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Summary 

Microcurrent electrical neuromuscular stimulation (MENS) is known as an extracellular 

stimulus for the regeneration of injured skeletal muscle in sports medicine.  However, the 

effects of MENS-associated increase in muscle protein content are not fully clarified.  The 

purpose of this study was to investigate the effects of MENS on the muscular protein 

content, intracellular signals, and the expression level of caveolin-3 (Cav-3), tripartite motif-

containing 72 (TRIM72) and MM isoenzyme of creatine kinase (CK-MM) in skeletal muscle 

using cell culture system.  C2C12 myotubes on the 7th day of differentiation phase were 

treated with MENS (intensity: 10-20 μA, frequency: 0.3 Hz, pulse width: 250 ms, 

stimulation time: 15-120 min).  MENS-associated increase in the protein content of 

myotubes was observed, compared to the untreated control level.  MENS upregulated the 

expression of Cav-3, TRIM72, and CK-MM in myotubes.  A transient increase in 

phosphorylation level of Akt was also observed.  However, MENS had no effect on the 

phosphorylation level of p42/44 extracellular signal-regulated kinase-1/2 and 5’AMP-

activated protein kinase.  MENS may increase muscle protein content accompanied with a 

transient activation of Akt and the upregulation of Cav-3 and TRIM72. 
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Introduction 

Skeletal muscle injury is a most common sport trauma during sports activities.  

Various stimuli are proposed to facilitate the regeneration of injured skeletal muscle (Assis et 

al. 2013, Fujita et al. 2014, Nagata et al. 2013, Richard-Bulteau et al. 2008, Shibaguchi et al. 

2016).  Especially, electrical stimulation of injured muscle is used for more than 70 years 

(Gutmann E and Gutmann L 1944), and then the positive effects of electrical stimulation on 

skeletal muscle have been obtained.  Even though recent evidences demonstrate that 

microcurrent electrical neuromuscular stimulation (MENS), which is an electrical 

stimulation causing no muscle contraction, facilitates skeletal muscle regeneration (Fujiya et 

al. 2015, Ohno et al. 2013), the molecular mechanism of MENS-associated muscle 

regeneration remains unclear. 

Increase in protein synthesis is the essential process during the regeneration of injured 

skeletal muscle (Jones 1982, Jones 1984, Kojima et al. 2007, Kubica et al. 2005), and is 

stimulated by mechanical stress induced by muscle contraction and stretch (Drummond et al. 

2009, Morioka et al. 2008, You et al. 2012).  On the other hand, protein synthesis in 

skeletal muscle cells is mediated by the intracellular signals, such as protein kinase B (Akt), 

p42/44 extracellular signal-regulated kinase-1/2 (ERK1/2), and 5’AMP-activated protein 

kinase (AMPK).  The activation of Akt signaling, which is well known as a potent 

stimulator for protein synthesis (Rommel et al. 2001), induces muscle differentiation 

(Coolican et al. 1997) and hypertrophy (Bodine et al. 2001, Sugiura et al. 2005).  ERK1/2 

signaling also stimulates muscle cell proliferation (Coolican et al. 1997) and differentiation 

(Li and Johnson 2006).  Furthermore, it has been reported that AMPK signaling, which is a 

mediator for cellular energy balance, negatively regulates muscle mass via suppression of 
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protein synthesis (Egawa et al. 2014, Sanchez et al. 2012).  Although MENS stimulates the 

increase in protein content of atrophied and injured skeletal muscle (Fujiya et al. 2015, Ohno 

et al. 2013), the effects of MENS on Akt, ERK1/2, and AMPK in skeletal muscle cells are 

still unknown. 

Caveolin-3 (Cav-3), which is an integral membrane protein, is expressed in muscle 

cells such as skeletal, cardiac, and smooth muscle cells (Song et al. 1996, Tang et al. 1996, 

Way and Parton 1996).  Expression of Cav-3 is gradually upregulated during the 

differentiation of C2C12 cells (Fanzani et al. 2007, Galbiati et al. 1999).  In addition, the 

upregulation of Cav-3 is observed in regrowing slow soleus muscle (Ohno et al. 2014), 

hypertrophied C2C12 cells, and fast muscles (tibialis anterior, extensor digitorum longus, 

and thigh muscles) of mice (Fanzani et al. 2007), whereas an atrophic agent dexamethasone 

downregulates Cav-3 expression in C2C12 cells (Fanzani et al. 2007).  Furthermore, 

overexpression of Cav-3 enhances protein synthesis and myotube hypertrophy in C2C12 

cells (Hadj Sassi et al. 2012).  Therefore, the expression level of Cav-3 may be an indicator 

of protein synthesis that is regulated by hypertrophic and atrophic stimuli. 

Cav-3 also plays a crucial role in repair of skeletal muscle membrane, interacting with 

tripartite motif-containing 72 (TRIM72) (Cai et al. 2009a, Cai et al. 2009b, Cai et al. 2009c).  

TRIM72 is expressed in the plasma membrane and intracellular vesicles of skeletal and 

cardiac muscle cells, and is one of TRIM family composed of a really interesting new gene 

finger domain, a B-box, two coiled coil domains, and a spla and ryanodine receptor domain 

(Cai et al. 2009a, Lee et al. 2010).  TRIM72 is upregulated accompanying with myogenesis 

(Jung and Ko 2010, Lee et al. 2010, Yi et al. 2013).  Recently, it was reported that TRIM72 

was upregulated during regrowth of atrophied soleus muscle (Ohno et al. 2014).  Even 
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though MENS has facilitating effects on the regrowth of atrophied muscle and the 

regeneration of injured muscle (Fujiya et al. 2015, Ohno et al. 2013), there is no evidence 

regarding the effects of MENS on the expression of Cav-3 and TRIM72 in skeletal muscle.  

Furthermore, it has been also reported that Akt plays a mediator to regulate the expression of 

Cav-3 and TRIM72 in C2C12 cells (Fanzani et al. 2007, Lee et al. 2010). 

In the present study, the effects of MENS on the muscular protein content, intracellular 

signals (Akt, ERK1/2, AMPK), and the expression level of Cav-3 and TRIM72 in skeletal 

muscle were investigated using cultured C2C12 cells.  In addition to the increases in Cav-3 

and TRIM72 during muscle differentiation (Cai et al. 2009b, Fanzani et al. 2007, Lee et al. 

2010), MM isoenzyme of creatine kinase (CK-MM) is known as a marker of myogenic 

differentiation (Chamberlain et al. 1985, Larraín et al. 1998).  Therefore, we also 

investigated the change in CK-MM following MENS treatment. 
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Methods 

Cell culture 

Mouse myoblast C2C12 cells (6 x 104 cells/well) were cultured on 6-well culture 

plates with type I collagen-coated surface (Biocoat, Corning Inc., Corning, NY, USA).  

Cells were maintained in 2 ml of growth medium consisting of Dulbecco’s modified Eagle’s 

medium (DMEM; Thermo Fisher Scientific, Yokohama, Japan) supplemented with 10% 

heat-inactivated fetal bovine serum containing high glucose (4.5 g/l glucose, 4.0 mM L-

glutamine, without sodium pyruvate) for proliferation under a humidified atmosphere with 

95% air and 5% CO2.  On the 3rd day of the proliferation phase (at ~80% confluence), the 

culture medium was then changed to same amount of differentiation medium consisting of 

DMEM supplemented with 2% heat-inactivated horse serum containing low glucose (1.0 g/l 

glucose, 4.0 mM L-glutamine, and 110 mg/l sodium pyruvate) for differentiation, as was 

described previously (Egawa et al. 2014).  The differentiation medium was changed every 

2 days and cultures were maintained for 8 days to form myotubes.  

 

MENS 

MENS using an electrical stimulator (Trio300, Ito Co., Ltd., Tokyo, Japan) was 

delivered to the culture medium through platinum electrodes, which placed on opposing 

inside walls of a well (Figure 1).  The cells in a plate were simultaneously treated with 

MENS in a cell culture incubator (37°C, 5% CO2).  Although the electrodes were also set in 

the medium of the untreated control cells in the same manner, no MENS was applied. 

 

Experiment 1: Effects of MENS on protein content in C2C12 cells 
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First of all, we investigated whether the condition of MENS have effects on increase 

in protein content of skeletal muscle cells.  The myotubes on the 7th day of differentiation 

phase were treated with MENS, then the cells were collected 24 h after the application of 

MENS (Figure 2A).  The condition for MENS (intensity: 10 or 20 μA, frequency: 0.3 Hz, 

pulse width: 250 ms, duration: 0, 15, 30, 60, and 120 min, n = 8 wells per group) was 

referred to the previous study that observed increase in muscular protein content in mouse 

skeletal muscle (Ohno et al. 2013).  These conditions of MENS did not induce myotube 

contraction.   

C2C12 cells were lysed in cell lysis reagent (CelLyticTM-M, Sigma-Aldrich, St. Louis, 

MO, USA) with some modification of the previously reported method (Egawa et al. 2014) to 

extract total muscle protein from the cells.  Briefly, the cells in each well were rinsed twice 

with 1 ml of ice-cold phosphate-buffered saline.  Then, the cells of each well were scraped 

into 0.3 ml of cell lysis reagent on ice.  The cell lysate was sonicated and centrifuged at 

20,000 g at 4oC for 10 min.  The supernatant was collected for the determination of protein 

content.  Protein content in the supernatant was determined by the Bradford technique 

(Protein Assay Kit, Bio-Rad, Hercules, CA, USA) and bovine serum albumin (Sigma) as the 

standard.  Protein content was expressed relative percentage to the value of untreated 

control group (0 min). 

 

Experiment 2: Effects of MENS on intracellular signals in C2C12 myotubes 

According to the results of Experiment 1 and the previous study that observed changes 

in intracellular signals in mouse skeletal muscle (Ohno et al. 2013) the myotubes on 7th days 

of differentiation phase were treated with MENS at 10 μA for 60 min (frequency: 0.3 Hz, 
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pulse width: 250 ms).  The cells were collected 1, 3, and 6 h after the application of MENS 

(n = 8 wells per group, Figure 2B).  In Experiment 2, we investigated the MENS-associated 

early responses (1, 3, and 6 h after the stimulation) of the protein expression levels (Cav-3 

and TRIM72) and the intracellular signals involved in muscle protein synthesis (Akt, 

ERK1/2, AMPK).   

Western blot analysis was performed with some modification of the previously 

reported method (Egawa et al. 2014, Ohno et al. 2014).  The cells were lysed in 0.3 ml of 

cell lysis reagent (CelLyticTM-M, Sigma) with 10% (v/v) Protease Inhibitor Cocktail (P8340, 

Sigma) and 1% (v/v) Phosphatase Inhibitor Cocktail (524625, Calbiochem, San Diego, CA, 

USA) and centrifuged.  Then the supernatant was collected.  After the determination of 

protein content in the supernatant, the supernatant samples were mixed with sodium-

dodecylsulfate (SDS) sample buffer [30% (v/v) glycerol, 5% (v/v) 2-mercaptoethanol, 2.3% 

(w/v) SDS, 62.5 mM Tris-HCl, 0.05% (w/v) bromophenol blue and pH 6.8] and were boiled 

for 5 min.  The SDS-polyacrylamide gel electrophoresis (PAGE) was carried out on 8-12% 

polyacrylamide containing 0.5% SDS at a constant current of 20 mA for 120 min.  Equal 

amounts of protein (8 μg) were loaded on each gel.  Molecular weight markers (Bio-Rad 

Precision Markers) were applied to both sides of gel as the internal controls for transfer 

process or electrophoresis. 

Following SDS-PAGE, proteins were transferred to polyvinylidene difluoride 

membranes (Bio-Rad) using a Bio-Rad mini trans-blot cell at a constant voltage of 100 V for 

60 min at 4°C.  After the transfer, the membranes were blocked for 1 h using a skim milk.  

Then, the membranes were incubated for 2 h with a primary antibody: Cav-3 (ab2912, 

Abcam, Cambridge, UK), TRIM72 (PAB18940, Abnova, Taipei, Taiwan), CK-MM 
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(ab198235, Abcam), phosphorylated Akt at Ser473 residue (p-Akt: 9271, Cell Signaling 

Technology Inc., Danvers, Mass., USA), total Akt (t-Akt: 9272, Cell Signaling), 

phosphorylated ERK1/2 at Thr202/Tyr204 residue (p-ERK1/2: 9101, Cell Signaling), total 

ERK1/2 (t-ERK1/2: 9102, Cell Signaling), phosphorylated AMPKα at Thr172 residue (p-

AMPK: 2531, Cell Signaling), total AMPKα (t-AMPK: 2532, Cell Signaling), GAPDH 

(G9545, Sigma) and then reacted with a secondary antibody: anti-goat or anti-rabbit 

immunoglobulin G conjugate to horseradish peroxidase for 2 h.  After the final wash, 

protein bands were visualized using chemiluminescence (GE Healthcare, Buckinghamshire, 

UK), and signal density was measured using Light-Capture (AE-6971) with CS Analyzer 

version 2.08b (ATTO Corporation, Tokyo, Japan).  

 

Statistical analysis 

All values were expressed as means ± SEM.  Statistical significance was analyzed by 

one-way analysis of variance followed by Dunnett test.  The significance level was 

accepted at p<0.05. 
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Results 

Experiment 1: Effect of MENS on protein content in C2C12 cells 

In the present study, we examined the effects of MENS on the protein content of 

C2C12 myotubes.  The cells were collected 24 h after the application of MENS (intensity: 

10 or 20 μA, duration: 0-120 min, Figure 2A) for the evaluation of protein content.  Figures 

3A and B show the protein content in C2C12 myotubes 24 h after MENS treatment at 10 (A) 

and 20 μA (B), respectively.  MENS with 10 μA for 15-60 min significantly increased the 

protein content of myotubes, compared to the untreated control level (p < 0.05).  Overall 

response of protein content after MENS treatment at 20 μA was similar to that at 10 μA.  

MENS with 20 μA for 15-30 min significantly increased the protein content of the myotubes 

(p < 0.05).  However, MENS with 10 μA for 120 min or 20 μA for 60 min had no impact on 

the protein content.  

 

Experiment 2: Effect of MENS on intracellular signals 

Since we confirmed that MENS-associated increase in the protein content of C2C12 

myotubes was observed 24 h after the treatment, the effects of MENS with 10 μA for 60 min 

on the expression level of Cav-3 and TRIM72 were investigated in myotubes.  The cells 

were collected 1, 3, and 6 h after the application of MENS (Figure 2B) for western blot 

analyses.  Figure 4 shows the responses of Cav-3, TRIM72, and CK-MM to MENS in 

C2C12 myotubes.  MENS increased the expression of Cav-3, TRIM72, and CK-MM in 

myotubes.  The expression level of Cav-3, TRIM72, and CK-MM 6 h after MENS 

treatment was significantly increased, compared to the untreated control level (p < 0.05).  

In addition, we investigated the effects of MENS on the phosphorylated level of Akt, 
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ERK1/2, and AMPKα in myotubes (Figure 5).  A transient increase in the relative 

expression level of p-Akt was observed 1 h after MENS treatment, compared to the 

untreated control level (p < 0.05).  However, there was no significant change in the p-Akt 

level 3 and 6 h after MENS treatment.  On the other hand, MENS had no effects on the 

level of p-ERK1/2 and p-AMPKα in myotubes.  
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Discussion 

The present study demonstrated that MENS-associated increase of protein content in 

C2C12 myotubes accompanied with the upregulation of CK-MM, Cav-3, and TRIM72, and 

with a transient increase in phosphorylated form of Akt.  On the other hand, MENS had no 

effects on the phosphorylation levels of ERK1/2 and AMPKα in C2C12 myotubes.  This is 

the first report showing the effects of MENS on the total protein content, the expression level 

of Cav-3, TRIM72, and CK-MM proteins, and the intracellular signals in myotubes. 

Upregulation of Cav-3, TRIM72, and CK-MM proteins in myotubes was observed 

following MENS treatment in the present study.  It is reported that the upregulation of Cav-

3 and TRIM72 is observed during differentiation of C2C12 cells (Cai et al. 2009b, Fanzani 

et al. 2007, Lee et al. 2010), and during reloading-associated muscle regrowth (Ohno et al. 

2014), in hypertrophied myotubes induced by transfection of an activated form of Akt 

(Fanzani et al. 2007).  Furthermore, MENS-associated upregulation of CK-MM, which is a 

maker of myogenic differentiation (Chamberlain et al. 1985, Larraín et al. 1998), was also 

observed.  These observations indicate that MENS has a stimulating effect on myogenic 

differentiation.   

In the present study, the protein content in myotubes was increased by MENS.  This 

result is supported by the previous studies that MENS facilitated regrowth of atrophied and 

injured skeletal muscle in mice (Fujiya et al. 2015, Ohno et al. 2013).  On the other hand, 

MENS with 10 μA for 120 min or 20 μA for 60 min had no impact on the protein content.  

Therefore, there is a possibility that the appropriate dosage (stimulation intensity x duration) 

of MENS may exist, although we cannot explain the difference in the response to stimulus 

parameter of MENS at present.  Additional experiments are required to elucidate this issue.  
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It is suggested that the overexpression of Cav-3 shows the enhanced protein synthesis via the 

downregulation of myostatin in C2C12 cells (Hadj Sassi et al. 2012).  Furthermore, in the 

present study, the transient and significant activation of Akt in myotubes was induced by 

MENS.  This result is also consistent with the results from the previous study that MENS-

associated upregulation of p-Akt expression was observed in mouse soleus muscle (Ohno et 

al. 2013).  Since Akt plays a key role in intracellular signaling of protein synthesis in 

skeletal muscle (Bodine et al. 2001, Sugiura et al. 2005) as well as the expression of Cav-3 

and TRIM72 in C2C12 cells (Fanzani et al. 2007, Lee et al. 2010), MENS-associated 

increase of protein content accompaying with the up-regulation of Cav-3 and TRIM72 in 

myotubes might be attributed to the activation of Akt.  Further investigation is necessary to 

clarify precise role of Akt in muscle protein synthesis in response to MENS. 

On the other hand, there were no significant changes in p-ERK1/2 and p-AMPKα in 

response to MENS in the present study.  The phosphorylation level of ERK1/2 and 

AMPKα is upregulated after electrically-induced muscle contraction (Treebak et al. 2006, 

Wojtaszewski et al. 1999).  As MENS induces no muscle contraction, MENS might have 

no effects on the signaling pathways of ERK1/2 and AMPKα.  Additional experiments 

should be needed to explain this issue. 

 

In conclusion, MENS may have a stimulating effect on muscle protein content in 

accompany with the upregulation of Cav-3 and TRIM72, and with a transient activation of 

Akt.  Evidences from this study suggest that MENS stimulates not only protein synthesis 

but also membrane repair in the regeneration of injured skeletal muscle.  MENS could be a 

potentially useful tool for injured athletes in sports medicine as well as rehabilitation. 
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Figure captions 

Figure 1.  An illustration of the setup for a 6-well plate treated with microcurrent electrical 

neuromuscular stimulation (MENS) treatment.  MENS using an electrical stimulator 

(Trio300, Ito Co., Ltd., Tokyo, Japan) was delivered to the culture medium through 

platinum electrodes, which placed on opposing inside walls of a well.  Cells on 4 

wells of a 6-well plate were stimulated by MENS.  Other 2 wells of the plate were 

not used for MENS-treatment group. 

 

Figure 2.  (A) Protocol for Experiment 1.  MENS with 10-20 μA for 15-120 min were 

delivered to C2C12 myotubes on the 7th day of differentiation phase.  Thereafter, the 

cells were collected 24 h after MENS treatment.  (B) Protocol for Experiment 2.  

MENS at 10 μA for 60 min was delivered to C2C12 myotubes on the 7th day of 

differentiation phase.  Thereafter, the cells were collected 1 (M1), 3 (M3), and 6 h 

(M6) after MENS treatment.   

 

Figure 3.  Protein content in C2C12 myotubes after MENS at 10 μA (A) and 20 μA (B).  

Values are expressed as relative percentage to the value of 0 min (untreated control).  

Values are means ± SEM.  n = 8 wells per group.  *: significant different from 0 

min, p < 0.05. 

 

Figure 4.  Effects of MENS at 10 μA for 60 min on the expression level of Cav-3, TRIM72, 

and CK-MM in C2C12 myotubes.  Con: untreated control group; Cav-3: caveolin-3; 

TRIM72: tripartite motif-containing 72; CK-MM: MM isoenzyme of creatine kinase; 
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GAPDH: glyceraldehyde-3-phosphate dehydrogenase.  See Figure 2 for other 

abbreviations.  Values are expressed relative to the value of Con.  Values are means 

± SEM.  n = 8 wells per group.  *: significant different from Con, p < 0.05. 

 

Figure 5.  Effects of MENS at 10 μA for 60 min on the phosphorylation level of Akt, 

ERK1/2, and AMPK in C2C12 myotubes.  p-Akt: phosphorylated Akt; t-Akt: total 

Akt; p-ERK1/2: phosphorylated p42/44 extracellular signal-regulated kinase (ERK)-

1/2; t-ERK1/2: total ERK1/2; p-AMPK: phosphorylated 5’AMP-activated protein 

kinase (AMPK)α; t-AMPK: total AMPKα.  See Figures 2 and 4 for other 

abbreviations.  Values are expressed relative to the value of Con.  Values are means 

± SEM.  n = 8 wells per group.  *: significant different from Con, p < 0.05. 
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