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Here we provide a derivation of Eq.(20) in the main manuscript, i.e., we prove that

CV =

√
σ2

µ
=

√
a(λ+ ω)

S(λ− ω)
, (1)

for the ISIs generated by the PIF model, where µ is the mean and σ2 is the variance of ISIs. The

probability density of ISIs is

f(t;λ, ω) =
S√

2π(λ+ ω)a2t3
exp

{
− [S + (λ− ω)at]2

2(λ+ ω)a2t

}
. (2)

Since S and a are known, we re-parametrize Eq. (2) by employing parameters β > 0 and γ > 0 as

(Tweedie, 1956)

β =
(λ− ω)2a2

2S2
, γ =

S2

(λ+ ω)a2
, (3)

and obtain

f(t;β, γ) =

√
γ

2πt3
exp

[
−βγt+ γ

√
2β − γ

2t

]
. (4)

Direct calculation of moments for density in Eq. (4) leads to modified Bessel functions of the

second kind. Tweedie (1956) uses a neat trick to avoid this by employing the cumulant generating

function as follows. Calculate the logarithm of the Laplace transform of the density in Eq. (4),

g(s) = lnL[f(t;β, γ)](s), which is (almost) the cumulant generating function,

g(s) = ln

∫ ∞

0

√
γ

2πt3
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−ts− βγt+ γ
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2t

]
dt = (5)

= ln eγ
√
2β

∫ ∞

0

√
γ

2πt3
exp

[
−(β + s/γ)γt− γ

2t

]
dt. (6)
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The integral in Eq. (6) is problematic, but its calculation can be avoided by noticing that substi-

tution β ← β + s/γ in Eq. (4) yields

f(t;β + s/γ, γ) =

√
γ

2πt3
exp

[
−(β + s/γ)γt+ γ

√
2 (β + s/γ)− γ

2t

]
. (7)

Comparing Eq. (7) with the integrand in Eq. (6) gives (since γ
√

2 (β + s/γ) does not depend on t)

g(s) = γ
√

2β − γ

√
2

(
β +

s

γ

)
+ ln

∫ ∞

0
f(t;β + s/γ, γ) dt = (8)

= γ
√
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√
2

(
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s

γ

)
, (9)

for all s > −γβ due to positivity of the parameter β. The first two central moments are then

µ = − dg(s)

ds

∣∣∣∣
s=0

=
1√
2β

, (10)

σ2 =
d2g(s)

ds2
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s=0

=
1

2γ
√

2β3
. (11)

Thus,

1

C2
V

=
µ2

σ2
= γ

√
2β =

(λ− ω)S

(λ+ ω)a
, (12)

and therefore Eq. (1) holds. Note, that Eq. (1) can be found, e.g., in Tuckwell (1988) (with details

of the calculation omitted).
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