Synergistic Potential of Propolis and Vitamin E against Sub-acute Toxicity of AlCl₃ in Albino Mice: In Vivo Study

S. SAJJAD¹, H. MALIK², L. SAEED³, I. HASHIM⁴, U. FAROOQ⁵, F. MANZOOR⁶

¹Assistant Professor, Department of Zoology, Lahore College for Women University, Lahore, ²Associate Professor, Department of Zoology, Lahore College for Women University, Lahore, ³Ph.D. Scholar, Department of Zoology, Lahore College for Women University, Lahore, ⁴MS Student, Department of Zoology, Lahore College for Women University, Lahore, ⁵Assistant Professor, The Islamia University of Bahawalpur, Pakistan, ⁶Professor, Department of Zoology, Lahore College for Women University, Lahore

*Correspondence: drsumerasajjad786@gmail.com; Tel.: +923335155855, Fax: +924299203077

Abstract

Current study evaluated the synergistic potential of propolis and Vit E against sublethal toxicity of aluminium chloride on different biochemical parameters and liver histology. Swiss albino mice (n = 42) were randomly divided into five groups. Group I received 0.2ml of 0.9 % saline solution, Group II received Propolis (50 mg/kg B.W), Group III received Vitamin E (150 mg /Kg B.W), Group IV received AlCl₃ 50 mg/kg B.W, Group V received AlCl₃ + Propolis, Group VI received AlCl₃+Vitamin E and Group VI received AlCl₃+propolis+Vitamin E. Blood and tissue samples were collected after 7 and 21 days. The body weight of the animals significantly increased in all groups except group IV. The concentration of serum high density lipoprotein significantly decreased in group IV and increased in group V, VI and VII. The level of aspartate aminotransferase, alanine transferase, alkaline phosphatase, triglycerides, total cholesterol, and low density lipoprotein significantly increased in AlCl₃ treated group and increased in group V, VI and VII. Tissue sections were processed and stained by hematoxylin and eosin. Group II showed cellular necrosis. Group V, VI showed decreased number of vacuolization, sinusoidal spacing and macrophage cell infiltration. Group VI showed less degenerative changes in the third
week. Vitamin E and propolis in combination with Al provides more protection against AlCl₃ induced toxicity.

Keywords

Liver, Toxicity, AlCl₃, Tissue Necrosis, Propolis, Vit E.

Introduction

Human beings exposed to Al through various routes like chemicals; pollutants excreted through industries, pharmaceutical products containing phosphate binders, food additives and in certain antacids causing detrimental effects (Reinke and Breitkreutz 2003, Stojanovic and Ninkovic 2009). Pregnant women are more prone to toxicity of Al through products like food, drinking water, soil ingestion, cosmetics, dust and various medications (Roig *et al.* 2006). Al is the metal which provoked neurotoxicity, cardiotoxicity, hepatotoxicity and nephrotoxicity by inducing oxidative stress due to its capacity to produce enormous free radicals (Sushma and Rao 2007, Turkez *et al.* 2010). It was observed that increased level of reactive oxygen species (ROS) produced by Al was attenuated by Vitamin E administration (Abubakar *et al.* 2004).

Propolis or bee glue, a resinous mixture, is composed of more than 300 compounds such as phenols aldehydes, sequiterpene quinines, amino acids, steroids, polyphenols and coumarins (Khalil 2006). Propolis has variety of bioactive components including active substances of polyphenolic fractions that are responsible for its antibacterial, antiviral, antifungal, antiprotozoal, antimicrobial, analgesic, anti-inflammatory, antioxidant, locally anesthetic, cytostatic, i.e., anticancer, and immune-stimulating and immunomodulatory effects of propolis in living organisms (Eyng *et al.* 2013, Ka´cániová *et al.* 2013).
Propolis and caffeic acid phenethyl ester (CAPE) provides protection against oxidative stress in hypertensive rats (Salmas et al. 2017). Propolis alleviates concanavalin A-induced hepatitis by modulating cytokine secretion and inhibition of reactive oxygen species (Mounieb et al. 2017). Vitamin E (-tocopherol) function as biological antioxidants to protect cellular macromolecules (DNA, protein, lipids) and other antioxidant molecules from uncontrolled oxidation by free radicals during normal metabolism (Huang and Huang, 2004). Vitamin E, C and Omega-3 showed protection against aluminum chloride induced liver and kidney toxicity in female albino mice (Gorgees et al. 2016). Vit E protects biological systems by inhibiting the lipid peroxidation (LPO) (Nogueira et al. 2013). Recent studies have reported that Vitamin E and Metallothionein alleviate Cd-induced hepatotoxicity through their antioxidative and antiapoptotic effects (Duan et al. 2018). According to Drigla and coworkers (2016), aqueous solution of propolis and bee venom cotreatment showed antiproliferative effects on luminal (MCF-7) and triple negative breast cancer (TNBC). The current study aimed to investigate comparative ameliorative effects of propolis and Vit E against subacute toxicity of AlCl₃ on liver of albino mice as no previous study known to us investigated their combined effect in an animal model as exploited in present research.

Materials and Methods

Chemical Used

Aluminium Chloride, AnalR. BDH, laboratory supplies Poole, BH15 1TD, England. Vitamin E, Abbott Laboratories Pakistan Ltd.

Extraction of propolis
Synergistic effect of Propolis and Vitamin E

In current study propolis (Biopropolis 1995, YS Organic, Bee Forms 2774 N.4351 Rd. Sheridan, IL 60551 USA) was extracted with 100 ml of ethanol 70% at ambient temperature, in the absence of bright light and with moderate shaking for 1 week. Extracts were filtered and concentrated to dryness with a rotary evaporator at 50 ± 1 °C to give solid residues (Sforcin et al. 2002).

Experimental Protocol

In the current study forty two (42) healthy adult albino mice with 3-4 months age weighing 23-41 g were used. Animals were kept under the standard laboratory condition (23-26 °C and 12h light/dark cycle). Mice were fed on commercial rodent chow in pellet form. Water was available ad libitum. All the experimental work was performed under the guidelines given by Research Ethical Review Committee of Lahore College for Woman University (Memo number RERC/Zoo/2015/06); Lahore, Pakistan. Animals were randomly divided into 5 groups; each group contained 6 mice. All the doses were orally administered daily for three weeks. Group I (Control): 0.2ml of 0.9% saline solution, Group II (Propolis) Ethanolic extract of propolis 50mg/kg body weight was given (Sayeda et al., 2007). Group III (Vitamin E) 150mg/kg body weight (Aziz and Zabut, 2011), dissolved in sunflower oil. Group IV (AlCl₃ treated group): 50 mg /Kg body weight (B.W) of AlCl₃ dissolved in 0.2ml double distilled water (Majida et al. 2013). Group V (AlCl₃+ Propolis treated group): 50 mg /Kg B.W AlCl₃+50 mg /Kg B.W Propolis (Al-Sayed et al. 2009) dissolved in 0.2ml double distilled water. Group VI (AlCl₃+ Vit E treated group): 50 mg /Kg B.W AlCl₃+ 150 mg /Kg B.W Vit E (Aziz and Zabut, 2011). AlCl₃ dissolved in 0.2ml double distilled water and Vit E dissolved in sunflower oil. Group VII (AlCl₃+ Vit E+ Propolis treated group): 50 mg/kg B.W + 50 mg/kg B.W + 150 mg/kg B.W AlCl₃+ Propolis dissolved in 0.2ml double distilled water and Vit E dissolved in sunflower oil.

Blood Sampling

Three mice from each group were anesthetized and sacrificed for the tissue and blood collection through cardiac puncture technique after week 1 and week 3. The collected blood was then
Synergistic effect of Propolis and Vitamin E

centrifuged at 4000 rpm for 10-15 minutes. Serum was stored at -20°C until estimation of biochemical parameters i.e., triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL) and low density lipoprotein (LDL), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) by using different commercially available kits (Human Gesellscharf fur Biochemica und diagnostica, mbH, Max-Plank-Ring 21 65205, Wiesbaden Germany and Crescent diagnostics, Jeddah Industrial City, phase III, Jeddah kingdom of Saudi Arabia). Percent increase or decrease in Body weight was calculated by following formula:

\[\text{Percent change} = \frac{\text{Final weight} - \text{Initial weight}}{\text{Final weight} + \text{Initial weight}} \times 100 \]

Histological study

Liver tissues were processed for microtomy by a standard protocol of fixation, embedding and staining (Srivastava and Yadav 2007, Drury and Wallington 1980). The prepared slides (5µm thickness tissues section) were observed using microscope (Trinocular camera fitted microscope-E- 200, digital microscopic camera- Nikon Japan Ei1-L2) by using 400X magnification and photographed.

Statistical Analysis

Data was statistically analyzed by using SPSS software v 19. Dunnett T3 was used as a post hoc test. Probability level of \(p < 0.05 \) was considered significant and \(p < 0.01 \) was considered as highly significant.

Results

Propolis and Vitamin E treated group showed significant increase in mean body weight as compared to control group (Table 2). Significant decrease in body weight of group IV animals was observed as compared to control group in week 1 and week 3 (Table 1) while the remaining groups showed significant increase in mean body weight in week 1 and week 3 respectively.
Group II and III showed non-significant change in serum levels of TC, TG, HDL, LDL, AST, ALT and ALP as compared to control group (Table 2). Group IV showed significant elevation in serum TC, TG along with highly significant increase in serum LDL levels as compared to control, group II and group III in 1st and 3rd week (Table 2). Although group V, VI and VII showed highly significant increase in serum TC and TG levels as compared to control but when same groups compared with group IV in week 3 they showed significant decreased serum TC and TG values from 1st to 3rd week respectively (Table 2). Serum HDL values reduced non-significantly in all groups as compared to control group but group IV showed highly significant decrease in HDL value as compared to control, group II and group III (Table 2). Group V, VI and VII showed non-significant elevation in serum HDL level as compared to group II from 1st to 3rd week (Table 2).

Serum LDL level was significantly elevated in group IV as compared to control however group V, VI and VII displayed highly significant reduction as compared to group IV in 3rd week (Table 2). Level of serum AST was significantly elevated in group IV as compared to control group. Moreover, concomitant administration of propolis, Vit E alone and together with Al (Group V, VI and VII) showed non-significant decline in AST concentration as compared to group IV in 1st and 3rd week respectively (Table 2). Likewise, group IV significantly raised serum ALT levels in week 3 as compared to control, group II and III (Table 2); group V, VI and VII indicated highly significant decreased serum ALT levels from 1st to 3rd week as compared to group IV (week 3) (Table 2). Group IV showed significant increase in serum ALP level as compared to control in week 1 and week 2 respectively. Group VI and VII significantly decreased ALP concentration in 1st and 3rd week (Table 2) as compared to group IV (week 3). Histological study of control group, propolis and vitamin E treated showed normal architecture of hepatocytes i.e.,
Synergistic effect of Propolis and Vitamin E

no vacuolations and homogenous cytoplasm blood cells with clearly visible sinusoidal spacing and no hemorrhages (Figure 1a, 1b, 1c). Group IV showed the distorted central duct, filled with hemorrhagic debris, lipid, along with the derangement of sinusoidal spacing and infiltration of lymphocytes. The hepatic acini lost their hexagonal shape and dilated sinusoidal spacing, vascular congestion, and vacuolar degeneration were observed in 3rd week (Figure 1g) as compared to group I (Figure 1a) and group IV of 1st week (Figure 1f). Group V, VI and VII revealed normal hepatic lobules and hepatocytes aligned around central vein, normal sinusoidal spaces in 3rd week (Figure 1h, 1i, 1k) as compared to group IV in 3rd week (Figure 1g) and group VII (week 1) (Figure 1j)

Discussion

Findings of current study revealed that AlCl₃ induced toxicity in liver of albino mice and caused significant decrease in body weight (Mahmoud and Elsoadaa 2013). EL-Kenawy and coworkers (2014) observed that AlCl₃ caused loss of appetite with depression among rats while propolis improved the weight of animal further supporting the results of present study in which propolis and Vitamin E showed increased body weight. Increase cholesterol level in current study might be due to mobilization of free fatty acids from the adipose tissue to blood stream and increased level of acetyl CoA, resulting in increased synthesis of cholesterol (Rubins et al. 1999). Current study revealed that concomitant administration of AlCl₃ with propolis and Vit E revealed reduced levels of cholesterol, triglyceride, and LDL parameters as studied by Kalender et al. (2010). Mani and coworkers in 2006 studied that propolis maintains the level of cholesterol, triglyceride, LDL, HDL near to control group in rats. In the current study decrease in cholesterol, triglycerides and LDL might be due to the ability of alpha- tocopherol present in vitamin E that is responsible for down regulating CD 36 protein in liver which increased the lipid uptake in
Synergistic effect of Propolis and Vitamin E

hepatocytes (Podszun et al. 2014). In present study increased serum levels of AST, ALT and ALP in group IV occurred which might be due to ability of AlCl₃ to increase vascular dysfunction, free radical formation and increased lipid peroxidation (Martinez et al. 2017). Contrary to AlCl₃, propolis and vitamin E reduced serum levels of liver enzymes which might be due to their ability to reduce oxidative stress by quenching free radical production (Nogueira et al. 2013, Newairy et al. 2009). Moreover, it is evident from the results of present study that propolis and Vitamin E acting synergistically showed more decrease in LDL and ALP levels and increased HDL levels compared to their individual administration along with AlCl₃ further supporting the findings of previous study with honey and propolis increase the activity of wound healing in rats (Takzaree et al. 2015).

In the current study, propolis and Vitamin E showed normal architecture of hepatocytes which might be due to free radical quenching and metal chelating property of propolis as reported in the previous study in which propolis improved the histological alterations in kidney tissue by increasing the production of glutathione which in return decreased free radical productions which were initially inducing tissue damage (Garoui et al. 2012). On the other hand group IV showed damaged hepatocytes which might be due to ability of AlCl₃ to increase vascular dysfunction (Martinez et al. 2017). According to Bhadaura, (2012) aluminium nitrate treatment alone among rats showed loss of hepatocyte arrangement, sinusoidal spaces with plasma membrane and nuclei degeneration. Moreover, present study demonstrates that Vit E and propolis showed protective effects by offering recovery to the damage which might be due to their healing properties as reported in another study that vitamin E promotes membrane repair by preventing the formation of oxidized phospholipids (Takzaree et al. 2015). In the current study, vit E and propolis concomitant administration along with AlCl₃ exhibited more pronounced protection against liver
Synergistic effect of Propolis and Vitamin E
damage as evident from the serum HDL, LDL, triglycerides, AST, ALT, ALP levels. Previous study showed that propolis and bee pollen successfully protect liver tissue from various forms of regressive liver lesions, such as degeneration, vacuolar degeneration, steatosis, and necrosis of the liver parenchyma (Klaric et al. 2018). Presently, In addition to the improvement in biochemical parameters, hepatocytes showed marked recovery as a result of synergistic protective effects of both vitamin E and propolis which is similar to the findings of Mondal and coworkers (2016), who demonstrated that co-administration of vitamin C and vitamin E resulted in significant reduction of serum HDL, LDL and triglycerides levels and a remarkable protection against hematotoxicity and hepatotoxicity in adult male rats caused by chronic arsenic exposure. Kalender and his colleagues (2010) observed Vit C and E, producing recovery in calcification, cell degeneration and necrosis caused by malathion further strengthening the findings of current study.

Conclusion

Significant reduction in the body weight of AlCl₃ treated group confirmed toxicity related changes among the albino mice. Evident changes in biochemical parameters (triglycerides, cholesterol, HDL, LDL, AST, ALT and ALP) and liver tissue showed the hepatotoxic effects of AlCl₃. From the results of current study it is concluded that propolis and vitamin E exhibit protection against the liver damage which might be due to their anti-inflammatory and antioxidant potential. Both propolis and vitamin E acting synergistically to ameliorate the toxic effects of AlCl₃ on mice liver.

Acknowledgment
We are wholeheartedly thankful to the Department of Zoology, Lahore College for Women University for the facility and technical support during experiment.

References

MONDAL R, BISWAS S, CHATTERJEE A, MISHRA R, MUKHOPADHYAY A, BHADRA RK, MUKHOPADHYAY PK. Protection against arsenic-induced hematological and hepatic

RUBINS HB, ROBINS SJ, COLLINS D, FYE CL, ANDERSON JW, ELAM MB, FAAS FH, LINARES E, SCHAEFER EJ, SCHECTMAN G, WILT TJ, WITTES J: Gemfibrozil for the
Synergistic effect of Propolis and Vitamin E

Synergistic effect of Propolis and Vitamin E

Table 1. Mean ± SEM of percent increase or decrease in initial and final body weight (g)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Initial Body weight</th>
<th>Final body weight</th>
<th>Percent increase or decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>24.05±0.91</td>
<td>30.1±0.38</td>
<td>↑ 11.17</td>
</tr>
<tr>
<td>Propolis</td>
<td>18.71±0.32*</td>
<td>25.52±0.33</td>
<td>↑ 15.39</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>17.15±0.50*</td>
<td>23.55±0.61</td>
<td>↑ 15.72</td>
</tr>
<tr>
<td>AlCl₃</td>
<td>30.10±0.46*</td>
<td>22.05±0.55*</td>
<td>↓ 15.43</td>
</tr>
<tr>
<td>AlCl₃ + Propolis</td>
<td>25.71±0.66*</td>
<td>30.90±0.37</td>
<td>↑ 9.16</td>
</tr>
<tr>
<td>AlCl₃ + Vit E</td>
<td>23.76±0.37*</td>
<td>27.71±0.52*</td>
<td>↑ 7.67</td>
</tr>
<tr>
<td>AlCl₃+Vit E+ Propolis</td>
<td>22.19±0.91*</td>
<td>25.52±0.38*</td>
<td>↑ 6.97</td>
</tr>
</tbody>
</table>

(*p < 0.05; in comparison to control group)

Table 2. Alterations in serum TC, TG, HDL, LDL (mg/dL) and AST, ALT, ALP (IU/L) from 1st to 3rd week of AlCl₃, Vit E and Propolis exposure

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Weeks</th>
<th>Control</th>
<th>Propolis</th>
<th>Vitamin E</th>
<th>AlCl₃</th>
<th>AlCl₃ + Propolis</th>
<th>AlCl₃ + Vit E</th>
<th>AlCl₃+Vit E+ Propolis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>Week 1</td>
<td>80.01±0.87</td>
<td>84.33±0.88</td>
<td>77.6±0.88</td>
<td>125.6±1.45</td>
<td>108.0±0.57</td>
<td>114.0±1.53</td>
<td>120.66±0.88</td>
</tr>
<tr>
<td></td>
<td>Week 3</td>
<td>83.89±2.74</td>
<td>94.04±1.77</td>
<td>85.11±0.92</td>
<td>158.39±2.65</td>
<td>116.01±0.69</td>
<td>124.2±3.37</td>
<td>126.66±1.12</td>
</tr>
<tr>
<td>TG</td>
<td>Week 1</td>
<td>80.7±0.87</td>
<td>87.25±2.24</td>
<td>87.33±2.12</td>
<td>131.39±1.63</td>
<td>110.93±1.01</td>
<td>110.87±1.14</td>
<td>116.42±0.91</td>
</tr>
<tr>
<td></td>
<td>Week 3</td>
<td>82.19±0.94</td>
<td>96.79±1.80</td>
<td>85.34±0.66</td>
<td>176.06±6.23</td>
<td>127.72±3.18</td>
<td>120.60±0.84</td>
<td>123.33±1.45</td>
</tr>
<tr>
<td>HDL</td>
<td>Week 1</td>
<td>69.81±0.44</td>
<td>62.25±1.49</td>
<td>58.44±2.83</td>
<td>21.84±1.87</td>
<td>29.15±4.90</td>
<td>31.22±1.49</td>
<td>48.40±4.07</td>
</tr>
<tr>
<td></td>
<td>Week 3</td>
<td>72.18±0.73</td>
<td>47.96±2.9</td>
<td>69.48±0.52</td>
<td>19.51±2.69</td>
<td>43.17±1.63</td>
<td>44.99±1.40</td>
<td>54.14±3.31</td>
</tr>
<tr>
<td>LDL</td>
<td>Week 1</td>
<td>25.92±1.69</td>
<td>32.70±0.86</td>
<td>15.93±0.80</td>
<td>98.04±0.80</td>
<td>85.11±0.83</td>
<td>80.31±0.91</td>
<td>81.52±0.78</td>
</tr>
<tr>
<td></td>
<td>Week 3</td>
<td>34.73±0.86</td>
<td>45.56±1.40</td>
<td>46.14±1.40</td>
<td>126.3±1.72</td>
<td>90.03±0.87</td>
<td>97.7±1.15</td>
<td>87.04±1.11</td>
</tr>
<tr>
<td>AST</td>
<td>Week 1</td>
<td>187.70±8.52</td>
<td>132.58±8.66</td>
<td>165.79±4.55</td>
<td>277.20±2.41</td>
<td>279.93±7.68</td>
<td>310.33±3.64</td>
<td>270.33±3.48</td>
</tr>
<tr>
<td></td>
<td>Week 3</td>
<td>240.39±2.86</td>
<td>102.52±5.13</td>
<td>168.80±7.62</td>
<td>342.62±9.61</td>
<td>293.33±4.68</td>
<td>288.00±5.79</td>
<td>296.30±5.24</td>
</tr>
<tr>
<td>ALT</td>
<td>Week 1</td>
<td>51.8±2.77</td>
<td>66.9±2.89</td>
<td>58.3±3.50</td>
<td>92.4±6.22</td>
<td>51.8±1.45</td>
<td>89.6±4.43</td>
<td>80.36±2.06</td>
</tr>
<tr>
<td></td>
<td>Week 3</td>
<td>72.68±1.14</td>
<td>43.6±3.74</td>
<td>58.6±2.62</td>
<td>134±2.71</td>
<td>86.60±0.24</td>
<td>90.92±2.97</td>
<td>108.6±1.99</td>
</tr>
<tr>
<td>ALP</td>
<td>Week 1</td>
<td>147.8±9.1</td>
<td>159.98±4.48</td>
<td>161.26±4.22</td>
<td>279.2±4.52*</td>
<td>237.8±6.55</td>
<td>230.55±4.65</td>
<td>209.40±3.48</td>
</tr>
<tr>
<td></td>
<td>Week 3</td>
<td>197.1±5.66</td>
<td>155.50±3.59</td>
<td>162.85±3.13</td>
<td>317.82±6.35</td>
<td>252.96±5.99</td>
<td>265.28±4.35</td>
<td>248.52±3.67</td>
</tr>
</tbody>
</table>

(* in comparison to control; b in comparison to AlCl₃ week 1; c in comparison to AlCl₃ week 3; **, b, c p < 0.05; ***, b, c, p < 0.01)
Synergistic effect of Propolis and Vitamin E
Synergistic effect of Propolis and Vitamin E

Figure 1a) Cross section of liver in control group (H & E) at (400X) b) Cross section of liver of propolis treated albino mice mice showing the normal histological structure during three weeks of treatment (H & E) at (400x). c) Cross section of liver of Vit E treated albino mice showing the normal histological pattern during three weeks of treatment (H & E) at (400x). d) Liver of AlCl₃ treated group showing normal structure (H & E) at (400X) in 1st week (e) Liver of AlCl₃ treated group showing irregular structure (H & E) at (400X) in 3rd week (f) AlCl₃ + propolis treated group (H & E) at 400X in 3rd week (g) AlCl₃ + Vit E treated group (H & E) at 400X in 3rd week (h) AlCl₃ + propolis + Vit E treated group (H & E) at 400X in 1st week. (i) AlCl₃ + Propolis + Vit E treated group (H & E) at 400X in 3rd week.

DHC: disrupted hepatic cords; **PH**: loss polygonal cells; **S**: sinusoidal spacing; **VC**: vacuolated cell; **CV**: central vein. **HC**: hepatic cords. **PC**: polygonal cells; **CN**: cellular necrosis; **HV**: hepatic cell vacuolization; **DHC**: disrupted hepatic cords; **L**: lipid accumulation; **S**: sinusoidal spacing; **RHC**: Radial hepatic cords. **S**: Sinusoids; **CD**: Central duct; **MCI**: macrophage cell infiltration.