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Performance breakdown in optimal stimulus decoding
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One of the primary goals of neuroscience is to understand how neurons encode and process information about
their environment. The problem is often approached indirectly by examining the degree to which the neuronal
response reflects the stimulus feature of interest. In this context, the methods of signal estimation and detection
theory provide the theoretical limits on the decoding accuracy with which the stimulus can be identified. The
Cramér-Rao lower bound on the decoding precision is widely used, since it can be evaluated easily once the
mathematical model of the stimulus-response relationship is determined. However, little is known about the
behavior of different decoding schemes with respect to the bound if the neuronal population size is limited.
We show that under broad conditions the optimal decoding displays a threshold-like shift in performance in
dependence on the population size. The onset of the threshold determines a critical range where a small increment
in size, signal-to-noise ratio or observation time yields a dramatic gain in the decoding precision. We demonstrate
the existence of such threshold regions in early auditory and olfactory information coding. We discuss the origin
of the threshold effect and its impact on the design of effective coding approaches in terms of relevant population
size.
Keywords: Fisher information, Cramér-Rao bound, Neuronal coding, Threshold effect

INTRODUCTION

A satisfying description of the principles governing the neu-
ronal code, i.e., the way information is represented in neuronal
activity, is still not known [8, 41, 47]. A substantial volume
of literature approaches the problem by analyzing the degree
to which a selected aspect of neuronal activity, denoted as the
response, reflects some quantity of interest, often denoted as
the stimulus. The degree of such stimulus-response dependence
is quantified by the coding precision, or accuracy, with which
the stimulus can be ultimately decoded (estimated) from the
observed responses. Comparing the coding precision for dif-
ferent types of responses (e.g., counts of action potentials or
intervals in between them) then yields important inference on
the hypothetical structure of the true neuronal code.

The actualmethodology for determining the coding precision
is provided by the theory of estimation where the mean square
error (MSE) is employed as the measure of accuracy [20, 49].
Exact answers can be given in only a handful of cases though.
In more general situations, including the typically nonlinear
models of neural activity, the asymptotic theory of infinite pop-
ulations becomes useful. A major result in this area is that for
a wide range of problems there exists an estimator with the
variance of errors attaining the Cramér-Rao (CR) bound – the
theoretical minimum [51]. The CR bound is given in terms of
Fisher information, a quantity which can be calculated once the
dependence of the response distribution on the stimulus value
is known. The CR bound can be also stated as the lower bound
on estimator variance, even without discussing its asymptotic
attainment. However, the power of such an approach is signifi-
cantly weaker [51], e.g., the estimator bias or tightness of the
bound might become a concern. Seen from a different perspec-
tive, one needs results on both the estimator and the bound on
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possible accuracy. Having only the estimator without knowing
the bound on efficiency, or only the bound without a clue on its
achievability, is of lesser importance.
The convenience and apparent scope of the Fisher informa-

tion concept has led to its common acceptance as a useful tool in
a variety of problems, in both Bayesian and frequentist contexts
[48], including fruitful applications to computational neuro-
science [4, 7, 12, 13, 27, 38, 40, 45, 53, 55–57]. On the other
hand, though the methods of asymptotic optimality theory are
practically useful due to their relative simplicity, their asymp-
totic character must be pointed out. Most of the conclusions
are strictly limit results as the neuronal population size tends to
infinity. Whether such results can be used as approximations
under given conditions is not obvious and a careful case-by-case
examination is generally recommended [51].

While it is known that the CR bound may not be achievable
under certain circumstances [4, 20], the actual dependence of
the ultimate MSE on the population size is much less frequently
investigated. We focus on the striking behavior of optimal
decoding characterized by large and abrupt changes in decoding
accuracy – the threshold effect [29, 32, 43, 49], which is not
captured by the CR bound. In his pioneering study in the field of
computational neuroscience, Xie [53] described the threshold
effect in a homogeneous population of generic neurons with
bell-shaped tuning curves. In addition, he provided a method to
estimate the critical population size under the Gaussian setting.
In this paper we extend Xie’s work by focusing on specific
neural sensory systems (auditory and olfactory), thus showing
the biological relevance of the threshold phenomenon. For
these systems we demonstrate the complicated dependence of
the decoding performance on the stimulus intensity (sound
pressure or odorant concentration). We discuss the origins of
the threshold effect and refer to the state-of-the-art literature
on the subject in the mathematical engineering community.
In order to understand the rapid MSE transitions we devise a
simple linear toy model with non-Gaussian noise, and derive an
approximate expression for the optimal decoding performance
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in dependence on the sample size.
The threshold effect challenges the common assumption

of the MSE approaching the CR bound in an unremarkable
way as the population size increases. The key message is that
there exists a critical range of population sizes where a small
increment may yield a dramatic improvement in the decoding
performance.

METHODS

Typically, an electrophysiological experiment consists of
repeated trials in which the stimulus quantified by � (e.g., in-
tensity, position, color, etc.) is presented, and the neuronal
response r is recorded [8, 11, 17]. Such an approach is used to
construct models in which many neurons, possibly independent
or even identical, respond at the same time. The response can
be, e.g., the number of spikes counted in a certain time window,
time to first spike or membrane potential. It is well known that
the response varies randomly across trials [42, 47]. Thus by
repeating the experiment it is possible, at least in theory, to
collect enough data to estimate the probability that a particular
response occurs. The neuronal model (the stimulus-response
relationship) is then fully described in terms of the probability
density function parameterized by � , f .r I �/, or in terms of
the probability mass function. Thus, the response is modeled
as a random variable R distributed according to f .r I �/. In
computational neuroscience, theoretical methods based on ob-
served data and biophysical reasoning are frequently used to
obtain f .r I �/ directly [8, 50].

As argued in the introduction, the key question is: assuming
full knowledge of the model, f .r I �/, how precisely may one
estimate the fixed stimulus value � based on the observed re-
sponse r? The estimator O� , which is a function of the response
random variableR, is employed to infer the true stimulus value.
Ideally, the value O�.r/ for some observed response R D r
should be as close as possible to � . Denote the mean value of
the estimator as m.�/, i.e.,

m.�/ D

Z
O�.r/f .r I �/ dr: (1)

Under regularity conditions on f .r I �/ [20, 51] the CR bound
on the estimator variance can be established,

Var O�.R/ �
m0.�/2

J.�/
; (2)

where J.�/ is the Fisher information,

J.�/ D

Z �
@ logf .r I �/

@�

�2
f .r I �/ dr: (3)

In general, m.�/ ¤ � and the estimator is biased. The
estimator variance can be formally decomposed as

Var O�.R/ D "2.�/ � b2.�/; (4)

where "2.�/ D
R
Œ O�.r/ � ��2f .r I �/ dr is the mean square

error (MSE) and

b.�/ D m.�/ � � (5)

is the bias of the estimator. The actual bias dependence on � is
not known beforehand in a typical estimation problem, making
Eq. (2) difficult to employ in practice. The CR bound is thus
often stated for unbiased estimators by requiringm.�/ D � (at
least in the infinitesimal neighbourhood of � ), yielding

"2.�/ �
1

J.�/
: (6)

Better decoding performance is expected as the population
size n increases. In the simplest case the estimator is a function
of n independent and identically distributed observations, O�n �
O�.r1; : : : ; rn/, obtained from the product joint density

f .r1; : : : ; rnI �/ D

nY
iD1

f .ri I �/: (7)

The estimator mean, mn.�/ (as well as bias and MSE), is then
generally a function of n. By substituting Eq. (7) into Eq. (3)
and by repeating the derivation leading to Eq. (2), the sample
size-dependent version of the CR bound is obtained [20],

Var O�.R1; : : : ; Rn/ �
m0n.�/

2

nJ.�/
; (8)

where the expectations are taken with respect to the product
density in (7). Similarly to Eq. (6) it holds

"2n.�/ �
1

nJ.�/
(9)

for the unbiased version.
Since estimation bias is usually present, and the restriction

to unbiased estimators is somewhat artificial and often even im-
possible, the evaluation of the CR bound and its interpretation
might be problematic for finite population sizes. Classically,
the bound plays a clear-cut role in the asymptotic setting of
infinite sample sizes, which is in practice identified (approxi-
mately) with the large sample size or high signal-to-noise ratio
situations [49, 51]. The theory of asymptotic statistics guar-
antees that under certain regularity conditions there exists an
estimator such that as n increases, the probability distribution
of
p
n. O�n � �/ converges to a normal distribution with zero

mean and variance equal to 1=J.�/. In other words, there exists
an estimator which is asymptotically unbiased and attains the
CR bound. The popular maximum likelihood estimator,

O�n D argmax
�

nX
iD1

logf .ri I �/; (10)

is optimal in the above mentioned sense. An alternative, and
much simpler method, is to employ the moment estimator de-
fined by

O�n D �
�1. Nr/; (11)

where Nr D
Pn
iD1 ri=n is the sample mean and ��1.r/ is the

inverse to the tuning curve defined by

�.�/ D

Z
rf .r I �/ dr: (12)

Note that the moment estimator is generally not asymptotically
efficient [51].
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RESULTS

Depending on the nonlinearity of the neuronal stimulus-
response relationship and the structure of noise, Fisher infor-
mation might not give a good approximation to decoding pre-
cision for practically relevant sample sizes. We point to the
discrepancy known as the threshold effect [32, 49] between
the theoretically achievable and the actual MSE. Although the
degradation of estimation performance with decreasing sam-
ple size is certainly not surprising, the rate of this degradation
might be.

For the purpose of illustration we investigate two models of
information coding in auditory and olfactory sensory systems
based on experimental measurements.

Auditory-nerve rate response to tone intensity

Winslow and Sachs [52] studied the response of cat auditory
nerve fibers to a varying sound pressure level of a pure tone.
Ensembles of fibers best responding to 8 kHz sound frequency
were investigated. The study distinguishes three fiber types
according to their spontaneous activity: the low type forms
10% of the ensemble, the medium type accounts for 30% and
the high type for the remaining 60%. The tuning curve of
each fiber type follows the model by Sachs and Abbas [35]
that describes the relationship between nerve fibers firing rate
and basilar membrane displacement in response to a pure tone
stimulus,

�.�/ D
10c�=20rm

10tE=20.1C 10�tI =2010�=10/c=3 C 10c�=20
C rsp:

(13)
The stimulus � is the sound pressure level expressed in decibels
relative to an arbitrary reference and the response is given in
spikes per second. The parameter tE determines the response
threshold, tI D 100 dB is a parameter related to the two-tone
suppression model [35], rm is the maximum rate change which
can be observed in response to a pure tone stimulus, rsp is
the spontaneous discharge rate and c D 1:77 is a constant.
The values of tE ; rm; rsp for each fiber type are summarized
in Table 1. There is some natural variation in the parameter
values. We account for this variation by increasing the response
variance of each neuronal type with respect to the originally
reported sub-Poisson relationship. In accordance withWinslow
and Sachs [52] we assume that the constant tone duration is
sufficiently long so that the distribution of spike counts is well
approximated by a Gaussian distribution with mean given by
Eq. (13) and a Poisson-like variance, �.�/2 D �.�/. The
potential negativity of responses is of no importance to what
follows.
We may conveniently consider the ensemble response vec-

tor to be identically and independently [52] distributed across
ensembles according to the model

f .r I �/ D

3X
kD1

wkp
2��k.�/

exp
�
�
Œr � �k.�/�

2

2�k.�/

�
; (14)

low medium high

w 0.1 0.3 0.6
tE [dB] 89.4 65.7 31.9
rm [spike/s] 135.1 183.6 90.6
rsp [spike/s] 0.5 5.4 68.4

Table 1. Parameters of auditory nerve fibers. Three types of fibers are
distinguished with respect to their spontaneous activity (low, medium,
high). The parameters tE ; rm; rsp determine the tuning curve in
Eq. (13), the factor w specifies the fraction of each type in the popula-
tion (data taken from Winslow and Sachs [52]).

where the index k D 1; 2; 3 indexes the parameter sets of each
neuronal type (low, medium, high), see Table 1. The stimulus-
response model given by Eq. (14) is shown in Fig. 1a, accom-
panied by the ensemble tuning curve, �.�/ D

P
k wk�k.�/,

and by the standard deviation of the ensemble response.
The model in Eq. (14) satisfies the conditions for the asymp-

totic efficiency of the maximum likelihood estimator [51]. How-
ever, the convergence of the estimator towards the bound de-
serves a closer look. Fig. 1b shows the CR bound evaluated
according to Eq. (9) for n D 50 nerve fibers and tone intensities
in the range from 0 to 100 dB. For a comparison, the MSEs of
the maximum likelihood estimator given by Eq. (10) and the
moment estimator given by Eq. (11) are shown. The MSE of
the moment estimator is significantly larger than the CR bound
for most of investigated tone intensities, with local minima
that do not coincide with minimal CR bound values (maximal
Fisher information). The behavior of the maximum likelihood
estimator is striking in the sense that it performs poorly in the
neighbourhood of smallest CR bound values – precisely the
opposite of what one would expect. There is even a region of
intensities where the MSE of the maximum likelihood estima-
tor is larger than that of the moment estimator. In other words,
for finite sample sizes the CR bound might not provide even a
crude approximation to the estimation MSE. Furthermore, the
maximal Fisher information value and the smallest MSE do not
necessarily coincide for some fixed value of n. The reason lies
in the fact that for distinct stimuli values the threshold region
occurs at different values of n.

The approach of the maximum likelihood estimator towards
the CR bound as the number of nerve fibers increases is shown
in Fig. 1c for four selected values of � D 9; 27; 38 and 50 dB
(also marked in Fig. 1b). The logarithmic scale of both axes
is convenient since the CR bound dependence on n is linear,
all lines having the same slope with vertical offset equal to
1=J.�/ [49]. The maximum likelihood estimator for � D 27
and 50 dB displays the threshold effect characterized by a rapid
deterioration of performance with respect to the CR bound
as the sample size decreases below certain critical, threshold
region. For example, if the population of 180 nerve fibers is
reduced by 20%, the decoding precision at 27 dB drops bymore
than one order of magnitude. On the other hand, increasing
the population by 20% past the threshold region improves the
precision 1.2 times only.
Threshold effects make the interpretation of J.�/ difficult

for finite sample sizes. For example, even though J.9/ :
D
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J.50/ in Fig. 1c, the actual MSE in estimating � D 50 dB
is almost two orders of magnitude larger than that of � D
9 dB below the threshold region. Moreover the estimation of
� D 27 dB or � D 38 dB is much less accurate than that of
� D 9 dB up to n D 50, contrary to the expectations based
on Fisher information only. The asymptotic character of CR
bound is prominent here: although � D 27 dB is in theory
better identifiable than � D 9 dB, it takes a larger sample size
to do so. Fig. 1c also demonstrates that the sufficiently high n
that guarantees estimator efficiency generally does not depend
on the value of Fisher information, but on the more detailed
probabilistic properties of the model.
The maximum likelihood estimator is generally biased, but

in the model given by Eq. (14) the bias is small, decreasing
rapidly with n so that the MSE shown in Fig. 1b, c is dominated

Figure 1. Estimation of tone intensity from the response firing rate
of the auditory nerve. (a) Stimulus-response model of a population
of auditory nerve fibers best responding to 8 kHz sound frequency
in a cat. The color indicates the probability density of observing a
particular firing rate given a pure tone of sound pressure level � (in
decibels). Three types of auditory nerve fibers can be distinguished
in the fibre ensemble [52], the average tuning curve of the ensemble
(solid white line) and its standard deviation (dashed) are indicated.
(b) Comparison of Cramér-Rao bound (CRB) with the mean square
error (MSE) of maximum likelihood (MLE) and moment (ME) esti-
mators for n D 50 nerve fibers. The maximum likelihood estimator
attains the CRB for a range of intensities up to 17 dB. Note that the
theoretically best identifiable range between cca. 20 and 40 dB actu-
ally results in the worst performance, demonstrating that the value of
Fisher information may be poorly related to the actual MSE for finite
sample sizes. Four values of intensity are marked by grey vertical
lines in (b) and their MSEs are shown in (c) in dependence on the
number of fibers in the population. The convergence of the maximum
likelihood estimator MSE to the CRB, especially for � D 27 and
50 dB, shows the pronounced threshold effect, where the region of
poor performance is followed by a rapid transition towards the CRB.
The threshold region determines the critical population size where a
small change in the number of neurons results in a dramatic change of
decoding performance.

by estimation variance. (The MSE of the moment estimator is
not shown in Fig. 1c since it does not achieve CR bound with
increasing n.) Frequently, the moment estimator also exhibits a
threshold-like effect, although much smaller in magnitude. The
threshold effect itself is not a particular pathological property
of numerical maximization of Eq. (10), though. Theoretical
considerations show that the abrupt deviation of the estimator
MSE from the CR bound is inevitable, at least in certain cases,
as argued in the Discussion.

The analysis of optimal decoding performance presented
above allows us to make some additional observations on the
results presented in Winslow and Sachs [52]. Originally, the
population model of nerve fibers was used to determine the
just-noticeable difference in the perception of tone intensity by
means of an optimal (close to maximum likelihood) decision
rule. Despite slightly different methodology, the conclusions
of Winslow and Sachs [52] based on a population of n D 260
fibers are qualitatively consistent with the CR bound shown in
Fig. 1b. In particular, the region of tone levels between 30 and
40 dB is shown to be the best identifiable, with performance
rapidly decreasing for both smaller and larger values. The ex-
planation of the correspondence lies in the fact that the square
root of the CR bound is approximately proportional to the just
noticeable difference [8] and, more importantly, the population
size is sufficiently high for the CR bound attainment (Fig. 1c).
We do not have enough anatomical data to extend the results of
Winslow and Sachs [52] and we wish to restrain from specula-
tions. Rather, the message of this example lies in the notion of
estimator threshold performance and the fact that even in sim-
ple models, Fisher information might be a misleading measure
of decoding accuracy. Together, these aspects might be used to
put non-trivial bounds on the proper population sizes.
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Figure 2. Estimation of a single odorant concentration in the absence (top row) and presence (bottom row) of spontaneous activity. The
stimulus-response model is based on electrophysiological recordings of rat olfactory receptor neurons [33]. (a) Probability density function of
the response firing rate for each value of concentration. The tuning curve (white solid line) is described by the Hill function. (b) Cramér-Rao
bound and MSEs for the maximum likelihood and moment estimators are compared for the population size n D 100. The maximum likelihood
estimator is efficient for (almost) the entire range of considered concentrations. Note the rapid deterioration of performance for � < �8 as
discussed in the main text. (c) The behavior of the maximum likelihood estimator MSE for selected concentrations, � D �8;�7:2;�6:8;�6:5,
is further investigated in dependence on the sample size. Except for � D �8 no threshold effect is observed. In the presence of background
spontaneous activity the overall response of the neuronal ensemble is described by the mixture stimulus-response model (d) with decreased
coding range. Qualitatively, the CR bound is not changed too much (b, e), but a rapid increase in the maximum likelihood estimator MSE is
observed for mid- to high-concentrations as well as for very small ones (e). The maximum likelihood estimation under spontaneous background
activity is plagued by the emergence of threshold effects (f), which are not captured by the decreased Fisher information with respect to (c).

Early neural coding of single odorant concentration

An increase of noise in the stimulus-response relationship
results in a poorer decoding performance, as reflected by a
lowering of Fisher information. However, the decrease in the
information value may not capture the actual loss of decod-
ing precision due to the emergence of threshold regions, as
demonstrated by the following model.

Many sensory neurons are naturally exposed to stimuli which
are relatively weak when compared to the noise of either envi-
ronmental or biological origin. A particular instance of such
internal noise is the spontaneous activity of neurons, which
is usually highly irregular and unpredictable in vivo, as is the
case of rat olfactory receptor neurons (ORN) [10]. Stimulus
estimation under such circumstances is complicated by the
adjustment of the evoked response against the spontaneous ac-
tivity [5, 18]. In the case of naturally intermittent stimulation
[19, 24, 25] the number of actually responding neurons in the
ensemble might be significantly smaller than the number of
spontaneously active ones, as investigated in the sparse-coding
setup [14, 26].

Rospars et al. [33] studied dose-response relationships in rat
ORNs based on electrophysiological recordings for various pure

odorants and their mixtures. Each ORN expresses only one type
of olfactory receptor – though each receptor type can recognize
different odorants and, conversely, a single odorant is usually
recognized by multiple receptor types. In what follows we
focus on the stimulation by a single odorant only; see Rospars
et al. [33] for details on the experimental procedures. The
ORN tuning curve relating the odorant concentration and the
evoked firing rate follows from the fact that the conductance
change in the sensory outer segment of the membrane of the
olfactory receptor neuron is described as an amplified version
of the odorant-receptor interaction [34]. Assuming that the
dependence of voltage on conductance and the dependence of
frequency on voltage are both linear, it follows that the tuning
curve corresponds to the Hill function (see Rospars et al. [33]
for more details)

�.�/ D
FM

1C 10.log10K��/N
: (15)

The response �.�/ is expressed in spikes/second, the stimulus
� is the decadic logarithm of odorant concentration in mol/L,
FM is the maximum asymptotic firing rate, K is the odorant
concentration that evokes response rate equal to FM=2 and
N is the Hill coefficient. The values of the model parameters
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depend on the odorant type, here we choose the typical values
FM D 49 spikes/s, N D 1:8 and K D 2:5 � 10�7mol/L [33].
For convenience we assume again that the response spike counts
are normally distributed with a Poisson-like variance, as done
commonly [3, 28, 56]. The exact form of the response distribu-
tion or variance-mean dependence does not affect the qualitative
aspects of our conclusions. Then the stimulus-response model
of the ORN is given by the Gaussian density

f .r I �/ D
1p

2��.�/
exp

�
�
Œr � �.�/�2

2�.�/

�
: (16)

The model is shown in Fig. 2a, together with the tuning curve
given by Eq. (15) and the corresponding standard deviation of
responses. Fig. 2b shows the CR bound for n D 100 identical
neurons together with MSEs of both maximum likelihood and
moment estimators. The maximum likelihood estimator quite
precisely attains the CR bound for the whole range of relevant
concentrations. The performance of the moment estimator is
almost the same as that of the maximum likelihood estima-
tor except for a region of very low concentrations. The first
conclusion is that the maximum likelihood estimator behaves
optimally, as desired and usually expected. Note, however, that
�
:
D �8 is the “critical” stimulus value below which the maxi-

mum likelihood estimator MSE rapidly deviates from the CR
bound. Since the ORN model is CR bound-admissible and
also satisfies the conditions for maximum likelihood estimator
asymptotic efficiency, the value of the critical point decreases
with increasing n. Fisher information is not changing rapidly in
the vicinity of the critical point, in fact it approaches a constant
value equal to N 2 log.10/2=2 as the concentration decreases,
but the internal properties of the model do change significantly.
The finiteness of Fisher information results from the subtle
and exact mathematical balance between the decrease of noise
variance (pushing J.�/ to infinity) and the fact that f .r I �/
becomes less and less � -dependent (pushing J.�/ to zero). Ob-
viously, one cannot expect the CR bound to provide information
on the actual MSE for small sample sizes under such circum-
stances. The outlying results of the maximization in Eq. (10)
pollute the maximum likelihood estimator variance rapidly, and
effectively cause the performance breakdown [6].
Fig. 2c shows the dependence of the MSE on n for four se-

lected concentration values, � D �8;�7:2;�6:8;�6:5. There
is no visible threshold effect requiring further attention, except
for � D �8 where the concentration is too small and where the
effect is explained in the paragraph above.

As mentioned, not all ORNs in the ensemble respond to the
stimulus at the same time (either because of their receptor type
or because of the spatio-temporal intermittence of the stimula-
tion) and a majority of ORNs are spontaneously active. Assume
that only some neurons in the population are responding to the
stimulus. The stimulus-response model may be expressed as

f .r I �/ D
wS
p
2�FS

exp
�
�
.r � FS /

2

2FS

�
C

C
1 � wsp
2��.�/

exp
�
�
Œr � �.�/�2

2�.�/

�
; (17)

where 0 < wS < 1 is the fraction of spontaneously active
neurons, FS D 5 spikes/sec is the average ORN spontaneous
activity rate [33] and Poisson variability is assumed.

Fig. 2d–f shows results obtained on model from Eq. (17) for
wS D 3=4 and the total population size n D 100, the scale
corresponds to panels a–c. The coding range of the tuning
curve in Fig. 2d is reduced when compared to Fig. 2a due to
the presence of background spontaneous activity, and the CR
bound is correspondingly increased (e). The global shapes of
the CR bound in (b) and (e) are similar and the minimum is
approximately at the same position in both cases. However,
the presence of spontaneous activity limits the actual estima-
tion reliability to only a part of the theoretical coding range
(e). There is a rapid deterioration in the maximum likelihood
estimator performance for � exceeding half of the coding range
after � :

D �6:6, mainly due to the increased response standard
deviation. Also note that the moment estimator performs com-
parably to the maximum likelihood estimator only for a range
of low concentrations around � D �7:2, and for � > �6:6
there is even a region where the moment estimator performs
better.

The MSE of the maximum likelihood estimator exhibits the
typical threshold behavior (Fig. 2f). The threshold region onset
for � D �8 exceeds the sample size of n D 104. Similarly
to the auditory model (Fig. 1c) the value of Fisher informa-
tion is not related to the required sample size. For example,
J.�6:5/ > J.�7:2/ but � D �6:5 is harder to estimate up to
n
:
D 200. There is a huge difference in the estimation perfor-

mance for the two concentrations with equal Fisher information
values, � D �6:5 and � D �6:8.

Threshold effect and maximum likelihood decoding:
an illustration

The following model is not related to any neuroscientific
problem, but it allows certain approximate calculations, which
are impossible for the models presented above. In addition, we
demonstrate that the threshold effect is not related to the exis-
tence of bias. We consider the maximum likelihood decoding
and we show its relationship to the smallest achievable MSE.
Our example belongs to the simplest class of estimation prob-
lems, the case of linear estimation. The “response” random
variable R is related to some particular “stimulus” value � as

R D � CX; (18)

where X is the noise random variable independent of � , and �
can be any real number. We consider X to be a mixture of two
Gaussian distributions, X � .1 � p/N .0; �21 /C pN .0; �22 /,
so that the “stimulus-response” model is

f .r I �/ D
1 � p

�1
p
2�

exp
�
�
.r � �/2

2�21

�
C

C
p

�2
p
2�

exp
�
�
.r � �/2

2�22

�
; (19)

and 0 < p < 1. Themaximum likelihood estimator is unbiased
for all sample sizes due to symmetry and linearity of the model
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in Eq. (19), therefore the CR bound in Eq. (9) is valid for all n.
Furthermore, let

�1 � �2: (20)

The MSE of the maximum likelihood estimator in depen-
dence on the sample size can rarely be given in a closed form.
However, for the model at hand we can approximately express
the MSE as follows. Assume that all n samples are from the
N .�; �22 / distribution. Such event occurs with probability pn.
The MSE of the maximum likelihood estimator equals the CR
bound, �22=n, and hence it is optimal [20]. Note that the modes
of both Gaussians in Eq. (19) coincide, and due to Eq. (20) the
precision of the maximum likelihood estimator is not affected
by the presence of N .�; �21 / in the likelihood function. Let
generally 1 � k � n samples be drawn from the N .�; �22 /
distribution so that the maximum likelihood MSE equals �22=k.
The remaining n � k samples from N .�; �21 / will not affect
this MSE unless they are clustered within a short interval, say,
3�2. The inequality (20) guarantees that such clustering is rare.
Since the probability of observing the k samples in n trials is
given by the binomial distribution, the average MSE can be
written as

"2n.�/
:
D
.1 � p/n�21

n
C

nX
kD1

 
n

k

!
pk.1 � p/n�k

�22
k
; (21)

where the first term results from k D 0 (all samples come from
N .�; �21 /).
The Eq. (21) represents not only the maximum likelihood

MSE but also the smallest achievable MSE since all terms are
based on the CR bound and thus cannot be made smaller. As p
decreases the threshold region is postponed to higher sample
sizes, since the factor .1�p/n in Eq. (21) decreases less rapidly.
The approximation predicts a significant threshold effect and
a correct 1=n-like scaling in the asymptotic region (Fig. 3).
For the chosen values p D 0:1; �1 D 1 and �2 D 0:001
the Eq. (21) already provides an excellent approximation to
numerical simulation.

The expected curvature of the likelihood function at its max-
imum is dominated by the �2-component of the mixture, due to
Eq. (20). Hence the CR bound predicts a relatively small MSE
(Fig. 3). Below the threshold, however, the major contributor to
the MSE is the �1-component as follows from Eq. (21). These
“large” errors are often denoted as non-local in the threshold-
effect literature (see the next section) because they generally
cannot be inferred from the local behavior of the likelihood
function in the neighbourhood of its maximum.

DISCUSSION

The decoding MSE often deviates from the CR bound
abruptly as the sample or population size decreases below cer-
tain critical region. The region where the CR bound approxi-
mates the MSE of maximum likelihood (or any other) decoding
is noticeably separated from the region of poor compliance by a
transitional zone of rapid convergence towards the bound. This
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Figure 3. Illustration of the threshold effect. The parametric model
is given by Eq. (19) with � D 0; p D 0:1, �1 D 1 and �2 D 0:001.
The mean square error (MSE) of the maximum likelihood decoding
is averaged over 50 000 trials (dots) and shows a prominent threshold
effect, which is not captured by the Cramér-Rao (CR) bound (dashed)
even though the decoding is unbiased. The analytic approximation to
the smallest achievable MSE (solid, Eq. (21)) is in excellent agreement
with numerical results and demonstrates that the maximum likelihood
decoder is optimal for this model. The MSE for small sample sizes is
effectively given by the CR bound of the broad Gaussian component
(�21 =n, dotted) and the information from the specific (narrow) Gaus-
sian component increases non-linearly with sample size. Three regions
of decoding performance (no information, threshold, asymptotic) are
typically distinguished (see the Discussion).

phenomenon, denoted as the threshold effect, was historically
first noted in the pulse code and frequency modulation sys-
tems in dependence on the signal-to-noise ratio [29, 32, 37, 43]
and discussed in the context of classical estimation theory by
van Trees [49]. The threshold effect occurs under broad condi-
tions, it has been studied in deterministic as well as Bayesian
settings including non-Gaussian priors (see the overview in
[48]). To our best knowledge, the only computational neuro-
science study mentioning the threshold effect is by Xie [53],
who describes a threshold behavior of the maximum likelihood
estimator in a population of generic neurons with bell-shaped
tuning curves and relates its onset to the signal-to-noise ratio
of the system. Here we emphasize the generality and potential
importance of the threshold effect (as perceived in the field of
mathematical engineering [48]) for specific biological systems
and discuss the phenomenon thoroughly.
When the MSE vs. the sample size is visualised on the log-

log scale (Figs. 1c and 2c, f), three regions are heuristically
distinguished as n increases (Fig. 3) [1, 31, 49]:

1. The initial no information region where the MSE is dom-
inated by non-local errors (see below). Typical decoding
errors are several orders of magnitude larger than pre-
dicted by the CR bound. The estimate is often distributed
uniformly over the range of searched values and thus the
MSE may not initially improve with n (Fig. 2f).

2. The transitional threshold region is characterized by the
rapid (faster than 1=n) decrease of the MSE towards the
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CR bound (a pronounced case is shown in Fig. 1c for
� D 27 dB). Man-made devices are often required to
operate above the threshold region, which sets a non-
trivial bound on the required number of observations
[48].

3. The final asymptotic region where the MSE scales as
1=ŒnJ.�/�. The CR bound is only useful in this region
since it cannot account for the threshold phenomenon.

The logarithmic scaling ensures that individual samples or
neurons in the population are not the actual units of interest.
Rather we are interested in the relative increment in the size.
For example, if the population size is increased by 10% in the
threshold region then the MSE does not decrease 1.1 times only,
as predicted by the CR bound in Eq. (8), but often by several
orders of magnitude.

It is important to note that the rapid increase in the decoding
precision is not due to correlations, synchronization or general
dependence in the neuronal activity. The threshold effect is
a statistical phenomenon occurring even under completely in-
dependent and identically distributed responses. The origin
of the threshold phenomenon and its relationship to the CR
bound are heuristically explained in the case of the maximum
likelihood decoding [37, 49]. Fisher information in Eq. (3) is
a local quantity, equal to the expected curvature of the main
peak of the likelihood function, or equivalently, to the expected
curvature of the likelihood at the true value of the parame-
ter. The main peak is guaranteed to dominate the likelihood
function asymptotically, as the sample size tends to infinity.
However, for finite sample sizes the likelihood function may de-
velop peaks well separated from the true stimulus value, which
occasionally return the maximum likelihood. Such an error
is denoted as non-local. The global shape of the likelihood
function, by definition, is not included in the Fisher information
and therefore the CR bound cannot predict the MSE whenever
the non-local errors matter. The threshold effect, in essence,
depends on the frequency of the non-local errors.
In his seminal work on unbiased estimation, Barankin [2]

provided the largest lower bound onMSE that is achievable (not
necessarily by the maximum likelihood approach), although no
method is known to find such optimal estimators. His bound is
very tedious to evaluate in practice but the existence of threshold
effects can be demonstrated analytically [23, 37]. The maxi-
mum likelihoodMSE in the threshold region closely follows the
Barankin bound in certain models [1, 6], justifying heuristically
the decoder optimality in finite sample sizes. Various other
bounds that capture the threshold effect in biased estimation
have been proposed in the literature for both deterministic and
Bayesian scenarios, see an exhaustive overview in van Trees
and Bell [48] or a concise list of references in Renaux [30].
In particular the Bayesian approach is of interest to the neuro-
science community [3, 54]. Unfortunately, the bounds usually
apply to particular decoding schemes, models, or are restrictive
in other manner. For example, Xie [53] derived an approximate
expression for the threshold region in a homogeneous popula-
tion of Gaussian neurons. The expression is not suitable for

more complicated (e.g., multimodal) noise distributions since
it depends on the Taylor expansion of the likelihood function
[48]. The actual amplitude of the threshold effect is also of
interest but its estimation would require a separate methodol-
ogy. A further discussion of various bounds and their potential
applicability to neuroscientific models is one of the key points
that needs to be addressed in a future research. The analysis
of the threshold effect under the correlated response [16, 21],
where the Fisher information does not scale in proportion to the
number of samples or neurons [7, 46], represents an additional
challenge.

CONCLUSIONS

We showed that optimal decoding procedures may be
plagued by threshold effects, making direct usage of Fisher
information problematic in finite sample (or population) sizes.
The threshold effect delays (in terms of the required sample
size or signal-to-noise ratio) the onset of the asymptotic regime.
More properly, Fisher information is a relevant quantity when
the estimation is performed above the threshold region [6].

We demonstrated that the threshold effect occurs under broad
conditions, depending on the subtle probabilistic properties of
the model. The investigated auditory and olfactory models are
represented by a mixture of distributions. However, the thresh-
old effect may occur in a variety of models, in homogeneous
or non-homogeneous populations, or in single models with
Gaussian noise (such as in the olfactory neuron for low con-
centrations, Fig. 2c). There is currently no simple and reliable
indicator of the threshold effect strength that could be obtained
without performing unpractically time-consuming numerical
calculations, although the topic is an active research area (see
van Trees and Bell [48] and references therein).

We focused on two decoding schemes throughout this paper.
The maximum likelihood estimation is used as the optimal pro-
cedure frequently [15, 22, 28, 39, 40, 53] and is also reported
to be biologically plausible in some cases [9]. Nonetheless,
there are disadvantages associated with the maximum likeli-
hood approach as well. For example, its performance depends
on the form of f .r I �/ and consequently it is quite sensitive
to the mismatch of the model. The moment estimator is often
easy to calculate but does not generally attain the CR bound
asymptotically [51]. However, we believe that especially in the
non-asymptotic setting of real neuronal systems, the computa-
tional complexity or energetic expenses of decoding operations
should be taken into account [36, 44]. In other words, the con-
cept of asymptotic efficiency should not provide the ultimate
guideline for the choice of decoder.

ACKNOWLEDGMENTS

This work was supported by the Institute of Physiology
RVO:67985823 and by the Czech Science Foundation project
15-08066S.



9

[1] Athley, F., “Threshold region performance of maximum like-
lihood direction of arrival estimators,” IEEE Trans. on Signal
Process. 53, 1359–1373 (2005).

[2] Barankin, E. W., “Locally best unbiased estimates,” Ann. Math.
Stat. 20, 477–501 (1949).

[3] Berens, P., Ecker, A. S., Gerwinn, S., Tolias, A. S., and Bethge,
M., “Reassessing optimal neural population codes with neuro-
metric functions,” Proc. Natl. Acad. Sci. U.S.A. 108, 4423–4428
(2011).

[4] Bethge, M., Rotermund, D., and Pawelzik, K., “Optimal short-
term population coding: when Fisher information fails,” Neural
Comput. 14, 2317–2351 (2002).

[5] Chacron, M. J., Longtin, A., and Maler, L., “The effects of spon-
taneous activity, background noise, and the stimulus ensemble
on information transfer in neurons,” Netw. Comput. Neural Syst.
14, 803–824 (2003).

[6] Chaumette, E., Galy, J., Quinlan, A., and Larzabal, P., “A New
Barankin Bound Approximation for the Prediction of the Thresh-
old Region Performance of Maximum Likelihood Estimators,”
IEEE Trans. Sig. Proc. 56, 5319–5333 (2008).

[7] Dayan, P. and Abbott, L. F., “The Effect of Correlated Variability
on the Accuracy of a Population Code,” Neural Comput. 11,
91–101 (1999).

[8] Dayan, P. and Abbott, L. F., Theoretical Neuroscience: Compu-
tational and Mathematical Modeling of Neural Systems (MIT
Press, Cambridge, 2001).

[9] Deneve, S., Latham, P. E., and Pouget, A., “Reading popula-
tion codes: a neural implementation of ideal observers,” Nat.
Neurosci. 2, 740–745 (1999).

[10] Duchamp-Viret, P., Kostal, L., Chaput, M., Lansky, P., and
Rospars, J.-P., “Patterns of spontaneous activity in single rat
olfactory receptor neurons are different in normally breathing
and tracheotomized animals,” J. Neurobiol. 65, 97–114 (2005).

[11] Gerstner, W. and Kistler, W. M., Spiking Neuron Models: Single
Neurons, Populations, Plasticity (Cambridge University Press,
Cambridge, 2002).

[12] Greenwood, P. E., Ward, L. M., Russell, D. F., Neiman, A., and
Moss, F., “Stochastic resonance enhances the electrosensory
information available to paddlefish for prey capture,” Phys. Rev.
Lett. 84, 4773–4776 (2000).

[13] Harper, N. S. and McAlpine, D., “Optimal neural population
coding of an auditory spatial cue,” Nature 430, 682–686 (2004).

[14] Hromádka, T., DeWeese, M. R., and Zador, A. M., “Sparse
Representation of Sounds in theUnanesthetizedAuditory Cortex,”
PLoS Biol. 6, e16 (2008).

[15] Iolov, A., Ditlevsen, S., and Longtin, A., “Stochastic optimal
control of single neuron spike trains,” J. Neural Eng. 11, 046004
(2014).

[16] Jackson, B. S. and Carney, L. H., “The spontaneous-rate his-
togram of the auditory nerve can be explained by only two or
three spontaneous rates and long-range dependence,” JARO 6,
148–159 (2005).

[17] Kandel, E. R., Schwartz, J. H., and Jessel, T. M., Principles of
neural science (Elsevier, New York, 1991).

[18] Kostal, L., Lansky, P., and Rospars, J.-P., “Review: neuronal
coding and spiking randomness,” Eur. J. Neurosci. 26, 2693–
2701 (2007).

[19] Kostal, L., Lansky, P., and Rospars, J.-P., “Efficient olfactory
coding in the pheromone receptor neuron of a moth,” PLoS
Comput. Biol. 4, e1000053 (2008).

[20] Lehmann, E. L. and Casella, G., Theory of point estimation
(Springer Verlag, New York, 1998).

[21] Lowen, S. B. and Teich, M. C., “Auditory-nerve action potentials
form a nonrenewal point process over short as well as long time
scales,” J. Acoustic. Soc. Am. 92, 803–806 (1992).

[22] Ludwig, K. A., Miriani, R. M., Langhals, N. B., Marzullo, T. C.,
and Kipke, D. R., “Use of a Bayesian maximum-likelihood clas-
sifier to generate training data for brain-machine interfaces,” J.
Neural Eng. 8, 046009 (2011).

[23] McAulay, R. J. and Seidman, L. P., “A useful form of the barankin
lower bound and its application to ppm threshold analysis,” IEEE
Trans. Inf. Theory 15, 273–279 (1969).

[24] Murlis, J., “Odor plumes and the signal they provide,” in Insect
Pheromone Research: New Directions, edited by R. Carde and
A. Minks (Chapman and Hall, New York, 1996) pp. 221–231.

[25] Mylne, K. R. and Mason, P. J., “Concentration fluctuation mea-
surements in a dispersing plume at a range of up to 1000m,” Q.
J. Roy. Meteo. Soc. 117, 177–206 (1991).

[26] Olshausen, B. A. and Field, D. J., “Sparse coding of sensory
inputs,” Curr. Opin. Neurobiol. 14, 481–487 (2004).

[27] Paradiso, M. A., “A theory for the use of visual orientation infor-
mation which exploits the columnar structure of striate cortex,”
Biol. Cybern. 58, 35–49 (1988).

[28] Pouget, A., Dayan, P., and Zemel, R. S., “Inference and computa-
tion with population codes,” Annu. Rev. Neurosci. 26, 381–410
(2003).

[29] Quinn, B. G. and Kootsookos, P. J., “Threshold Behaviour of
the Maximum Likelihood Estimator of Frequency,” IEEE Trans.
Sig. Proc. 42, 3291–3294 (1994).

[30] Renaux, A., “Weiss-Weinstein bound for data-aided carrier esti-
mation,” IEEE Trans. Sig. Proc. 14, 283–286 (2007).

[31] Richmond, C. D., “Mean-squared error and threshold SNR pre-
diction of maximum-likelihood signal parameter estimation with
estimated colored noise covariances,” IEEE Trans. Inf. Theory
52, 2146–2164 (2006).

[32] Rife, D. C. and Boorstyn, R. R., “Single-Tone Parameter Estima-
tion from Discrete-Time Observations,” IEEE Trans. Inf. Theory
20, 591–598 (1974).

[33] Rospars, J.-P., Lansky, P., Chaput, M., and Viret, P., “Competi-
tive and noncompetitive odorant interaction in the early neural
coding of odorant mixtures,” J. Neurosci. 28, 2659–2666 (2008).

[34] Rospars, J.-P., Lansky, P., Tuckwell, H. C., and Vermeulen, A.,
“Coding of odor intensity in a steady-state deterministic model
of an olfactory receptor neuron,” J. Comput. Neurosci. 3, 51–72
(1996).

[35] Sachs, M. B. and Abbas, P. J., “Phenomenological model for two-
tone suppresion,” J. Acoust. Soc. Am. 60, 1157–1163 (1976).

[36] Sarpeshkar, R., “Analog Versus Digital: Extrapolating from
Electronics to Neurobiology,” Neural Comput. 10, 1601–1638
(1998).

[37] Seidman, L. P., “Performance limitations and error calculations
for parameter estimation,” Proc. IEEE 58, 644–652 (1970).

[38] Seriès, P., Latham, P. E., and Pouget, A., “Tuning curve sharpen-
ing for orientation selectivity: coding efficiency and the impact
of correlations,” Nat. Neurosci. 7, 1129–1135 (2004).

[39] Seriès, P., Stocker, A. A., and Simoncelli, E. P., “Is the ho-
munculus “aware” of sensory adaptation?” Neural Comput. 21,
3271–3304 (2009).

[40] Seung, H. S. and Sompolinsky, H., “Simple models for reading
neuronal population codes,” Proc. Natl. Acad. Sci. U.S.A. 90,
749–753 (1993).



10

[41] Shadlen, M. N. and Newsome, W. T., “Noise, neural codes and
cortical organization,” Curr. Opin. Neurobiol. 4, 569–579 (1994).

[42] Shadlen, M. N. and Newsome, W. T., “The variable discharge
of cortical neurons: Implications for connectivity, computation,
and information coding,” J. Neurosci. 18, 3870–3896 (1998).

[43] Shannon, C. E., “Communication in the presence of noise,” Proc.
IRE 37, 10–21 (1949).

[44] Silver, R. A., “Neuronal arithmetic,” Nat. Rev. Neurosci. 11,
474–489 (2010).

[45] So, K., Koralek, A. C., Ganguly, K., Gastpar, M. C., and Car-
mena, J. M., “Assessing functional connectivity of neural en-
sembles using directed information,” J. Neural Eng. 9, 026004
(2012).

[46] Sompolinsky, H., Yoon, H., Kang, K., and Shamir, M., “Popu-
lation coding in neuronal systems with correlated noise,” Phys.
Rev. E 64, 051904 (2001).

[47] Stein, R. B., Gossen, E. R., and Jones, K. E., “Neuronal variabil-
ity: noise or part of the signal?” Nat. Rev. Neurosci. 6, 389–397
(2005).

[48] van Trees, H. L. and Bell, K. L., Bayesian bounds for Parameter
Estimation and Nonlinear Filtering/Tracking (John Wiley and
Sons, New York, 2007).

[49] van Trees, H. L. and Bell, K. L., Detection, Estimation and
Modulation Theory, Part I (John Wiley and Sons, New York,

2013).
[50] Tuckwell, H. C., Introduction to Theoretical Neurobiology, Vol. 2

(Cambridge University Press, New York, 1988).
[51] van der Vaart, A.W., Asymptotic statistics (Cambridge University

Press, Cambridge, UK, 2000).
[52] Winslow, R. L. and Sachs, M. B., “Single-tone intensity discrim-

ination based on auditory-nerve rate responses in background of
quiet, noise, and with stimulation of the crossed olivocochlear
bundle,” Hearing Res. 35, 165–190 (1988).

[53] Xie, X., “Threshold behaviour of the maximum likelihood
method in population decoding,” Netw. Comp. Neural Syst. 13,
447–456 (2002).

[54] Yaeli, S. and Meir, R., “Error-based analysis of optimal tuning
functions explains phenomena observed in sensory neurons,”
Frontiers in Comput. Neurosci. 4, 130 (2010).

[55] Yarrow, S., Challis, E., and Seriès, P., “Fisher and Shannon
information in finite neural populations,” Neural Comput. 24,
1740–1780 (2012).

[56] Zhang, K., Ginzburg, I., McNaughton, B. L., and Sejnowski,
T. J., “Interpreting neuronal population activity by reconstruction:
unified framework with application to hippocampal place cells,”
J. Neurophysiol. 79, 1017–1044 (1998).

[57] Zhang, K. and Sejnowski, T. J., “Neuronal tuning: to sharpen or
broaden?” Neural Comput. 11, 75–84 (1999).


	Performance breakdown in optimal stimulus decoding
	Abstract
	Introduction
	Methods
	Results
	Auditory-nerve rate response to tone intensity
	Early neural coding of single odorant concentration
	Threshold effect and maximum likelihood decoding: an illustration

	Discussion
	Conclusions
	Acknowledgments
	References


