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Abstract: We address the problem of non-parametric estimation of the recently proposed
measures of statistical dispersion of positive continuous random variables. The measures
are based on the concepts of differential entropy and Fisher information and describe
the “spread” or “variability” of the random variable from a different point of view than
the ubiquitously used concept of standard deviation. The maximum penalized likelihood
estimation of the probability density function proposed by Good and Gaskins is applied and
a complete methodology of how to estimate the dispersion measures with a single algorithm
is presented. We illustrate the approach on three standard statistical models describing
neuronal activity.
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1. Introduction

Frequently, the dispersion (variability) of measured data needs to be described. Although standard
deviation is used ubiquitously for quantification of variability, such approach has limitations. The
dispersion of the probability distribution can be understood in different points of view: as “spread”
with respect to the expected value, “evenness” (“randomness”) or “smoothness”. For example highly
variable data might not be random at all if it consists only of “extremely small” and “extremely large”
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measurements. Although the probability density function or its estimate provides a complete view,
quantitative methods are needed in order to compare different models or experimental results.

In a series of recent studies [1,2] we proposed and justified alternative measures of dispersion.
The effort was inspired by various information-based measures of signal regularity or randomness and
their interpretations that have gained significant popularity in various branches of science [3–9]. For
convenience, in what follows we discuss only the relative dispersion coefficients (i.e., the data or the
probability density function is first normalized to unit mean). Besides the coefficient of variation, cv,
which is the relative dispersion measure based on standard deviation, we employ the entropy-based
dispersion coefficient ch, and the Fisher information-based coefficient cJ . The difference between these
coefficients lies in the fact that the Fisher information-based coefficient, cJ , describes how “smooth”
is the distribution and it is sensitive to the modes of the probability density, while the entropy-based
coefficient, ch, describes how “even” it is, hence being sensitive to the overall spread of the probability
density over the entire support. Since multimodal densities can be more evenly spread than unimodal
ones, the behavior of ch cannot be generally deduced from cJ (and vice versa).

If a complete description of the data is available, i.e., the probability density function is known,
the values of the above mentioned dispersion coefficients can be calculated analytically or numerically.
However, the estimation of these coefficients from data is more problematic, and so far we employed
either the parametric approach [2] or non-parametric estimation of ch based on the popular Vasicek’s
estimator of differential entropy [10,11]. The goal of this paper is to provide a self-contained method of
non-parametric estimation. We describe a method that can be used to estimate both ch and cJ as a result
of a single procedure.

2. Methods

2.1. Dispersion Coefficients

We briefly review the proposed dispersion measures, for more details see [2]. Let T be a continuous
positive random variable with probability density function f(t) defined on [0,∞). By far, the most
common measure of dispersion of T is the standard deviation, σ, defined as the square root of the second
central moment of the distribution. The corresponding relative dispersion measure is known as the
coefficient of variation, cv,

cv =
σ

E(T )
(1)

where E(T ) is the mean value of T .
The entropy-based dispersion coefficient is defined as

ch =
exp[h(T )− 1]

E(T )
(2)

where h(T ) is the differential entropy [12],

h(T ) = −
∞∫

0

f(t) ln f(t) dt (3)
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The numerator in (2), σh = exp[h(T ) − 1], is the entropy-based dispersion, “analogous” to the
notion of standard deviation σ. The interpretation of σh relies on the asymptotic equipartition property
theorem [12]. Informally, the theorem states that almost any sequence of n realizations of the random
variable T comes from a rather small subset (the typical set) in the n-dimensional space of all possible
values. The volume of this subset is approximately σnh = exp[nh(T )], and the volume is bigger for those
random variables, which generate more diverse (or unpredictable) realizations. The values of σh and ch
quantify how “evenly” is the probability distributed over the entire support. From this point of view, σh
is more appropriate than σ to describe the randomness of outcomes generated by the random variable T .

The Fisher information-based dispersion coefficient, cJ , is defined as

cJ =
1

E(T )
√
J(T )

(4)

where

J(T ) =

∞∫
0

[
∂ ln f(t)

∂t

]2

f(t) dt (5)

The Fisher information is traditionally interpreted by means of the Cramer–Rao bound, i.e., the value
of 1/J(T ) is the lower bound on the error of any unbiased estimator of a location parameter of the
distribution. Due to the derivative in (5), certain regularity conditions are required on f(t) in order for
J(T ) to be interpreted according to the Cramer–Rao bound, namely continuous differentiability for all
t > 0 and f(0) = f ′(0) = 0, [13]. However, the integral in (5) exists and is finite also for, e.g., an
exponential distribution. Any locally steep slope or the presence of modes in the shape of f(t) increases
J(T ), [4].

2.2. Methods of Non-Parametric Estimation

In the following we assume that {t1, t2, . . . , tN} areN independent realizations of the random variable
T ∼ f(t), defined on [0,∞).

The cv is most often estimated by the ratio of sample standard deviation to sample mean, however,
the estimate may be considerably biased, [14].

Estimation of ch relies on the estimate ĥ of the differential entropy h(T ), as follows from (2). The
problem of differential entropy estimation is well exploited in literature [11,15,16]. It is preferable to
avoid estimations based on data binning (histograms), because discretization affects the results. The
most popular approaches are represented by the class of Kozachenko–Leonenko estimators [17,18] and
the Vasicek’s estimator [10]. Our experience shows that the simple Vasicek’s estimator gives good results
on a wide range of data [19–21], thus in this paper we employ it for the sake of comparison with the
estimation method described further below. Given the ranked observations t[1] < t[2] < · · · < t[N ], the
Vasicek’s estimator ĥ is defined as

ĥ =
1

N

N∑
i=1

ln
(
t[i+m] − t[i−m]

)
+ ln

N

2m
+ ϕbias (6)
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where t[i+m] = t[m] for i + m > N and t[i−m] = t[1] for i −m < 1. The integer parameter m < N/2

is set prior to the calculation, roughly one may set m to be the integer part of
√
N . The bias-correcting

factor is

ϕbias = ln
2m

N
+

(
1− 2m

N

)
Ψ(2m) + Ψ(N + 1)− 2

N

m∑
i=1

Ψ(i+m− 1) (7)

where Ψ(z) = d
dz

ln Γ(z) denotes the digamma function, [22].
The estimation of cJ requires estimation of J(T ), and it is more problematic and as far as we know

no “standard” algorithms have been proposed.
Huber [23] showed that there exists a unique interpolation of the empirical cumulative distribution

function such that the resulting Fisher information is maximized. In theory, one may use this method to
estimate J(T ). Unfortunately, it is very complicated and probably not feasible even for moderate values
of N .

Kernel density estimators are widely used for estimation of the density. They can be successfully
used for the calculation of the differential entropy too [24,25]. But, according to our experience,
they are unsuitable for estimation of the Fisher information, mainly due to the inability to control the
“smoothness” of the ratio f ′/f , which is the principal term in the integral (5). Inappropriate choice
of the kernel and the bandwidth leads to many local extremes of the kernel density estimator which
substantially increases the Fisher information. Theoretically, the kernel should be “optimal” in the sense
of minimizing the mean square error of the ratio f ′/f , which is difficult to derive in a closed form,
generally. One may also derive Vasicek-like estimator of J(T ), based on the empirical cumulative
distribution function and considering differences of higher order, however, we discovered that this
approach is numerically unstable.

We found that the maximum penalized likelihood (MPL) method of Good and Gaskins [26] for
probability density estimation offers a possible solution. The idea is to represent the whole probability
density function using a suitable orthogonal base of functions (Hermite functions), and the “best”
estimate of f(t) is obtained by solving a set of equations for the base coefficients given the sample
{t1, . . . , tN}.

In order to proceed, we first log-transform and normalize the sample,

xi =
ln ti − µ√

2σ2
(8)

where

µ =
1

N

N∑
i=1

ln ti and σ2 =
1

N − 1

N∑
i=1

(ln ti − µ)2 (9)

The idea here is to obtain a new random variable X , X = (lnT − µ)/
√

2σ2, with a more Gaussian-like
density shape unlike the shape of the distribution of T , which is usually highly skewed. Furthermore,
the limitation of the support of T to the real half-line may cause numerical difficulties. The probability
density function of X is expressed by the real probability amplitude c(x), so that X ∼ c2(x). For the
purpose of numerical implementation, c(x) is represented by the first r Hermite functions, [22], as

c(x) =
r−1∑
m=0

cmψm(x) (10)
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where
ψm(x) =

[√
π 2m m!

]−1/2
exp

(
−x2/2

)
Hm(x) (11)

and Hm(x) denotes the Hermite polynomial Hm(x) = (−1)m exp (x2) dm

dxm
exp (−x2).

The goal is to find such c = c(x), for which the score, ω, is maximized,

ω(c;x1, . . . , xN) = l(c;x1, . . . , xN)− Φ(c) (12)

subject to constraint (ensuring that c2(x) is a probability density function)

r−1∑
m=0

c2
m = 1 (13)

The term l(c;x1, . . . , xN) in (12) is the log-likelihood function,

l(c;x1, . . . , xN) = 2
N∑
i=1

ln c(xi) (14)

and Φ is the roughness penalty proposed by [26], controlling the smoothness of the density of X (and
hence the smoothness of f(t)),

Φ(c;α, β) = 4α

∫ ∞
−∞

c′(x)2dx+ β

∫ ∞
−∞

c′′(x)2dx (15)

The two nonnegative parameters α and β ( α + β > 0 ) should be set prior to the calculation. Note that
the first term in (15) is equal to α-times the Fisher information J(X).

The system of equations for ci’s which maximize (12) can be written as [26]

1
2
β
√
k(k − 1)(k − 2)(k − 3) ck−4 −

√
k(k − 1) [4α + (2k − 1)β] ck−2 +

+ [2λ+ 8αk + βk(k + 1)] ck −
√

(k + 1)(k + 2) [4α + (2k + 3)β] ck+2 +

+ 1
2
β
√

(k + 1)(k + 2)(k + 3)(k + 4) ck+4 = 2
N∑
i=1

ψk(xi)∑r−1
m=0 cmψm(xi)

(16)

for k = 0, 1, . . . , r − 1. The system can be solved iteratively as follows. Initially c0 = 1, cm = 0

for m = 1, 2, . . . and λ = N , which gives the approximation of X by a Gaussian random variable.
Then, in each iteration step, current values of c0, . . . , cr−1 are substituted into the right hand side of (16),
and the system is solved as a linear system with unknown variables c0, . . . , cr−1 appearing on the left
hand side of (16). Once the linear system is solved, the coefficients are normalized to satisfy (13). The
corresponding Lagrange multiplier is calculated as

λ = N + α

{
2− 4

r−1∑
m=0

[(
m+ 1

2

)
c2
m −

√
(m+ 1)(m+ 2) cmcm+2

]}
+

+ β

{
3

4
−

r−1∑
m=0

[
3
4
(2m2 + 2m+ 1) c2

m − (2m+ 3)
√

(m+ 1)(m+ 2) cmcm+2 +

+ 1
2

√
(m+ 1)(m+ 2)(m+ 3)(m+ 4) cmcm+4

]}
(17)
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The r + 1 variables (r coefficients and the Lagrange multiplier λ) are computed iteratively. In
accordance with [26], the algorithm is stopped when λ does not change within desired precision in
subsequent iterations.

After the score-maximizing ci’s are obtained, and thus the density of X is estimated, the estimates of
dispersion coefficients in (2) and (4) are calculated from the following entropy and Fisher information
estimators. The change of variables gives

ĥ(T ) = ĥ(X) + µ+ ln
(√

2σ
)

+
√

2σÊ(X) (18)

where ĥ(X) = −2
∫∞
−∞ c(x)2 ln |c(x)| dx is the estimator of the differential entropy of X , µ and σ

are given by (9) and Ê(X) =
∫∞
−∞ xc(x)2dx is the estimated expected value of X . (Numerically,

Ê(X) is usually small and can be neglected. Its value is influenced by the number, r, of considered
Hermite functions.)

The Fisher information estimator then follows, by an analogous change of variables, as

Ĵ(T ) =
exp(−2µ)

σ2

∫ ∞
−∞

[√
2c′(x)− σc(x)

]2

exp
(
−2
√

2σx
)
dx (19)

The calculation requires the first derivative of c(x) [22],

c′(x) =
1√
2

r−1∑
m=1

cm
√
m ψm−1(x)− 1√

2

r−1∑
m=0

cm
√
m+ 1 ψm+1(x) (20)

3. Results

Neurons communicate via the process of synaptic transmission, which is triggered by an electrical
discharge called the action potential or spike. Since the time intervals between individual spikes are
relatively large when compared to the spike duration, and since for any particular neuron the “shape”
or character of a spike remains constant, the spikes are usually treated as point events in time. Spike
train consists of times of spike occurrences τ0, τ1, . . . , τn, equivalently described by a set of n interspike
intervals (ISIs) ti = τi − τi−1, i = 1 . . . n, and these ISIs are treated as independent realizations of
the random variable T ∼ f(t). The probabilistic description of the spiking results from the fact that
the positions of spikes cannot be predicted deterministically due to presence of intrinsic noise, only the
probability that a spike occurs can be given [27–29]. In real neuronal data, however, the non-renewal
property of the spike trains is often observed [30,31]. Taking the serial correlation of the ISIs as well as
any other statistical dependence into account would result in the decrease of the entropy and hence of
the value of ch, see [12].

We compare exact and estimated values of the dispersion coefficients on three widely used statistical
models of ISIs: gamma, inverse Gaussian and lognormal. Since only the relative coefficients are
discussed, cv, ch, cJ , we parameterize each distributions by its cv while keeping E(T ) = 1.

The gamma distribution is one of the most frequent statistical descriptors of ISIs used in analysis of
experimental data [32]. Probability density function of gamma distribution can be written as

fΓ(t) =
(
c2
v

)−1/c2v
[
Γ
(
1/c2

v

)]−1
t1/c

2
v−1 exp

(
−t/c2

v

)
(21)



Entropy 2012, 14 1227

where Γ(z) =
∫∞

0
tz−1 exp(−t)dt is the gamma function, [22]. The differential entropy is equal to, [2],

hΓ =
1

c2
v

+ ln c2
v + ln Γ

(
1

c2
v

)
+

(
1− 1

c2
v

)
Ψ

(
1

c2
v

)
(22)

where Ψ(z) = d
dz

ln Γ(z) denotes the digamma function, [22]. The Fisher information about the location
parameter is

JΓ =
1

c2
v(1− 2c2

v)
for 0 < cv <

1√
2

(23)

The Fisher information diverges for cv ≥ 1/
√

2, with the exception of cv = 1 (corresponds to exponential
distribution) where JΓ = 1, but the Cramer–Rao based interpretation of JΓ does not hold in this case
since fΓ(0) 6= 0, see [13] for details.

The inverse Gaussian distribution is often used for description of ISIs and fitted to experimental data.
It arises as result of spiking activity of a stochastic variant of the perfect integrate-and-fire neuronal
model [33]. The density of this distribution is

fIG(t) =

√
1

2πc2
vt

3
exp

[
−(t− 1)2

2c2
vt

]
(24)

The differential entropy of this distribution is equal to

hIG =
ln (2πec2

v)

2
− 3√

2πc2
v

exp
(
c−2
v

)
K(1,0)

(
1
2
, c−2
v

)
(25)

where K(1,0)(ν, z) denotes the first derivative of the modified Bessel function of the second kind [22],
K(1,0)(ν, z) = d

dν
K(ν, z). The Fisher information of the inverse Gaussian distribution results in

JIG =
21c6

v + 21c4
v + 9c2

v + 2

2c2
v

(26)

The lognormal distribution is rarely presented as model distribution of ISIs. However, it represents a
common descriptor in analysis of experimental data [33], with density

fLN(t) =

√
1

2πt ln(1 + c2
v)

exp

{
− [ln(1 + c2

v) + ln t2]2

8 ln(1 + c2
v)

}
(27)

The differential entropy of this distribution is equal to

hLN = ln

√
2πe

ln(1 + c2
v)

1 + c2
v

(28)

and the Fisher information is given by

JLN =
(1 + c2

v)
3[1 + ln(1 + c2

v)]

ln(1 + c2
v)

(29)

The theoretical values of the coefficients of ch and cJ as functions of cv are shown in Figure 1 for all
the three distributions mentioned above. We see that the functions form hill-shaped curves with local
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maxima achieved for different values of cv. Asymptotically, ch as well as cJ tend to zero for cv → 0 or
cv →∞ for the three models.

Figure 1. Variability represented by the coefficient of variation cv, the entropy-based
coefficient ch (dashed curves, right-hand-side axis) and the Fisher information-based
coefficient cJ (solid curves, left-hand-side axis) of three probability distributions:
gamma (green curves), inverse Gaussian (blue curves) and lognormal (red curves). The
entropy-based coefficient, ch, expresses the evenness of the distribution. In dependency
on cv, it shows a maximum at cv = 1 for gamma distribution (corresponds to exponential
distribution) and between cv = 1 and cv = 1.5 for inverse Gaussian and lognormal
distributions. For all the distributions holds ch → 0 as cv → 0 or cv → ∞. The Fisher
information-based coefficient, cJ , grows as the distributions become “smoother”. The overall
dependence on cv shows a maximum around cv = 0.5. Similarly to ch(cv) dependencies,
ch → 0 as cv → 0 or cv → ∞ (does not hold for gamma distribution, where cJ can be
calculated only for cv < 1/

√
2).
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To explore the accuracy of the estimators of the coefficients ch and cJ when the MPL estimations
of the densities are employed, we did three separate simulation studies. All the simulations and
calculations were performed in the free software package R [34]. For each model with the probability
distribution (21), (24) and (27), respectively, the coefficient of variation, cv, varied from 0.1 to 3.0 in steps
of 0.1. One thousand samples, each consisting of 1000 random numbers (a common number of events
in experimental records of neuronal firing), were taken for each value of cv from the three distributions.

The MPL method was employed on each generated sample to estimate the density. We chose the
number of the base functions equal to r = 20. The larger bases, r = 50 or r = 100, were examined
too, with negligible differences in the estimation for the selected models. The values of the parameters
for (15) were chosen as α = 3 and β = 4, in accordance with the suggestion ([26], Appendix A).

The outcome of the simulation study for the gamma density (21) is presented in Figure 2, where the
theoretical and estimated values of ch and cJ for given cv are plotted. In addition, the values of coefficient
ch calculated by Vasicek’s estimator are shown. We see that the MPL method results in precise estimation
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of ch for low values of cv and in slightly overestimated values of ch for cv > 0.7. The Vasicek’s estimator
gives slightly overestimated values too. Overall, the performances of Vasicek’s and MPL estimators are
comparable. The maximum of the MPL estimator of ch is achieved at the theoretical value, cv = 1. We
can see that the standard deviation of the ch estimate is higher as cv grows from zero. As cv > 1, the
standard deviation begins to decrease slowly.

We conclude that the MPL estimator of cJ is accurate for low cv. For cv > 0.5 it results in
underestimated cJ and it tends to zero as cv → 1/

√
2 as well as the theoretical values. The high bias

of cJ for high cv is caused by inappropriate choice of the parameters α and β, which were kept fixed in
accordance with the suggestion of [26]. Nevertheless, the main shape of the dependency on cv remains
and the MPL estimates of cJ achieves local maximum at cv

.
= 0.55, which is slightly lower than the

theoretical value.

Figure 2. The entropy-based variability coefficient ch (panel a) and the Fisher
information-based variability coefficient cJ (panel b), calculated nonparametrically
from (18) and (19), respectively, for gamma distribution (24). The mean values (indicated
by red discs) accompanied by the standard error (red error bars) are plotted in dependency
on the coefficient of variation, cv. The dashed lines are the theoretical curves. In panel a, the
results obtained by estimation (6) are added (blue triangles indicate mean values and blue
error bars stand for standard error). The results are based on 1000 trials of samples of size
1000 for each value of cv.
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Figure 3 shows the corresponding results for the inverse Gaussian density. The Vasicek’s and MPL
estimates of ch are almost precise. Both the estimator of ch based on MPL method and that based on
the Vasicek’s entropy give the same mean values together with the same standard deviations. The MPL
estimator of cJ gives accurate and precise results for cv < 0.5. For higher cv, the estimated value
is lower than the true one. The maximum of estimated cJ is achieved at the same point, cv

.
= 0.5.

The asymptotical decrease of the estimated cJ to zero is faster than the true dependency is. By our
experience, this can be improved by setting higher α and β in order to give higher impact to the roughness
penalty (15).
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Figure 3. Estimations of the variability coefficients ch (panel a) and cJ (panel b) for inverse
Gaussian distribution (24). The notation and the layout is the same as in Figure 2.
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The results of the simulation study on the lognormal distribution with density (27) is plotted in
Figure 4, together with the theoretical dependencies and the results for the Vasicek’s estimator of the
entropy. Both the MPL estimators of ch and cJ have qualitatively same accuracy and precision features
as the analogous estimators for the inverse Gaussian model.

Figure 4. Estimations of the variability coefficients ch (panel a) and cJ (panel b) for
lognormal distribution (27). The notation and the layout is the same as in Figure 2.
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4. Discussion and Conclusions

In proposing the dispersion measures based on entropy and Fisher information we were motivated by
the difference between frequently mixed up notions of ISI variability and randomness, which, however,
represent two different concepts [1]. The proposed measures have been so far successfully applied
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mainly to examine differences between various neuronal activity regimes, obtained either by simulation
of neuronal models or from experimental measurements [32]. There, the comparison of neuronal
spiking activity under different conditions plays a key role in resolving the question of neuronal coding.
However, the methodology is not specific to the research of neuronal coding; it is generally applicable
whenever one needs to quantify some additional properties of positive continuous random data.

In this paper, we used the MPL method of Good and Gaskins [26] to estimate the dispersion
coefficients nonparametrically from data. We found that the method performs comparably with the
classical Vasicek’s estimator [10] in the case of entropy-based dispersion.

The estimation of Fisher information-based dispersion is more complicated, but we found that the
MPL method gives reasonable results. In fact, so far the MPL method is the best option for cJ estimation
among the possibilities we tested (modified kernel methods, spline interpolation and approximation
methods). The key parameters of the MPL method which affect the estimated value of J(T ) (and
consequently of cJ ) are the values of α and β in (15). In this paper we employed the suggestion of [26],
however, we found that different setting may sometimes lead to dramatic improvement in the estimation
of J(T ). We tested the performance of the estimation for sample sizes less than 1,000 and we found
out that significant and systematic improvement resulting in low bias can be reached if α and β are
allowed to depend somehow on the sample size. In this sense, the parameters play a similar role to
the parameter m in the Vasicek’s estimator (6). We are currently working on a systematic approach to
determine α, β optimally, but the fine tuning of α and β is a difficult numerical task. Nevertheless, even
without the fine-tuning, the performance of the entropy estimation is essentially the same as in the case
of Vasicek’s estimator.

The length of the neuronal record and hence the sample size is another issue related to the choice of
these parameters. As emphasized, e.g., by [35,36], particularly short record can considerably modify the
empirical distribution. This can be adjusted by the parameter values, choosing whether the distribution
should fit the data or it should be rather robust.
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