of the corresponding MLR. Values of neuronal CFs were higher compared to their 

respective BF, especially in low-frequency tuned areas, which reflects a typical property of 

excitation in the AI (Tao et al. 2017), see examples 1, 3 and 7 in Fig. 2C. 

Certainly, there are several other methods for estimation of the functional organisation of the 

cortex, usually based on optical techniques (Bakin et al. 1996, Grinvald and Hildesheim 2004, 

Issa et al. 2014), that provide more detailed maps including the secondary regions. However, 

these techniques require highly specialised devices and methods of analysis. Inspecting large 

portions of the auditory cortex by multi-electrode arrays has been demonstrated previously, 

using either commercially available products (Barth and Di 1990, Shiramatsu et al. 2016) or 

custom-designed arrays (Escabí et al. 2014, Insanally et al. 2016) in rats, ferrets (Owens et al. 

1995) or cats (Fallon et al. 2016). The space resolution of our manually fabricated array (2 

electrodes per 1 mm) matches these machine-produced devices (inter-electrode distances of 

200 - 800 µm). We see a major advantage of the arrays based on flexible printed circuit 

boards (Insanally et al. 2016) or thin polyimide films (Owens et al. 1995, Escabí et al. 2014, 

Fallon et al. 2016) in that these are flexible, easily conform to the cortex surface, are less 



bulky than rigid arrays and potentially less irritating to the brain tissue during placement. In 

addition, the polyimide layer may be transparent. This feature, currently missing from our 

epoxy-resin array, was substituted by use of a sham transparent array. A flexible and thin 

body makes the polyimide film arrays especially suitable for chronic implantation, which, 

nevertheless, was not the aim of this study.  

In conclusion, the electrode array described here proved to be a useful tool for fast mapping of 

the AI tonotopy, although it could not be used for detection of the secondary auditory fields. It 

may be fabricated in 24 hours using common laboratory equipment and for negligible cost. 

The design can be adapted according to the actual needs, e.g. the electrode distribution might 

be based on equilateral triangles instead of the rectangular matrix, which would better fit into 

the round corners of the craniotomy. The number of channels can also be modified to meet the 

individual demands of the data acquisition system. Using a short stimulation protocol and 

simple analysis, it provides useful results within 20 minutes and makes the subsequent single- 

or multiple-unit recording session substantially more effective. 
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symbolise a reversal of the main tonotopical order found in the caudal direction. According to 

our observations, the pattern of the main blood vessels (grey lines) does not provide any 

helpful information related to the cortical tonotopy. B) Comparison of MLR tuning with 

tuning of neurones. Five to eight points (out of 30-45 present in a typical complete map) were 

selected in each animal that had the highest MLR amplitude and the highest frequency 

specificity (response to BF in comparison with response to other frequencies). One to three 

multiple-unit recordings in each position were recorded and their best frequency (BF, the 

frequency resulting in the most intensive firing) at 50 dB SPL intensity, as well as 

characteristic frequency (CF, frequency of the weakest stimulus that evoked a response) was 

determined. For each BF of MLR the average of neuronal BF − SD and CF + SD is plotted. 

Lines represent a linear regression of the data with corresponding R-squared being 0.70 (CF) 

and 0.83 (BF), respectively. Asterisks denote statistical difference between neuronal CF and 

neuronal BF (paired t-test, p < 0.05). 


