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Abstract

The perireceptor and receptor events in a model of the single olfactory receptor
neuron of the male moth Antheraea polyphemus are studied. This first stage of signal
transduction imposes limiting conditions on the amount of information the olfactory
neuron can process. By employing basic concepts of information theory we compare
the effectiveness of the odorant concentration coding in dependence on the level of
temporal detail. We analyze two hypotheses, one in which the information is encoded
in the average concentration of the activated receptors and the other in which it is
encoded in its time-gradient. We show that each encoding scheme operates optimally
at different levels of temporal resolution and discuss their biological meaning.

1 Introduction

Orientation towards food and mate, especially in insects, is an olfactory-controlled
behavior which relies on the detection of small amounts of odorant molecules delivered
in turbulent atmospheric conditions, so that variation in magnitude and time is a
major feature of the natural stimulus. This variation in the concentration of stimulus
has been shown to be essential for locating the source of the stimulus (Kennedy et al.,
1980, 1981; Willis and Baker, 1984).

In this paper we analyze how a well-studied receptor neuron of the male moth
Antheraea polyphemus encodes its specific stimulus – the sexual pheromone emitted
by conspecific females. Our study is based on a model of the perireceptor and
receptor events involved in pheromonal transduction in this species (Kaissling, 2001;
Kaissling and Rospars, 2004). The external stimulus is given by the spatio-temporal
concentration of the major component of the sexual pheromone, the response of
the system (the internal signal) is the concentration of activated receptor molecules
borne by the dendritic membrane. We describe possible methods for reconstructing
the stimulus from the response and we discuss the efficiency of the stimulus coding
by employing an information-theoretic approach. This problem is biologically
meaningful because the nervous system must solve it by gaining information on the
stimulus from a proper processing of the initial information it receives, i.e. that
encoded in the pheromonal receptors.
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2 Theory and methods

2.1 The model

The model of odorant flux detector we consider here was developed by Kaissling
and Rospars (2004) and represents a slightly modified version of the original model
developed by Kaissling (1998, 2001). The network of chemical reactions (1) includes
tranfer of the external pheromone (or ligand) Lair from the surrounding air to the
perireceptor space L, the reversible binding of L to a single-type of receptor molecules
R, the reversible change of the complex RL to an activated state R∗ (the internal
signal), a reversible binding of L to a deactivating enzyme N (see Kaissling and
Rospars (2004) for details) and an irreversible odorant deactivation changing the
complex NL to P +N .

Lair
ki−→ L

L+R
k3−−⇀↽−−
k−3

RL

k4−−⇀↽−−
k−4

R∗ (1)

L+N
k5−−⇀↽−−
k−5

NL
k6−→ P +N

We denote the respective concentrations of the seven species involved by square
brackets, e.g., [L](t): for simplicity we omit to denote in the following the explicit
dependence on the time variable t. The total concentration of the receptor molecules,
[R]tot = [R]+[RL]+[R

∗], does not change over time, [R]tot = const., as well as the total
concentration of the deactivating enzyme, [N ]tot = [N ]+[NL], remains constant. The
set of equations fully describing the evolution of the reactions (1) in time consist of
five 1st-order ordinary differential equations (2)–(6) and two algebraic equations (7)
and (8):

d[L]

dt
= ki[Lair]− k3[L][R] + k−3[RL]− k5[L][N ] + k−5[NL] (2)

d[RL]

dt
= k3[L][R]− k−3[RL]− k4[RL] + k−4[R

∗] (3)

d[R∗]
dt

= k4[RL]− k−4[R
∗] (4)

d[NL]

dt
= k5[L][N ] − k−5[NL]− k6[NL] (5)

d[P ]

dt
= k6[NL] (6)

[R] = [R]tot − [RL]− [R∗] (7)

[N ] = [N ]tot − [NL]. (8)

We assume, that at t = 0 the concentrations of L, RL, R∗, NL and P are zero, which
gives the initial conditions. The values of the system parameters were determined by
Kaissling (2001) and Kaissling and Rospars (2004), we summarize them in Tab. 1.
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k3 = 0.209 s−1µM−1 k−3 = 7.9 s−1

k4 = 16.8 s−1 k−4 = 98 s−1

k5 = 4 s−1µM−1 k−5 = 98.9 s−1

k6 = 29.7 s−1 ki = 2900 s−1

[R]tot = 1.64 µM [N ]tot = 1 µM

Tab. 1: Summary of the odorant flux detector model parameters, determined
by Kaissling (2001) and Kaissling and Rospars (2004).

2.2 Information transmission and stimulus coding

The key question we investigate is: what is the efficiency of the stimulus-to-response
transduction? Or, how well can the external signal [Lair] be reconstructed from the
[R∗] signal? We describe the amount of the information transferred as a function
of the level of temporal detail ∆t (the temporal resolution) in [Lair]. [Lair] is then
realized by a piecewise constant function in time. The ”time step” is equal to ∆t, so
we assume there is no finer detail below ∆t, which is useful for examining the system’s
performance. Furthermore, we let the function [Lair] be discrete-valued, thus it can
take only one of n prescribed values X = {xi}n

i=1 in each time step (time ”bin”), see
Fig. 1. Of course, we can choose ∆t so small and n so large that the trajectory looks
continuous. We assign probability p(xi) to each possible value xi and let the sequence
of successive different [Lair] values be independent realizations of random variable X.
In the following, we let {xi}n

i=1 be equidistant, therefore the signal is fully described
by the probability mass function p(xi) and ∆t.

To measure the amount of information transferred we employ standard methods
of information theory (Shannon, 1948; Cover and Thomas, 1991). The entropy (or
the uncertainty) H(X) (Cover and Thomas, 1991) can be assigned to [Lair]:

H(X) = −
n∑

i=1

p(xi) ln2 p(xi). (9)

If the responses to the stimulation form another ensemble Y of m discrete states,
Y = {yj}m

j=1, each with probability p(yj), then the conditional entropy H(X|Y ) is
defined by employing the conditional probability p(xi|yj) (Cover and Thomas, 1991)

H(X|Y ) = −
m∑

j=1

p(yj)
n∑

i=1

p(xi|yj) ln2 p(xi|yj). (10)

Equation (10) quantifies the average uncertainty of the input (the stimulus), given
the output (the response). The way to obtain {yj}m

j=1 from [R∗] is presented below.
Generally, information is defined as a reduction in uncertainty (Shannon, 1948),
thus the quantity called mutual information, I(X;Y ), measures the information
transferred by the system (the information channel, Shannon (1948))

I(X;Y ) = H(X)− H(X|Y ). (11)
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Ideally, if the transmission is free of errors, the uncertainty on the input, given the
output, is zero: H(X|Y ) = 0, thus the maximal value of the information transferred
is I(X;Y ) = H(X). On the other hand, if X is completely independent of Y , then
from formula (10) follows that H(X|Y ) = H(X), thus the minimal value of I(X;Y )
is zero. We define the normalized mutual information In confined to interval [0, 1]
describing the fractional part of the information transferred, by relation

In =
I(X;Y )

H(X)
. (12)

Note, that I(X;Y ) does not quantify the information gain in real time, it only yields
the average amount of bits gained per interval of length ∆t. To obtain the average
information flow η in bits per second we simply divide:

η =
I(X;Y )

∆t
. (13)

3 Results and Discussion

In the following sections, we analyze two different approaches to the reconstruction
of [Lair] from [R∗]: coding by the average receptor count (denoted as count coding)
and coding by the average receptor activation rate (denoted as rate coding). The
properties of these code-reading mechanisms are illustrated on a simple type of
stochastic stimulation. Ideally, one would discretize the values down to the molecular
level to obtain the best possible resolution. This is however hardly possible, the
value of [R∗] corresponding to one activated receptor is approximately 10−6.2 µM,
and estimates of mutual information would thus require unrealistic amount of data.
In order to obtain reasonable estimates of I(X;Y ) we use low values of discretization
(n = 4), thus the shape of the curves is more important than their absolute values.

3.1 The count coding scheme

The first, and probably the simplest way to construct the ensemble of response states
Y from the [R∗] signal (and thus to ’read’ the information about [Lair]) is to divide
the time development of [R∗] into ”bins” of length ∆t, (equal to ∆t of [Lair]) and
compute the average value of the activated receptors for each bin. Correspondingly,
the averaged values of [R∗] are discretized into m levels: Y = {yj}m

j=1, see Fig. 1.
There are many ways to choose the discretization factor – our approach is to observe
minimal and maximal value of the averaged [R∗] and consequently to divide the
range obtained (taking into account the impossibility of division below one activated
receptor). Theoretically, choosing m > n should not affect the value of I(X;Y ),
however, we usually choose m = n unless stated otherwise, mostly for numerical
reasons (see below).

If the stimulus changes faster than the system stabilizes, the resulting values Y
of [R∗] at the current time bin are affected not only by the values X of [Lair] at the
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Fig. 1: Schematic illustration of stimulus and response discretization. The
external stimulus [Lair] is a piecewise constant function (thick solid line),
with ”time step” ∆t, taking one of {xi}3

i=1 equidistant values, selected
independently for each interval using the probability mass function p(xi). The
response [R∗] to such stimulation is shown below with thin solid line. The
discretization of [R∗] into ensemble Y = {yj}m

j=1 (count coding) is performed
in the following steps: 1) mean values of [R∗] in subsequent time steps ∆t are
computed (thick dashed line); 2) these mean values are assigned into different
bins yj. The ensemble Y ′ = {y′

j}m
j=1 (rate coding) is obtained similarly from

the derivative d[R∗]/dt shown below (thin solid line): average time-gradient
values in time steps ∆t are computed (thick dotted line) and discretized.

corresponding bin, but also by the values X at the preceeding bins. In other words,
the information transfer in this system has a memory – the current state is affected
by its history. We will deal with the memory effects later in more detail. For the case
of the count coding scheme we assume, that only the value of Y at the ”current” time
bin is used to reconstruct the true value of the corresponding X, i.e., the code-reader
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has no capacity to process several yj’s at a time. The memory effect is therefore the
main source of errors in otherwise deterministic [Lair] to [R

∗] transduction.
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Fig. 2: Effectiveness of the count coding scheme as a function of time
resolution ∆t. The number of discretization levels is n = m = 4, X is drawn
from the uniform distribution with maximum value 3

4
[Lair]max. The mutual

information flow I/dt is nearly flat for ∆t > 2 s. The normalized mutual
information In increases monotonously and saturates to unity for ∆t ≈ 20 s:
for ∆t > 20 s the decoding is essentially ”error-free”. The quantities decrease
rapidly towards very small values of ∆t, as expected.

The estimate of the amount of information the count coding scheme reveals is
shown in Fig. 2 for the simple case when all values of X are distributed equally
likely. We see that the mechanism is most effective in describing the low-frequency
component of the stimulation, below 1Hz. The mutual information I(X;Y ) steadily
increases to its maximum value and the information flow I/dt remains almost
constant. On the other hand, this mechanism does not reveal much of the more
detailed structure (higher than 1Hz) of the external signal.

3.2 The rate coding scheme

As mentioned in the previous section, the sequence {Y } of the averaged values of
[R∗] is not statistically independent due to the memory effect in stimulus-to-response
transduction. To approach the problem correctly from the information-theoretic point
of view, we would have to compute (estimate) the complete form of the mutual
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information I(X;Y ) in the general case (Cover and Thomas, 1991)

I(X;Y ) = lim
k→∞

1

k
I({Xi}k

i=1; {Yi}k
i=1) (14)

Formula (14) is known to be notoriously hard to estimate, even when further limiting
conditions are applied on the form of information transmission and on the type
of dependence in {Y }. The amount of data needed to estimate I(X;Y ) grows
exponentially with increasing k and even in cases where limit is guaranteed to exist
the convergence may be arbitrarily slow. Furthermore, equation (14) implies, that
the decoding mechanism would have to process several y′

js at a time in order to gain
additional information due to their inter-dependence.

To overcome the above mentioned difficulties we suggest here the ”rate coding”
scheme, that benefits from the memory effect, yet employs only local properties,
i.e., processes only one bin at a time. The main idea is, that at least part of the
value of the derivative of [R∗] with respect to time is the direct consequence of
the memory effect and may thus be utilized to reveal some different or additional
information compared to the values of concentration. Both coding schemes may be
used cooperatively, e.g., large positive value of the derivation suggests that the average
value of [R∗] is underestimated. In this section, for comparing the two suggested
decoding mechanisms, we analyze information transmission based solely on the rate
coding scheme. Similarly to the count coding mechanism, we compute the average
derivative in each time bin, [R∗]D, and discretize its value intom levels: Y = {yj}m

j=1 –
we employ again the equidistant discretization based on the min[R∗]D and max[R∗]D.

The resulting estimates of the same quantities as in the case of the count coding
are shown for comparison in Fig. 3 under the same circumstances. We see that
the mechanism is most effective in describing the high-frequency component of the
stimulation, above 1Hz. The normalized mutual information In never saturates, but
due to small values of ∆t the information flow is greater than in the case of count
coding. Both quantities decrease rapidly towards very small values of ∆t, as expected.
The amount of information transferred below ∆t = 0.1 s corresponds to the lower-
than 10Hz-frequency component of the stimulation signal – details on smaller scale
than ∆t = 0.1 s are not transferred because the change in the [R∗] corresponds to less
than one receptor molecule (Kaissling and Rospars, 2004).

4 Conclusions

We conclude that each of the considered mechanism works best on a different time
scale. The count coding carries information about the mean value of [Lair] and works
better as the system approaches the steady-state. On the other hand, the rate coding
works best in the transient state and describes accurately the finer temporal details of
the stimulus (see Fig. 4), this is also confirmed by experimental observations (Kramer,
1997). Furthermore, it is known that at least two different pheromonal receptor
neurons exist which can follow periodic stimuli at different frequencies (up to 2 and
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Fig. 3: Efficiency of the rate coding scheme as a function of time resolution
∆t. The number of discretization levels is n = m = 4. X is drawn
from the uniform distribution with maximum value 3

4
[Lair]max, the values

are approximated over several runs of 4000 time steps ∆t. The mutual
information flow I/dt is optimal around ∆t = 0.2 s and the absolute values
are greater than in the case of the count coding scheme (due to much
smaller values of ∆t). The coding scheme is never fully error-free: the
normalized mutual information In never saturates to one, the maximum is
around ∆t = 0.4 s then it slowly decreases. Both quantities decrease rapidly
towards very small values of ∆t, as expected. The amount of information
transferred below ∆t = 0.1 s corresponds to the lower-than 10Hz-frequency
component of the stimulation signal.

10 Hz respectively, Meng et al. (1989)). So we predict that different post-receptor
transduction mechanisms operate in these two neuron types that are respectively
sensitive to the two different aspects of the signal we have compared.
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