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Similarity of interspike interval distributions and

information gain in a stationary neuronal firing

Abstract

The Kullback-Leibler (KL) information distance is proposed for judging similarity

between two different interspike interval (ISI) distributions. The method is applied

by comparison of four common ISI descriptors with an exponential model which is

characterized by the highest entropy. Under the condition of equal mean ISI values,

the KL distance corresponds to information gain coming from the state described

by the exponential distribution to the state described by the chosen ISI model. It

has been shown that information can be transmitted changing neither the spike rate

nor coefficient of variation (CV ). Furthermore the KL distance offers an indication

of the exponentiality of the chosen ISI descriptor (or data): the distance is zero

if, and only if, the ISIs are distributed exponentially. Finally an application on

experimental data coming from the olfactory sensory neurons of rats is shown.

1 Introduction

The discharge activity of neurons is composed of the series of events called action

potentials (or spikes). It is generally accepted that these action potentials form the

dominant mode of communication in the central nervous system of living organisms.

Since Shannon developed his general and rigorous theory of communication and

information transmission in electro-engineering systems (Shannon, 1948), many

scientists of various background (biologists, engineers, mathematicians) have tried
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to apply it to the study of the properties of neural systems. Probably the most

fundamental questions point to a problem of neuronal coding, (Rieke et al., 1997).

The classical results in early neuroscience (Adrian, 1928) show that the number

of spikes per a time period (firing rate) is related to the stimulus intensity, i.e., the

firing rate increases with increasing stimulus intensity (generally non-linearly). The

idea that most of the information is transferred by this rate coding is probably

the oldest existing, however many related questions arise; for an overview see,

e.g., Gerstner and Kistler (2002). There are examples of situations in which time

averaging (counting) is hardly possible. This all leads to a different view of neural

coding, where exact timing of spikes or their temporal pattern plays a key role

(Buracas and Albright, 1999; Johnson and Glantz, 2004; Stevens and Zador, 1995).

Whereas rate codes and temporal spike codes are shown to be compatible under

many circumstances (Gerstner and Kistler, 2002), it is clear that infinitely more

different spike records may have the same rate. Therefore there is a need for the

quantification of the differences among these firing patterns and the information

they transfer (Bhumbra et al., 2004; Buracas and Albright, 1999; Nemenman, 2004;

Paninski, 2003; Rieke et al., 1997; Stein, 1967; Strong et al., 1998; Zador, 1998).

Neuronal firing under constant conditions is often described as a renewal process

of interspike intervals (ISI). Then the ISIs are realizations of a positive random

variable T and are fully characterized by the probability density function, f = f(t),

where f(t) dt = Prob(T ∈ [t, t + dt)) (Cox and Lewis, 1966). The renewal character

of the ISIs implies stationarity of the neuronal activity. Other characteristics, for

example the autocorrelation function (renewal density), can be easily computed (see

Perkel et al. (1967) for details) and indicates important features of the mechanism

behind neuronal firing, e.g., it is constant for the exponential model of ISI.

The basic statistical description of the ISIs can give some information related
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to the above mentioned possibilities of information transfer. The terms (firing)

rate, mean rate, frequency or mean/instantaneous frequency are used differently

by different authors, depending on the context (Lansky et al., 2004). We use the

term ”firing frequency”, ν, for the reciprocal value of the mean interspike interval,

ν = 1/E(T ), where the mean value E(T ) is estimated by the average length of ISI.

The coefficient of variation CV (a ratio of standard deviation to the mean value)

gives preliminary information about the temporal dispersion of neuronal discharge

within a spike train, for a review see Christodoulou and Bugmann (2001). An

important characteristic of the CV is, that it gives an indication of the exponential

ISI distribution – the most prominent of all ISI distributions – when CV = 1.

The first and second-order statistical features are easy to estimate from

experimental data. From the statistical point of view, the higher moments provide

information about the shape of the distribution (ISI), that cannot be obtained using

only the first- and second-order moments. Thus, the higher moments help us to

quantify and measure some of the features, that are visible in histograms but not

in the mean and CV . The higher moments represent the step between estimate of

ISI density and the mean and CV only. On the other hand the estimates of higher

moments cannot be reliably determined from samples of relatively small size as is

normal with the neuronal data. Thus the attempts to use higher moments are not

so frequent as using mean and CV (Han et al., 1998; Lewis et al., 2001; Ruskin

et al., 2002; Shinomoto et al., 2002). There is a strong demand for measuring the

variablity of neuronal discharge and CV is not the only existing method. Based on

the results of Holt et al. (1996), Shinomoto et al. (2003) introduce a local measure

of spike train variability, LV , which is not based on the statistical moments. Some

properties of LV are similar to those of CV , e.g., they are both zero for a regular ISI

sequence and for a Poisson process LV = 1. Analogously to CV , LV is not unique
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in the sense, that LV = 1 does not imply Poisson nature of spikes.

There exist many neuronal models of different types and for their mutual

comparison, or their fitting to data, various methods have been applied. Most of

these methods are closely related to the already mentioned coding strategies. The

aim of this paper is to propose a measure of deviation between two models of ISI,

respectively between a model and data and investigate its properties. We will use

tools provided by information theory, employing the Kullback-Leibler (KL) distance

for the purpose and show explicitly how the most common ISI descriptors differ from

the exponential one using this measure. Also an example on experimental data will

be presented to provide a practical illustration.

2 Theory and methods

2.1 Entropy and the Kullback-Leibler distance

The concept of entropy was introduced into statistical information theory by

Shannon (1948). For a discrete probability distribution with n possible states, each

with a probability pi, i ∈ {1, . . . , n}, the entropy H is defined as

H = −
n

∑

i=1

pi ln pi. (1)

The entropy H measures the ’randomness’ of the distribution, see Shannon (1948) for

details. It is maximized when all pi’s are equal. In information theory the logarithm

base is chosen to be 2, as it is related to ’bits’ of information. For simplicity of

calculation, we use a natural logarithm. The units are then commonly called ’nats’.

The differential entropy h (Cover and Thomas, 1991) of a continuous probability
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distribution f defined on [0,∞) is

h(f) = −
∫

∞

0

f(t) ln f(t) dt. (2)

It is possible to rewrite the equation (2) into a form based on the cumulative

distribution function, F (t) =
∫ t

0
f(x) dx, by using the method of Ling and He (1993),

which gives

h(f) = −
∫ 1

0

ln
dF (t)

dt
dF (t). (3)

Both definitions, (2) and (3), play their role from the point of view of numerical

estimation in dependency whether the density or the cumulative distribution

function is employed.

Though formula (2) is analogous to equation (1), differential entropy does not

have the same properties and intuitive interpretation as entropy H of a discrete

random variable. Namely, h given by formula (2) cannot be used directly to measure

the information content of a random variable as it may become negative and depends

on the scale of the random variable (Cover and Thomas, 1991; Shannon, 1948). To

overcome these difficulties we measure the information content of a random variable

with a density f ’against’ some reference state given by another random variable

with density g (both defined on [0,∞)) as a KL distance of these two distributions,

KL(f, g) =

∫

∞

0

f(t) ln
f(t)

g(t)
dt. (4)

This approach was proposed by Tarantola (1994); Tarantola and Valette (1982).

The reference state described by the probability density function g is termed the

’state of null information’ or the ’state of total ignorance’ (Jaynes, 1968; Tarantola,

1994). The quantity KL(f, g) provides a measure for the information content of f (or
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information ’gained’ from f when knowing g). Though it depends on the template

distribution g, it is invariant with respect to a transformation of variable and always

non-negative. This quantity can also be interpreted as a ’coding inefficiency’ when

using distribution g to ’encode’ distribution f (more details in Cover and Thomas

(1991)).

Generally, the KL distance is a measure of the ’closeness’ between two probability

density functions (Cover and Thomas, 1991), though it does not form a measure in

the metric sense. It is not symmetrical, however one can use its symmetric extension

(resistor-averaged KL distance), see e.g., Rozell et al. (2004). This proves to be

useful when comparing more than two probability densities simultaneously and also

when it is not clear what is the template (ideal) distribution to which the others are

related.

2.2 The KL distance between the exponential and general

model

The exponential distribution plays a key role in neuronal modeling. Its probability

density function fe is

fe(t) = a exp(−at), (5)

where for the parameter a > 0 holds E(Te) = 1/a. We see that the firing frequency

ν completely characterizes the distribution, ν = 1/E(Te) = a. For the exponential

distribution holds CV = 1, independently of the parameter a, but the reverse

implication that CV = 1 guarantees exponentiality is not true.

One of the most important features of exponential distribution, in the context of

information theory, is that among all probability distributions on the real positive

half-line with fixed E(T ), the exponential distribution maximizes the entropy h.
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The entropy h(fe) of the exponential distribution is

h(fe) = 1 − ln a. (6)

Thus among all possible stationary neuronal discharge activities the one described

by the exponential distribution of ISI is the most random. It is natural to choose it

as a reference state, the state of null information.

We will measure the information ’gained’ when changing from the response state

described by the exponential distribution fe given by equation (5) to a response

state described by a probability density function f with mean value E(T ). For this

purpose we employ formula (4), in which by substituting g = fe we obtain

KL(f, fe) = aE(T ) − ln a − h(f). (7)

If the mean values of f and fe differ, then the spike trains generally carry

different information in the concept of rate coding. However, as we want to analyze

possibilities for a mechanism different from rate coding, let us suppose that the

means of f and fe are equal, i.e., E(T ) = E(Te) = 1/a. Then for the KL distance of

these two distributions we obtain the following difference in entropies (Soofi et al.,

1995)

KL(f, fe) = h(fe) − h(f) = 1 + ln E(T ) − h(f). (8)

The formula (8) for the information gained when changing from the reference state

is also intuitively consistent with the notion of information as a reduction in entropy

(Shannon, 1948; Borst and Theunissen, 1999).

We further precise the interpretation of the KL distance as a measure of

information using the notion of mutual information as it is commonly used in
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the neuronal context. The mutual information I(S; R) (Cover and Thomas,

1991) determines the dependence between stimuli S and responses R (Borst and

Theunissen, 1999). Let the set of stimuli S = {si}n
i=1 be discrete and the set of

responses continuous R = {T, T > 0}, where T is an ISI. Mutual information can be

formally expressed as I(S; R) =
∑

i p(si) i(R|si), where i(R|si) is called the specific

information due to the stimulus si. Analogously to DeWeese and Meister (1999) we

express i(R|si) as

i(R|si) = h(R) − h(R|si). (9)

It follows from formula (9) that the specific information is large for those stimuli

that have only a few different responses associated with them, because h(R|si) is

the uncertainty in response given a particular stimulus si. In the limits, if there

is only a single response related to the stimulus si, then h(R|si) = 0. We have

limited ourselves to the case in which the ISIs are described by a renewal process

with probability density function f and the stimuli conditions are constant in time.

Under these two assumptions we can assign to each ISI distribution with density f

a chosen stimulus si. The uncertainty in response given stimulus si then becomes

h(R|si) = h(f), i.e., the smaller the value of h(R|si), the greater the information gain

due to si. The remaining term in formula (9), the marginal entropy h(R), depends

on the distribution of stimuli. This distribution affects the absolute value of i(R|si);

however, the relative encoding efficiency for different si’s remains unchanged. It is

useful to view h(R) as the entropy of the spontaneous neuronal activity, see Chacron

et al. (2001) for details. If this activity is described by the Poisson process, then

formula (9) corresponds to the expression for the KL distance (8). Furthermore

using formula (8) on two renewal processes described by distributions fA and fB

yields

KL(fB, fe) − KL(fA, fe) = h(fA) − h(fB). (10)
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The KL distance thus also provides a way to determine the specific information in

cases when the spontaneous activity is not a Poisson process.

It follows from the definition (4), that the KL distance may sometimes tend to

infinity. This is due to the fact that a continuous random variable generally carries

an infinite amount of information (van der Lubbe, 1997, p. 171). Nevertheless, this

fact can be considered as merely formal and without consequences, realizing that

in practice we are always working with finite precision on a finite time scale. It

also follows from equation (8) that the KL distance between any density and the

exponential one with the same mean is positive and equal to zero if, and only if,

f = fe. This statement of equivalence, in contrast to equality CV = 1, allows us to

judge exponentiality. In statistical literature the KL distance also appears as one of

approaches to exponentiality testing (Ebrahimi et al., 1992; Choi et al., 2004).

2.3 Evaluation of the KL distance from data

It follows from equation (8), that the evaluation of the KL distance from

experimental data is reduced to the problem of estimating the entropy of the involved

distributions. Estimation of the entropy of exponential distribution is equivalent

to the estimation of the mean value E(Te). Therefore, the only open problem is

estimation of the entropy h(f). Two possible approaches to h(f) estimation exist:

the parametric one, where from a preselected model its parameters are estimated and

then the entropy is calculated, and the non-parametric one, where h(f) is estimated

directly from data without specifying the model.

The first approach has been recently exploited, e.g., by Reeke and Coop (2004),

for the case of shifted gamma distribution (with three independent parameters).

To illustrate this approach we will estimate the parameters of several common

ISI descriptors. The goodness of fit of the data to the models will be checked by
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the standard one-sample Kolmogorov-Smirnov (KS) test (Gibbons, 1971) using the

estimated parameters. In the cases when the null hypothesis cannot be rejected the

KL distance will be evaluated using this parametric approach. In general, however,

the application of the KL distance method is not conditioned by the KS test.

As regards the second approach, many possibilities to estimate h(f) non-

parametrically exist and have been discussed in literature, see e.g. Beirlant et al.

(1997), Tsybakov and Meulen (1996) for an overview. We may divide non-

parametric entropy estimators into two groups. The so called ”plug-in” estimators

using formula (2) directly, thus some estimate of density has to be constructed,

employing, e.g., histograms, kernel-smoothed probability densities; and the

estimators where the probability density function does not appear explicitly, usually

derived using formula (3) in some way. To this group belong, e.g.: the estimator

of Vasicek (Vasicek, 1976), or estimators based on nearest sample spacings, see

Beirlant et al. (1997). The choice of concrete estimator is strongly situation and

purpose dependent. Histogram estimates or smoothed kernel densities are well

known to be greatly affected by bin-size resp. bandwidth. The fact that the

estimated probability density function has limited support to the real positive half-

line may in some cases be the next reason why not to employ kernel-smoothed density

estimates. In our case explicit evaluation of probability density function f is not

needed so we avoided ”plug-in” entropy estimators. To illustrate the non-parametric

KL distance evaluation on the experimental data we use the simple binless entropy

estimator of Vasicek (1976), which is known to converge and behave well for various

types of data (Ebrahimi et al., 1992; Miller and Fisher III, 2003). The examples of

estimated entropy values relevant to our calculations are included in Fig. (1). Given

n ISIs {t1, t2, . . . , tn} we sort them with respect to their length {t[1], t[2], . . . , t[n]}.
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Then the estimated entropy, h(data), is

h(data) =
1

n

n
∑

i=1

ln
[ n

2m
(t[i+m] − t[i−m])

]

, (11)

with a free parameter m < n/2 and t[j] = t[1] for j < 1 and t[j] = t[n] for j > n.

Note that estimator (11) is based on discretization of formula (3) using empirical

cumulative distribution function. The additional parameter m allows the avoidance

of possible numerical problems resulting from such discretization. The relation

between n and m was determined by Ebrahimi et al. (1992). For sample sizes

n ≥ 200 holds m = 13, which was the value of m we used in the entropy estimation.

3 Results and discussion

This section is divided into two parts. First, we investigate the KL distances

of several commonly used ISI distributions from the exponential one under the

condition of equal mean values. All the tested distributions are described by two

independent parameters related to their mean and variance. It follows from the

formula (8), valid under equality of the mean values, that the KL distance should also

depend on two parameters. Employing the scaling property of differential entropy

(Cover and Thomas, 1991, p. 233) together with formula (8) yields, that in our

case the KL distance does not depend on E(T ), as will be shown explicitly in the

studied examples. To provide a unified view of the results, we chose coefficient

of variation CV as an independent variable. This particular choice also seems to

be the most natural for the purpose of insight into possible mechanisms of neural

coding mentioned earlier. In the light of our setting, the dependence KL(CV ) allows

to judge possible amount of information being transmitted between two particular

states of neuronal firing as a function of spike train variability (while the firing
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frequency is not changing). Secondly, an application of the KL distance on the

experimental data is shown. The obtained results are related to those from the first

part.

 0
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K
L

CV

gamma
inv. Gauss
lognormal

shifted exp.
gamma: estimate

lognormal: estimate

Fig. 1: The Kullback-Leibler (KL) distance as a function of CV for the
tested models. Four values of CV (marked on the minor horizontal axis) are
chosen to produce Fig. 2. The KL distance of gamma and shifted exponential
(available only for CV ≤ 1) distributions is zero for CV = 1, implying that
at this point they become exponential. For CV → 0 and for CV → ∞
the KL distance tends to infinity for the tested distributions. With CV
increasing from zero the KL distances of lognormal, inverse Gaussian and
gamma distributions are initially the same. Then gamma branches off at
CV ≈ 0.25 and the lognormal and inverse Gaussian depart at CV ≈ 1.
For lognormal and inverse Gaussian distributions the distance never reaches
zero and even the minima are not located at CV = 1 implying that for
no combination of parameters these distributions become exponential. A
common feature of the tested models is that near CV = 1 the values of
KL distances are generally low, however, minimum for the lognormal, resp.
inverse Gaussian distribution is located at CV ≈ 1.31, resp. CV ≈ 1.17.
Furthermore for these two distributions, especially for the lognormal, the
KL distance grows very slowly with increasing CV , compared to the gamma
distribution. Estimated values from simulated data with sample sizes n =
500 and their standard deviations over 100 trials are shown for comparison
with theoretical results.
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Fig. 2: Probability density functions f(t) of the gamma, inverse Gaussian
and lognormal distributions with E(T ) = 1 s for four different values of
CV indicated in Fig. 1. The lowest number nKS of ISIs, required for
the Kolmogorov-Smirnov test to ”distinguish” between gamma and inverse
Gaussian distributions at 5% significance level is given. We can see that for
CV = 0.25 the three probability density functions are hardly distinguishable.
The number nKS is too large compared to usual sample sizes obtained in
experiments. The probability density functions start to differ more for
CV = 0.86 (this is the value, for which the KL distances of lognormal,
inverse Gaussian and shifted exponential distribution approximately equal),
nKS falls into the average length of experimental records. At CV = 1 the
gamma distribution becomes exponential (KL = 0), while the lognormal
and inverse Gaussian do not, and they are even not ”close” to exponential
as much as possible. The minimal KL distance of lognormal distribution
(corresponding to its maximum ”closeness” to exponential distribution) is
at CV = 1.31. At this point the KL distance of inverse Gaussian and gamma
distributions is roughly the same, though their probability densities differ
strikingly (nKS is merely 55).

3.1 Gamma distribution

Gamma distribution is one of the most frequent statistical descriptors of ISIs

(Hentall, 2000; Levine, 1991; McKeegan, 2002; Mandl, 1992). Its probability density
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function is

f(t) =
bata−1e−bt

Γ(a)
, (12)

where Γ(z) =
∫

∞

0
tz−1 exp(−t) dt is the gamma function and a > 0, b > 0 are the

parameters. From formula (12) these relations follow

E(T ) =
a

b
, CV =

1√
a
. (13)

Using formula (2), the entropy of gamma distribution is

h(f) = a + (1 − a)Ψ(a) − ln b + ln Γ(a), (14)

where Ψ(a) = d
da

ln Γ(a) is the digamma function. By substituting equations (13)

and (14) in formula (8) we find the KL distance of the gamma distribution from the

exponential one in the explicit form as a function of CV

KL(CV ) = 1 − ln CV 2 − ln Γ
(

1/CV 2
)

+
Ψ(1/CV 2) − 1

CV 2
− Ψ(1/CV 2). (15)

This dependence is shown in Fig. 1 together with the estimated values and standard

deviations from simulated data. We see, that the error of estimation is relatively

small and a possible positive bias with respect to true values is negligible for tested

sample sizes. The density f given by formula (12) is exponential for a = 1 and

therefore KL(CV = 1) = 0. The KL distance tends to infinity for CV → 0

and CV → ∞. We can see from the figure, that KL(CV ) increases rapidly for

CV > 1 especially if compared to the other models presented here. For CV < 0.25

(approximately) the KL distances of gamma, lognormal and inverse Gaussian

distributions become the same. Probability densities of investigated models for

the values of CV selected with respect to results in Fig. 1 and with mean ISI equal
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to one are presented in Fig. 2. We can see that the gamma distribution ranges from

the shape similar to the Gaussian distribution at CV = 0.25 via the ”typical” shape

of gamma distribution at CV = 0.86 to the exponential distribution at CV = 1.

Finally, for CV > 1 the gamma distribution is characterized by a majority of very

short intervals and long tail of the distribution. This feature, at least at the first

approximation, looks like bursting type of neuronal activity.

The KL distance provides a different approach to the comparison of two

distributions if compared with the KS test: it is ’global’, i.e., it takes into account

the whole shapes of the compared density functions, while the key parameter for

the KS method is the extreme local ’distance’ of the curves. Thus one can construct

cases for which the results given by KL and KS are contradictory. The most striking

example is when the template distribution is zero on some interval where the other

function is not. Then the KL distance is infinite, while the KS statistics may be

even an infinitely small one. Thus KS represents an alternative to KL, however,

with completely different properties.

3.2 Inverse Gaussian distribution

The Inverse Gaussian distribution (Chhikhara and Folks, 1989) is often used to

describe neural activity (Iynegar and Liao, 1997) and fitted to experimentally

observed ISIs (Gerstein and Mandelbrot, 1964; Levine, 1991). This distribution

results from the Wiener process with positive drift (the depolarization has a linear

trend to the threshold) as a stochastic neuronal model (Berger et al., 1990; Berger

and Pribram, 1992; Levine, 1991). The probability density of inverse Gaussian

distribution can be expressed as a function of two parameters a > 0 and b > 0

f(t) =

√

a

2πbt3
exp

[

− 1

2b

(t − a)2

at

]

, (16)
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with

E(T ) = a, CV =
√

b. (17)

The fact that the mean and coefficient of variation can be easily related to the

parameters a, b, which act as a scale and shape parameter, respectively, of the curve,

is of practical advantage.

The KL distance of the inverse Gaussian distribution from the exponential one

as a function of CV is

KL(CV ) =
1

2
ln

e

2π
− ln CV +

3√
2π

e1/CV 2

CV
K

(1,0)
1

2

(1/CV 2), (18)

where K
(1,0)
ν (z) is the derivative of the modified Bessel function of the second kind

(Abramowitz and Stegun, 1972)

K(1,0)
ν (z) =

∂

∂ν
Kν(z). (19)

The dependence is shown in Fig. 1. Due to the fact that neither for any combination

of parameters nor asymptotically the inverse Gaussian distribution is exponential,

the KL distance is not zero for CV = 1. This fact can be interpreted in this way,

following formula (8): even if there is no change in E(T ) and CV = 1 there still

may be some gain of information coming from the reference state (described by

exponential distribution). Following Fig. 1 we can judge the information gain under

the condition of fixed CV . The minimum of KL(CV ) for the inverse Gaussian

distribution is located at CV ≈ 1.173. We can see a difference here, compared to

the previous case of the gamma distribution. It has been already noted that the

condition CV = 1 does not imply exponentiality, but in this case even the minimal
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distance of the inverse Gaussian to exponential distribution is not located at CV = 1.

In Fig. 2 there are ISI probability densities for four selected values of CV . The

important fact is that for CV = 0.25 the models are practically indistinguishable.

Even at CV = 0.86 and CV = 1, lognormal and inverse Gaussian distributions are of

very similar shape. Finally, compared to gamma, inverse Gaussian lacks very short

ISIs which can be considered as positive feature of this distribution, if refractoriness

should be taken into account.

3.3 Lognormal distribution

The lognormal distribution of ISI, with some exceptions (Bershadskii et al., 2001),

is rarely presented as a result of a neuronal model. However, it represents quite

a common descriptor in ISI data analysis (Levine, 1991), e.g., a mixture of two

lognormal distributions has been used recently (Bhumbra et al., 2004).

The lognormal distribution is given by the probability density function

f(t) =
1

tσ
√

2π
exp

[

−(ln t − m)2

2σ2

]

, (20)

where m and σ > 0 are the parameters. Because the variable lnT is normally

distributed it follows

E(T ) = exp(m + σ2/2), CV =
√

exp σ2 − 1. (21)

We use formula (8) to compute the KL distance of lognormal distribution from the

exponential one. Expressing the KL distance as a function of CV we come to a

formula

KL(CV ) =
1

2

[

ln
CV 2 + 1

ln(CV 2 + 1)
+ ln

e

2π

]

. (22)
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From there it follows that

dKL

d(CV )
=

CV [ln(CV 2 + 1) − 1]

(CV 2 + 1) ln(CV 2 + 1)
(23)

and the minimum is at CV =
√

e − 1 ≈ 1.311. The dependence is shown in Fig. 1

together with the estimated values and standard deviations from simulated data,

which shows good correspondence between theoretical and numerical approaches.

The estimate is not systematically biased and the relative error is very small. Again,

as in the case of inverse Gaussian distribution, we see that even if CV = 1 the

distribution is not exponential. Yet again – the minimal possible deviation of

lognormal distribution from exponential one is not at CV = 1. It is interesting

that for CV < 1 (approximately) there is no difference in lognormal and inverse

Gaussian distributions from the perspective of the KL distance. The equality in

the KL distance, of course, does not imply that these distributions are identical, see

Fig. 2. Nevertheless, their similarity is very high.

3.4 Distributions involving a refractory period

The refractory phase is such a state of a neuron, coming immediately after a spike

was generated, when it is impossible for another spike to be emitted. In more detail,

one can distinguish the absolute refractory phase, when the generation of the next

spike is absolutely impossible and the relative refractory phase, when it is merely not

probable. The typical duration of the absolute refractory phase is around 2–4ms,

while the relative one may last around 10–20ms, depending on the definition of ”not

probable”, Gerstner and Kistler (2002). The discussion on the topic of refractory

phases and their importance is still ongoing (Berry II and Meister, 1998).

Recently a shifted gamma distribution was used as a generally suitable ISI
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probability distribution for parametric entropy estimation by Reeke and Coop

(2004). The absolute refractory phase is, in this model, described by a shift in

time for τ > 0, while parameters a, b are kept the same as in equation (12).

Correspondingly, E(T ) and CV change in a simple way but the entropy of such

distribution is independent of τ as follows from formula (2). In the case of shifted

gamma distribution we have three independent parameters and it is no longer

possible to describe the KL distance from the exponential model just as a function

of one parameter (CV ). On the other hand comparing the shifted gamma model to

the exponential distribution shifted by the same value τ gives naturally the same

results for KL(CV ) as given by equation (15). The same is true for any shifted

distribution. However, it might be interesting to compare two exponentials, one

with and one without refractory phase, as follows.

The probability density function of the shifted exponential distribution with

parameter a > 0 and a shift τ ≥ 0 is

f(t) =











0, t ≤ τ

ae−a(t−τ), t > τ.
(24)

Then it follows

E(T ) =
1 + aτ

a
, CV =

1

1 + aτ
. (25)

It is obvious that in this case it is always CV < 1 for τ > 0. Evaluation of the KL

distance of the shifted exponential distribution from the exponential one under the

condition of the same means using equations (8) and (25) gives

KL(CV ) = − ln(CV ). (26)
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For τ = 0 is CV = 1 and f given by formula (24) is exponential which is confirmed

by KL = 0. The function KL(CV ) is shown in Fig. 1.

The shape of KL(CV ) given by equation (26) differs from the KL distances of

gamma, inverse Gaussian and lognormal models with the corresponding CV . We

see that this curve, despite taking the value of zero at CV = 1, is the steepest

among all of them. Thus we can ask, what is the critical value of CV such that for

smaller values the KL distance of the shifted exponential distribution is greater than

that of any other tested model? Following Fig. 1 we estimate the critical value of

CV as the one for which the KL distances of the lognormal and shifted exponential

distributions equal. This results in (a very nice) equation

(CV 2 + 1)CV 2

ln(CV 2 + 1)
=

2π

e
, (27)

which yields CV ≈ 0.86. Realizing that

CV = 1 − τ

E(T )
(28)

and using the critical value of CV we receive a critical ratio of the refractory phase

to the mean value as τ/E(T ) ≈ 14.4 %. For ratios greater than the critical the

KL distance of the shifted exponential distribution is greater than that of other

models tested here. For example, if the average absolute refractory phase is 3ms,

the corresponding critical mean value is approximately 21ms.

3.5 Experimental data

The data comes from extracellular recordings made from olfactory receptor neurons

of freely breathing and tracheotomized rats using glass insulated tungsten microelec-

trodes. Spontaneous, single-unit action potentials were recorded using metal-filled
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glass micropipettes filled with an alloy of Wood’s metal (80%) and indium (20%).

The single unit nature of the recorded spikes was controlled during the experiment by

triggering the recorded neuron near the background-noise on a storage oscilloscope.

More details of the data acquisition is described in Duchamp-Viret et al. (2003).

Here we do not distinguish between the data that comes from freely breathing or

tracheotomized rats. A comparison of these two conditions are published elsewhere

(Duchamp-Viret et al., 2005). The sample sizes range from (circa) n = 100 to

n = 2000 and all records have been tested for nonstationarity (the Wald-Wolfowitz

test, serial correlation, periodogram). We use these recordings to illustrate the

estimation of the KL distance. Both parametric and non-parametric methods were

applied. The results are summarized in Fig. 3, where estimated KL distances

are plotted in dependency on the CV along with the theoretical curves of KL

distances re-plotted from Fig. 1. Two different categories of data are distinguished,

exponentiality rejected or not rejected, based on the Kolmogorov-Smirnov test

at 5% significance level. We can see that even if CV ≈ 1 the exponentiality

may be rejected. We note that the data obeys the general feature of the tested

models: the small values of the KL distance are distributed around CV = 1. Of

particular interest is the asymmetrical distribution of possibly exponential data

around CV = 1. Except for one spike train all records for which exponentiality

is not rejected have CV < 1. Furthermore these points (N) closely follow the

theoretical curve for the shifted exponential distribution. Of course from this fact

we cannot conclude that these ISI follow this distribution.

For CV > 1 the calculated KL distances are far above all considered curves.

Though the KL distance does not tell us which particular distribution to use, the

difference between theoretical and estimated KL values suggest that the gamma

distribution cannot describe the data well. We can expect that analogously to
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Fig. 3: The Kullback-Leibler (KL) distance as a function of CV for the

experimental data. Theoretical curves of the tested models are re-plotted

from Fig. 1. Two different categories of data are distinguished based on

the Kolmogorov-Smirnov test of exponentiality at 5% level of significance.

Spike trains and ISI histograms of the encircled data are shown in Fig. 4 and

those with CV close to unity are given a more detailed treatment in Tab. 1.

We see, that even for CV ≈ 1 there exist data that are not exponential. The

points around the value CV = 1, where the hypothesis of exponentiality was

not rejected, are asymmetric, closely following the theoretical curve for the

shifted exponential distribution. Generally we see that the data obey the

rule indicated in Fig. 1 for the common ISI descriptors, i.e., the smallest

values of the KL distance are around CV = 1. For CV > 1 the general

”course” of the data is even steeper than that of gamma distribution.

olfactory neurons in frogs (Rospars et al., 1994) there is a bursting character in this

activity. The bursting activity of the neuron is usually described by a mixture of
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two distributions, one for interburst ISIs and the other for intraburst ISIs (Mandl,

1992). For example Bhumbra et al. (2004) combines two lognormal distributions

given by formula (20), which results in a very flexible model with five unknown

parameters. An alternative, and more common, description could be a probability

density function f of the mixture of two exponential distributions

f(t) = pae−ax + (1 − p)be−bx (29)

with p ∈ (0, 1) and a > 0, b > 0, a 6= b. We can ask, whether model (29) can be as

far from the single exponential model as are the data in Fig. 3. To check this idea

we first compute E(T ) and CV of the distribution (29)

E(T ) =
pb + (1 − p)a

ab
, CV =

√

2pb2 + 2(1 − p)a2

(pb + (1 − p)a)2
− 1. (30)

Expressing p and b from equations (30), we re-parameterize the original formula (29)

using parameters E(T ), CV and a. Though the expressions grow in size quickly and

get difficult to handle analytically, we can evaluate the KL distance KL(E(T ), CV, a)

from formula (8) numerically. The results for CV = 1.2 show that for any E(T ) we

can find a value of parameter a such that the KL distance of the double exponential

is greater than the KL distance of gamma distribution with the same mean and

CV . Though it is not possible to fit the theoretical distributions to the data based

solely on the KL number, we deduce, that the double exponential distribution has

a chance to describe bursting behavior better than gamma distribution.

We chose two pairs of data sets with CV close to unity to show the situation in

more detail. The results are summarized in Tab. 1. The parameters of the gamma,

inverse Gaussian, lognormal and shifted exponential were estimated from the data.

Then the Kolmogorov-Smirnov test was performed to test the goodness of fit at a 5%
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Filename Exp. n ν [s−1] CV KLdata KLγ KLshift

RN20 01 − 1906 6.862 1.005 0.074 – –
RT48 01 + 355 1.988 1.032 0.027 0.001 –

RT58 01 − 788 5.246 1.073 0.236 – –
RN30 01 + 549 1.963 0.930 0.097 0.006 0.073

Tab. 1: Comparison of two pairs of spike trains (encircled in Fig. 3

with CV ≈ 1). The KL distances were estimated both from data (non-

parametrically) and from theoretical models (parametrically). The ”−” sign

in the ”Exp.” column indicates that the hypothesis of exponentiality was

rejected by the Kolmogorov-Smirnov test, while ”+” states that it was not

rejected (within a 5% significance level). n is the number of ISIs in the

record, ν the firing frequency, CV is the computed coefficient of variation,

KLdata is estimated directly from data (non-parametrically), KLγ is the

corresponding distance of the gamma distribution and KLshift of the shifted

exponential. We see, that the KL distances computed parametrically and

non-parametrically are rather different. This can be attributed both to wide

confidence intervals of estimated parameters and to the behavior of Vasicek’s

estimator.

significance level. In the case of not rejecting the null hypothesis, the KL distance

was estimated parametrically using the previous theoretical results. (Note that for

all of these four data sets the inverse Gaussian and lognormal model were rejected.)

Though all four data sets have CV ≈ 1 there are differences in the KL distance

from the exponential distribution. One may note that KLRN20 01 > KLRT48 01 even

though |1 − CVRN20 01| < |1 − CVRT48 01|. The spike trains and corresponding ISI

histograms of the four above mentioned data sets (together with two other records

also encircled in Fig. 3) are shown for comparison in Fig. 4, each plotted together

with the exponential distribution with the corresponding mean ISI.
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Fig. 4.: (Caption on the following page.)

4 Conclusions

The Kullback-Leibler (KL) distance was proposed as a measure of similarity between

two interspike interval (ISI) distributions. Choosing the exponential one as the
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Fig. 4: First 20 seconds of the spike trains and ISI histograms (of the whole

record) for the selected data encircled in Fig. 3 compared with exponential

probability density with the corresponding mean ISI. The values of CV and

KL distance estimated from data are also indicated. The first four records

with CV closest to unity are explored in Tab. 1. The record RN24 01 was

chosen to represent the group of data with CV > 1 and relatively large KL

distance. The sharp increase in frequency of very small ISI values together

with relatively flat tail of the histogram and large KL distance value favors

the double exponential model as the more probable ISI descriptor compared

to the gamma model. On the other hand, the record RN26 01 was chosen for

comparison only due to its small value of CV . Except RT48 01 all records

have n > 500.

template we analyzed the KL distance from both data and models. We selected

four common two-parametric distributions: gamma, lognormal, inverse Gaussian

and shifted exponential.

Fixing the mean values of exponential and model distribution (or data) to

be equal, the KL distance corresponds to information gain coming from a state

described by the exponential distribution of ISI to another state described by the

model distribution. Thus, it reveals a different mechanism from rate coding of

information transmission. Furthermore the KL distance is interpreted in terms

of specific information and its usefulness when determining the efficiency of the

stimulus encoding is shown. It is natural to express the information gain as a

function of a spike train variability, commonly reflected by coefficient of variation

(CV ). For exponential distribution CV = 1, however, the reverse implication does

not hold. The KL distance offers an alternative tool to CV to judge exponentiality
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of the model distribution (or data), because the exponentiality is guaranteed if, and

only if, the distance is zero. Furthermore, while there are tools to measure the

variability of spike trains, the KL distance measures a different characteristics – the

randomness of the underlying process.

The following inference can be made on the basis of the KL distance of ISIs

distributions:

1. Even if neither spike frequency nor coefficient of variation changes, the KL

distances to the exponential distribution can be different for different models

(data) and thus there is still a gain of information coming from one state to

another.

2. It is well known that the lognormal and inverse Gaussian distributions never

become exponential, but surprisingly their minimal KL distances to this

distribution are not located at CV = 1.

3. For CV increasing from zero (regular spiking) the KL distances of lognormal,

inverse Gaussian and gamma distributions are initially the same. Then gamma

branches off at CV ≈ 0.25 and the lognormal and inverse Gaussian depart at

CV ≈ 1. For low values of CV the differences among the distributions are

hardly distinguishable for usual sample sizes available in neural spiking data

studies.

4. For lognormal and inverse Gaussian distributions, the KL distance grows very

slowly for CV > 1, compared to the gamma distribution, and their distances

to the exponential distribution are practically the same for CV = 1 as for

CV < 2.

5. The KL distance of shifted exponential (CV < 1) is the steepest from all of

the investigated alternatives.
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6. As shown in experimental data, even if CV ≈ 1, the ISI distribution may not be

exponential, this is confirmed by the Kolmogorov-Smirnov test. Although the

data follow the general features indicated by theoretical results, the ”course” of

their KL distance for CV > 1 is steeper even than that of gamma distribution.

This suggests/confirms the bursting character of this data.

7. The occurrence of data where exponentiality cannot be rejected, is asymmetric

around CV = 1 and closely follows the theoretical curve for the shifted

exponential distribution.
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