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Abstract

The time to the first spike after the stimulus onset typically varies with the stimulation

intensity. Experimental evidence suggests that neural systems utilize such response la-



tency to encode information about the stimulus. We investigate the decoding accuracy

of the latency code in relation to the level of noise in the form of presynaptic sponta-

neous activity. Paradoxically, the optimal performance is achieved at a non-zero level of

noise and supra-threshold stimulus intensities. We argue that this phenomenon results

from from the influence of the spontaneous activity on the stabilization of the membrane

potential in the absence of stimulation. The reported decoding accuracy improvement

represents a novel manifestation of the noise-aided signal enhancement.

1 Introduction

Rate and temporal coding have been commonly studied in neuroscience to understand

how the information about the environment is encoded in neural activity. Rate coding is

based on the classical observation by Adrian (1928) that the number of spikes elicited in

a certain time window reflects the stimulus intensity, see e.g. Dayan & Abbott (2001);

Johnson & Ray (2004); McDonnell & Stocks (2008), whereas in temporal coding spike

times are believed to convey important information about the stimulus, cf. Theunis-

sen & Miller (1995); Aihara & Tokuda (2002); Van Rullen et al. (2005); Toyoizumi

et al. (2006). The first-spike latency, defined as the time from the stimulus onset to the

first evoked spike, has been shown to vary with the level of stimulation in several sys-

tems, such as auditory (Furukawa & Middlebrooks, 2002; Nelken et al., 2005), visual

(Gawne et al., 1996; Reich et al., 2001), olfactory (Rospars et al., 2003) and somatosen-

sory systems (Panzeri et al., 2001; Petersen et al., 2001, 2002). Therefore, latency is

investigated as a possible form of temporal code (Jenison, 2001; Gollisch & Meister,
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2008; Wainrib et al., 2010; Levakova, 2016). Many statistical methods have been pro-

posed for latency estimation, see e.g. Friedman & Priebe (1998); Baker & Gerstein

(2001); Pawlas et al. (2010); Tamborrino et al. (2012, 2013); Levakova et al. (2014) and

Levakova et al. (2015) for a review.

Our aim is to understand what are the ultimate limits on the accuracy of stimulus

decoding based on the first-spike latency. We employ the Fisher information as clas-

sically done in computational neuroscience (Seung & Sompolinsky, 1993; Abbott &

Dayan, 1999; Wilke & Eurich, 2002; Johnson & Ray, 2004; Amari & Nakahara, 2005;

Lansky & Greenwood, 2005, 2007; Kostal et al., 2015). Since not all stimulus levels

can be decoded with the same accuracy, we determine which stimulus intensities can

be discriminated most precisely. Furthermore, we investigate how the estimation accu-

racy depends on the amount of noise in the form of spontaneous activity of presynaptic

neurons.

The presence of noise corrupts signal transmission in linear systems. Nevertheless,

noise may have a positive effect on signal processing in nonlinear systems, as confirmed

by the stochastic resonance phenomenon (for a review see McDonnell & Abbott, 2009;

McDonnell & Ward, 2011). Stochastic resonance is typically observed in systems with

a threshold in presence of a weak signal (Gammaitoni et al., 1998). However, the sub-

threshold regime is not a necessary condition when considering more than one neuron,

since, for example, a suprathreshold signal may be also enhanced by noise in a network

of threshold devices (Stocks, 2000, 2001). Other phenomena where noise enhances the

signal are for example coherence resonance (Lindner et al., 2002; Kostal et al., 2007)

and firing-rate resonance (Brunel et al., 2003). In this paper we identify a new kind of a
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phenomenon where signal transmission is enhanced by noise. This phenomenon occurs

in a setting as simple as the stochastic perfect integrate-and-fire model.

2 Methods

2.1 Neuronal model

Throughout the paper we describe the neuronal activity by means of the perfect integrate-

and-fire model introduced by Gerstein & Mandelbrot (1964). The membrane potential

dynamics is modeled by a Wiener process X(t), given as the solution to the following

stochastic differential equation

dX(t) = µ dt+ σ dW (t), X(0) = 0,

where W (t) is a standard (driftless) Wiener process, µ > 0 is the drift and σ > 0 is

the diffusion parameter. The stochastic input to the neuron is accumulated over time

without any leakage until X(t) crosses a constant threshold B > 0. After that, a spike

is elicited, X(t) is reset to its starting value 0 and the accumulation starts anew. The

resulting spike train is a renewal point process, where interspike intervals are indepen-

dent and identically distributed as IG(B/µ,B2/σ2), an inverse Gaussian distribution

with scale parameter B/µ, shape parameter B2/σ2, mean B/µ and variance Bσ2/µ3

(Chhikara & Folks, 1989). The inverse Gaussian distribution has been successfully fit-

ted to interspike interval data of real neurons (Gerstein & Mandelbrot, 1964; Grün &

Rotter, 2010, and others). Without loss of generality, the threshold B is set to B = 1

throughout the paper.
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Figure 1: Schematic illustration of the perfect integrate-and-fire model. The graph

shows a sample path of the membrane potential X(t). When X(t) exceeds a constant

threshold B = 1, an action potential is generated. Then X(t) is reset to 0 and its

evolution stars anew. At time t0, a stimulus is applied, and the parameters of the process

change from µ0, σ2
0 to µ(s), σ2(s). The time from the stimulus onset to the first evoked

spike, called first-spike latency and denoted by R, is used for the estimation of the

stimulus intensity s. Finally,X0 denotes the random position of the membrane potential

at time t0.

The stimulus onset at time t0 creates a boundary between two different firing regimes,

i.e. spontaneous activity (before t0) and evoked activity (after t0). Before t0, the pa-

rameters of the Wiener process, which we denote by µ = µ0 and σ2 = σ2
0 , result from

spontaneous activity of presynaptic neurons. When a stimulus of intensity s is applied

at t0, the parameters change according to the stimulus level, so that we have µ = µ(s)

and σ2 = σ2(s). We denote by R(s) the first-spike latency, i.e. the time from the stim-

ulus onset to the first evoked spike, and by X0 the random position of the membrane

potential at time t0, i.e. X0 = X(t0). After R(s), all subsequent interspike intervals are

independent and identically distributed as T (s) ∼ IG(B/µ(s), B2/σ2(s)), with mean
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E[T (s)] = B/µ(s) = 1/µ(s) and variance Var[T (s)] = Bσ2(s)/µ(s)3 = σ2(s)/µ(s)3.

A schematic description of the neuronal firing activity is presented in Fig. 1.

The Wiener process can be derived as a diffusion approximation of a random walk

(Tuckwell, 1988). The membrane potential modeled by a random walk has jumps upon

receiving excitatory or inhibitory presynaptic impulses, occurring randomly in time

according to a Poisson process with constant rates λE > 0 and λI > 0, respectively.

Choosing

µ = aEλE − aIλI (1)

σ2 = a2EλE + a2IλI (2)

guarantees that the random walk and its diffusion limit, the Wiener process, have the

same mean and variance. Here aE > 0 and aI > 0 denote the membrane potential

change caused by excitatory and inhibitory impulses, respectively. We set aE = aI = a

for convenience.

In analogy to Lansky & Sacerdote (2001), we assume the following three scenarios,

yielding three possible functional forms for σ2(s):

1. Constant diffusion parameter

The diffusion parameter remains constant before and after stimulation, i.e.

σ2(s) = σ2
0. (3)

2. Proportional diffusion parameter

We assume a balanced input (Miura et al., 2007; Sengupta et al., 2013), that is the

ratio between the rates of inhibitory and excitatory presynaptic impulses is fixed,
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namely λI(s)/λE(s) = c, for c > 0. From (1) and (2), we get

µ(s) = a(1− c)λE(s), (4)

σ2(s) = kµ(s), k = a
1 + c

1− c. (5)

3. Linearly proportional diffusion parameter

We fix the rate of inhibitory presynaptic impulses, λI(s) = c, and let λE(s)

change. Then (1) and (2) become

µ(s) = a
[
λE(s)− c

]
, k = a, (6)

σ2(s) = kµ(s) +m, m = 2a2c. (7)

From a formal point of view, the first and the second form of σ2(s) are special cases of

the third one.

The probability density function (pdf), mean and variance of the first-spike latency

R in the perfect integrate-and-fire model containing a parameter change were derived

for different applications (Tamborrino et al., 2015) and are given by

fR(r; s) = µ(s)

[
Φ

(
1− µ(s)r

σ(s)
√
r

)
− Φ

(
−µ(s)

√
r

σ(s)

)]
+
µ(s)σ2

0 − 2µ0σ
2(s)

σ2
0

× exp

(
2µ0r

[
µ0σ

2(s)− µ(s)σ2
0

]
σ4
0

)[
−Φ

(
−
[
2µ0σ

2(s)− µ(s)σ2
0

]√
r

σ2
0σ(s)

)

+ exp

(
2µ0

σ2
0

)
Φ

(
−2rµ0σ

2(s) + [1− µ(s)r]σ2
0

σ2
0σ(s)

√
r

)]
(8)

E[R(s)] =
µ0 + σ2

0

2µ0µ(s)
, (9)

Var[R(s)] =
µ2
0µ(s) + 6µ2

0σ
2(s) + 6µ0σ

2
0σ

2(s) + 3µ(s)σ4
0

12µ2
0µ

3(s)
, (10)

where Φ(·) denotes the cumulative distribution function of the standard normal distri-

bution.
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2.2 Transfer function

The function specifying the relationship between the stimulus and the typical response

is called stimulus-response function or transfer function. In many cases, the stimulus is

represented by its intensity x and the response is characterized by the firing rate λ. The

transfer function λ(x) is commonly described by the Hill function (Frank, 2013)

λ(x) = λ0 +
Axb

xb0 + xb
, x ≥ 0, (11)

which was successfully fitted to experimental data (e.g., Chastrette et al., 1998; Nizami,

2002; Rospars et al., 2003; Durant et al., 2007; Grémiaux et al., 2012). Throughout the

paper, we use the log transformation of the stimulus intensity, s = log x, for which the

transfer function (11) becomes the logistic function

λ(s) = λ0 +
A

1 + e−b(s−s0)
, s ∈ (−∞,∞). (12)

Here λ0 is the firing rate of spontaneous activity and if there is no stimulation, that is

s → −∞, then λ(s) → λ0. If s → ∞, the firing rate saturates and λ(s) → λ0 + A,

with A denoting the maximum possible increment in the firing rate. The quantity b > 0

controls the steepness of the curve, while s0 = log x0 is both the location parameter

and the value of smaximizing ∂sλ(s), where ∂s denotes the derivative with respect to s.

The firing rate λ(s) is the inverse of the mean interspike interval, λ(s) = 1/E[T (s)]. In

the perfect integrate-and-fire model with B = 1, we have E[T (s)] = 1/µ(s), yielding

µ(s) = λ(s) and Eq. (12) holds with µ0 = λ0.

The mean first-spike latency E[R(s)] depends also on s. Since we study the la-

tency coding, a transfer function linking together stimulus intensity s and mean latency

E[R(s)] is of primary interest. Plugging µ(s) = λ(s) from Eq. (12) with λ0 = µ0 into
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(9) yields the transfer function for the mean first-spike latency in the perfect integrate-

and-fire model, namely

E
[
R(s)

]
=

(µ0 + σ2
0)
(
1 + e−b(s−s0)

)
2µ0 [A+ µ0 (1 + e−b(s−s0))]

. (13)

Both µ(s) and E[R(s)] are illustrated in Fig. 2.

Intuitively, the best discrimination of the stimulus intensity s can be achieved in

the region where the transfer function changes most rapidly, because a change in s

would imply a large change in the mean response. Following this idea, the optimal

discrimination of the stimulus level is achieved for the value of smaximizing ∂sE[R(s)].

The maximum slope of E[R(s)] for the considered model is achieved at

s = s0 −
1

b
log

(
1 +

A

µ0

)
. (14)

It can be easily shown that if the level of spontaneous activity µ0 increases while

all the other parameters and s are fixed, then the slope of E[R(s)] decreases. Therefore

the accuracy of detecting s deteriorates, if based only on E[R(s)]. This result does

not hold only for the logistic transfer function, but for any µ(s) in the form µ(s) =

µ0 + f(s), where f is an increasing function of s, independent of µ0. As we show

in the following, however, the results about decoding accuracy may be different if the

variability of observed data is accounted for.

2.3 Fisher information

The optimality criterion based on the maximal slope of the stimulus-response function

ignores that the response to the stimulus is stochastic and implicitly assumes that the

variability of the response is either absent, or plays no role. In the following we take
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into account that the first-spike latency R is a random variable with pdf fR. A common

approach to assess the decoding performance when the response is stochastic is to look

at the minimum achievable error when reconstructing, i.e. estimating, the stimulus s

from an observation of R. Under some regularity conditions (Pilarski & Pokora, 2015)

and for any unbiased estimator ŝ of s based on one observation ofR(s), the Cramér-Rao

inequality holds (Rao, 2002)

Var[ŝ] ≥ 1

J(s)
. (15)

Here J(s) is the Fisher information that the latency R(s) carries about the stimulus

intensity s, and it is given by

J(s) = E
[
(∂s log fR(r; s))2

]
=

∫ ∞
0

1

fR(r; s)
[∂sfR(r; s)]2 dr. (16)

Therefore the best discrimination of the stimulus intensity is achieved for

s∗ = arg max
s∈(−∞,∞)

J(s), (17)

that is for the value s∗ minimizing the variance which an unbiased estimator ŝ can

possibly attain. In general, s∗ is different from the value of s maximizing the slope of

the transfer function and depends on the response variance, as illustrated in Fig. 2 and

shown also by Wilke & Eurich (2002) and Lansky & Greenwood (2007).

If an analytic expression of the Fisher information is not available, we may con-

sider its lower bound J (2)(s) based on the Cauchy-Schwarz inequality (Stemmler, 1996;

Greenwood & Lansky, 2005)

J (2)(s) =
1

Var
[
R(s)

] (∂sE[R(s)
])2

. (18)

We denote by s∗(2) the value of s maximizing J (2)(s), which can be considered as an
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Figure 2: Transfer functions derived for the perfect integrate-and-fire model and the

optimal stimulus intensities maximizing the Fisher information J(s) for different as-

sumptions on the diffusion parameter σ2(s). Panel A: drift µ(s) given by (12) with

µ(s) = λ(s) and µ0 = λ0; Panel B: mean latency E[R(s)] given by (13). In both cases,

the parameter values are set to µ0 = 5, A = 50, b = 1 and s0 = 0. Symbols are used to

mark s∗ if: σ2(s) = σ2
0 = 4 (red circles); σ2(s) = kµ(s), with k = 0.2 (blue squares);

σ2(s) = kµ(s) + m, with k = 0.1 and m = 1 (green triangles). The dashed verti-

cal lines mark the stimulus levels s maximizing the slope of the corresponding transfer

functions, i.e. ∂sµ(s) and ∂sE[R(s)], respectively, which are different from s∗.

approximation of s∗ when the Fisher information does not differ too much from its

lower bound.

3 Results

An analytical expression of the Fisher information J(s) for the signal intensity s in the

perfect integrate-and-fire model is not available in a closed form and must be numeri-
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Table 1: Properties of the Fisher information about s for the three considered scenarios.

Scenario

σ2(s) = σ2
0 σ2(s) = kµ(s) σ2(s) = kµ(s) +m

J(s) wrt µ0 maximum for

µ0 > 0

decreasing in µ0 maximum for

µ0 > 0

J(s) wrt

other parameters

decreasing in σ2
0 decreasing in k decreasing in k

decreasing in m

s∗(2) not available in

a closed form

s0− 1
2b

log
(

1+ A
µ0

)
not available in

a closed form

cally computed. The lower bound J (2)(s) is equal to

J (2)(s) =
[∂sµ(s)]2

µ(s)

3(µ0 + σ2
0)2

µ2
0µ(s) + 6µ0σ2(s) (µ0 + σ2

0) + 3µ(s)σ4
0

.

The behavior of the Fisher information in the three studied scenarios is illustrated in

Fig. 3 and the key findings are summarized in Table 1.

The behavior of J(s) with respect to s is similar in all the three scenarios. When

µ0 > 0, J(s) starts from 0 as s→ −∞, reaches its maximum at s∗ and decreases back

to zero as s → ∞. Neither s∗ nor s∗(2) can be analytically computed, except for s∗(2)

for the second scenario (see Table 1).

Consider now J(s) for fixed s and allow the spontaneous drift µ0 to vary. As il-

lustrated in Fig. 3, J(s) is not always decreasing with respect to µ0 in the first and the

third scenario, as one would intuitively expect. On the contrary, we observe a maxi-
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mum of the Fisher information at a non-zero value of µ0, as long as s is not too weak.

Therefore, a certain positive level of background activity can enhance the estimation

accuracy of s. That is, increasing the amount of spontaneous activity up to some op-

timal value µ0 = µ∗0 allows a better estimation of s. This phenomenon represents a

novel manifestation of a noise-induced signal enhancement. The optimal level µ∗0 is ap-

proximately zero for weak stimuli, increases with increasing s and gradually saturates,

as observed in Fig. 3 (A, E). A heuristic explanation of the sigmoidal shape of µ∗0(s) is

that µ∗0 must keep a certain proportion to µ(s). Differently from what is observed in

the first and the third scenario, J(s) is always decreasing in µ0 in the second scenario,

i.e. σ2(s) = kµ(s), as illustrated in Fig. 3 (C, D). Hence, the presence of the spon-

taneous drift µ0 deteriorates the estimation accuracy of s and no noise-induced signal

enhancement is possible.

Finally, if both s and µ0 are fixed, it can be shown that the Fisher information is

always decreasing with respect to the parameters affecting the diffusion coefficient,

that is σ2
0 , k and (k,m) in the first, second and third scenario, respectively (results not

shown).

Reasons why the Fisher information about s is nondecreasing in µ0 We saw that

J(s) is not decreasing in µ0 if the stimulus intensity s is large enough and if either

σ2(s) = σ2
0 or σ2(s) = kµ(s) + m. The reason for this noise-induced signal enhance-

ment lies in the influence that µ0 has on the distribution of X0 = X(t0), the random

position of the membrane potential at the time of stimulus onset. On one hand, µ0 de-

termines the trajectory of X(t) before t0, affecting the distribution of X0. On the other
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hand, if X0 = x0 is given, µ0 influences the speed with which X(t) approaches the

threshold. Indeed, the conditional distribution of R(s) given that X0 = x0, denoted

by R(s)|X0, is inverse Gaussian with mean E[R(s)|X0] = (B − x0)/µ(s) and vari-

ance Var [R(s)|X0] = (B − x0)σ2(s)/µ3(s) (with B = 1 throughout the paper). Thus

R(s)|X0 depends on µ0 through µ(s). In the following we study the influence of µ0 on

R(s)|X0 and X0 separately, and provide heuristic explanation of the positive effect of

spontaneous activity on stimulus estimation.

If σ2(s) = kµ(s) + m, the Fisher information about s based on R(s)|X0 and its

lower bound, denoted by Js|x0(s) and J (2)
s|x0(s), respectively, are given by

Js|x0(s) =

[
∂sµ(s)

]2
µ(s)

k2µ(s) + 2(1− x0) [kµ(s) +m]

2 [kµ(s) +m]2
, (19)

J
(2)
s|x0(s) =

[
∂sµ(s)

]2
µ(s)

(1− x0)
kµ(s) +m

.

The values for the first and the second scenario can be easily calculated choosing k = 0

and m = 0, respectively. For any transfer function for the drift in the form µ(s) =

µ0 + f(s), e.g. the considered logistic transfer function, and for any choice of k and m,

the derivative of Js|x0(s) with respect to µ0 is negative and thus Js|x0(s) is decreasing

in µ0. Hence, if the noise-induced signal enhancement is present, it has to be caused by

the influence of µ0 on X0.

The pdf, mean and variance of X0 are given by (Tamborrino et al., 2015)

fX0(x) = eα(x−|x|) − e2α(x−1), (20)

E[X0] =
1

2
− 1

2α
, Var[X0] =

1

12
+

1

4α2
, (21)

where the original parameters µ0 and σ2
0 are replaced by a single parameter α = µ0/σ

2
0 .

In the first and third scenario, α increases when µ0 increases. Indeed, the diffusion
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parameter σ2
0 is either fixed or grows slower than µ0. Therefore, E[X0] and Var(X0)

become closer to 1/2 and 1/12, respectively, implying that the membrane potential is

less likely to become negative and it is more centered around its mean value. In the

second scenario, i.e. σ2
0 = kµ0, α = 1/k and thus the distribution of X0 does not

depend on µ0.

To better understand the influence of µ0 on X0, we calculate the differential entropy

h(X0) of X0, which can be interpreted as a measure of the randomness of X0. The

higher is h(X0), the more random is X0. After some calculations, we get

h(X0) = −
∫ 1

−∞
fX0(x) log fX0(x) dx =

π2 − 6Li2 (e−2α)

12α
, (22)

where Li2(x) denotes the dilogarithm function, Li2(x) =
∫ 0

x
log(1 − t)/t dt. It can be

shown that h(X0) is decreasing in α, and thus in µ0, for fixed σ2
0 . As also illustrated

in Fig. 4, when µ0 and thus α increase, the differential entropy h(X0) decreases and

the pdf of X0 is more peaked, suggesting a better predictability of the starting position

X0. The dependence of α, E[X0], Var[X0] and h(X0) on µ0 under the three considered

scenarios is summarized in Table 2.

If σ2
0 = kµ0, then α = 1/k and neither fX0 nor h(X0) depend on µ0. Moreover,

we saw that Js|x0(s) is decreasing in µ0 and therefore it is not surprising that also J(s)

is decreasing in µ0. In the other two scenarios, however, fX0 and h(X0) do depend on

µ0 through α. If we suppress the neuron by letting µ0 → 0, then fX0 becomes flat,

E[X0] → −∞, Var[X0] → ∞ and h(X0) → ∞. In this case then, the initial position

X0 is extremely uncertain. Thus an increase in µ0 reduces h(X0) and makes X0 more

predictable. Combining the influence of µ0 on X0 and R|X0, we see that the presence

of spontaneous activity µ0 > 0 deteriorates the inference about s through R(s)|X0, but

15



Table 2: Distribution of X0 in the three studied scenarios. Here Li2 denotes the diloga-

rithm function Li2(x) =
∫ 0

x
log(1− t)/t dt.

Scenario

σ2
0 = const. σ2

0 = kµ0 σ2
0 = kµ0 +m

α = µ0/σ
2
0 µ0/σ

2
0 1/k µ0/(kµ0 +m)

h(X0) decreasing in µ0 constant decreasing in µ0

lim
µ0→0

E[X0] −∞ (1− k)/2 −∞

lim
µ0→0

Var[X0] ∞ (1 + 3k2)/12 ∞

lim
µ0→∞

h(X0) 0 k
12

[
π2 − 6Li2

(
e−

2
k

)]
0

lim
µ0→∞

E[X0] 1/2 (1− k)/2 (1− k)/2

lim
µ0→∞

Var[X0] 1/2 (1 + 3k2)/12 (1 + 3k2)/12

lim
µ0→0

h(X0) ∞ k
12

[
π2 − 6Li2

(
e−

2
k

)]
∞

improves the predictability of the starting position X0, as long as the distribution of X0

does depend on µ0, i.e., σ2
0 6= kµ0. For suitable values of µ0, the positive influence of

µ0 on the distribution of X0 is stronger than the negative effect on Js|x0(s), implying

the observed increasing behavior of the Fisher information about s with respect to µ0.
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4 Discussion

The finding that spontaneous activity may enhance the signal in a model as simple as

the perfect integrate-and-fire is noteworthy, since positive effects of noise on signal

transmission are commonly observed in more complicated models. Also the nature of

noise-induced signal enhancement reported here is not typical, since it does not result

from a subthreshold signal, which is a characteristic feature of stochastic resonance.

Although the model contains a threshold B, it does not constitute a barrier for weak

signals, but affects only the timing of the discharge.

The key factor causing the signal enhancement in our setting is the noise-induced

stabilization of the membrane potential in the stimulation-free regime. By stabilization

we mean that the variability of the membrane potential is reduced and excursions of

the membrane potential into negative values become unlikely. As we have shown, the

role of spontaneous activity on stimulus decoding is interconnected with the effect of

spontaneous activity on the randomness of X0, as indicated by its differential entropy.

In particular, the differential entropy of X0 may approach ∞ for µ0 → 0. Thus, the

stabilization of X0 induced by a small increase in µ0 is substantial and can outweigh

the change in Js|x0(s), which is always decreasing in µ0. For this reason, we presume

that a necessary condition for enhancing the signal by the spontaneous activity is that

the uncertainty about X0 decreases with increasing µ0. This happens if and only if α =

µ0/σ
2
0 → 0 as µ0 → 0, which is the reason why no noise-induced signal enhancement

is observed for σ2
0 = kµ0.

Here we considered and studied only the effect of a step function stimulus, neglect-

ing the end of the stimulation. Of course, a stimulation can have a different form, for
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example a pulse. Although the distribution of R would be somewhat different, our

analysis could be done analogously. Obviously, the membrane potential X0 at the stim-

ulus onset would depend on µ0 in exactly the same way as in the case studied here, so

the signal enhancing effect of spontaneous activity might be possibly found also there.

Nevertheless, a detailed study is out of the scope of this paper.

The possibility of obtaining infinite differential entropy of X0 is due to the fact that

the perfect integrate-and-fire model has no limitation on the minimum of X(t). If we

consider a more realistic neuronal model, such as one of the leaky integrate-and-fire

models, the leakage pushes automatically the membrane potential to a resting level, and

thus an extreme depolarization of the neuron is less likely to happen. For this type of

models, we speculate that both spontaneous activity µ0 and membrane time constant

τ stabilize the membrane potential X0 and thus may enhance the stimulus detection.

However, we must bear in mind that the membrane time constant τ is determined by

the biophysical properties of the neuron, while the spontaneous activity µ0 has less

biological restrictions. Consequently, the sensitivity of the neuron to specific stimuli

may be adjusted by changes in the activity of presynaptic neurons. The analysis of the

leaky integrate-and-fire model is not provided here, because none of the pdfs of the

involved quantities of interest are known in a closed form and thus a different approach

based on numerical evaluations must be employed. Note that the perfect integrate-and-

fire model is a limit case of the leaky integrate-and-fire model for τ →∞.

Although the calculations are done for a specific transfer function, our choice of the

Hill function is inconsequential for the main result of the paper, which is more general.

The phenomenon of noise-induced signal enhancement can be observed for any transfer
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function in the form µ(s) = µ0 +f(s), where f is independent of µ0. As pointed out by

Kostal & Lansky (2015), the choice of the stimulus scale is also an integral part of the

neural coding problem and may have a significant influence on the estimation accuracy.

For this reason, we assume s to be expressed in units on a physiologically relevant scale.

The essential assumption in our approach is that the time t0 of the stimulus onset

is known, which requires a nervous system to maintain a temporal reference about the

stimulus onset. An example of such a reference can be a saccadic eye movement (Ger-

stner & Kistler, 2002) and other possible ways were outlined by Panzeri et al. (2014).

If the stimulus onset is completely unknown and can be neither determined nor ap-

proximated, the provided Fisher information may be considered as an upper bound for

the Fisher information corresponding to a situation when the knowledge of t0 is not

reflected in the first-spike data available for estimation.

It is tempting to speculate that the described enhacement of coding precision due to

presynaptic spontaneous activity occurs in the natural sensory information processing.

For example, the moth pheromone reception system is organized so that many sensory

neurons in the first layer converge onto a small number of output neurons in the sec-

ond layer (Hansson, 1995). There is an indirect evidence for mechanisms that adjust the

level of presynaptic spontaneous activity (as pooled from the sensory neurons), received

by the output neurons (Rospars et al., 2014). We hypothesize that the resulting stabiliza-

tion of the output neuron membrane potential contributes to the high coding precision

of the stimulus intensity, which cannot be explained by the convergence layout alone

(Rospars et al., 2014).
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5 Conclusions

We have shown that the presence of presynaptic spontaneous activity may improve the

decoding of the stimulus intensity in a model of a single neuron as simple as the perfect

integrate-and-fire model. A key role in determining whether the spontaneous activity

can improve the estimation of the stimulus level is played by the distribution of the

membrane potential at time of the stimulus onset. A necessary condition is that the

randomness inX0, captured for example by the differential entropy, decreases when the

spontaneous activity increases.
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Figure 3: Caption on the next page.
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Figure 3: (Previous page.) Fisher information J(s) about the stimulus intensity s for

the perfect integrate-and-fire model. The results in the first and the third row reveal

that the Fisher information about s is not always decreasing when the level of noise µ0

increases. Left column: Dependence of J(s) on s and µ0, with values of J(s) given

by colors. Vertical lines: values of s for which J(s) is drawn in the right column. The

dashed white line corresponds to the value of spontaneous activity µ0 = µ∗0 maximizing

J(s) for a given s. Right column: Dependence of J(s) on µ0 for selected values of s

(marked by vertical lines in the left column). The Fisher information is computed for

the same three scenarios and parameter values as in Fig. 2: σ2(s) = σ2
0 = 4 (Panels A,

B); σ2(s) = kµ(s), with k = 0.2 (Panels C, D); σ2(s) = kµ(s) + m, with k = 0.1 and

m = 1 (Panels E, F). Values of the other parameters are A = 50, b = 1 and s0 = 0.
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Figure 4: Influence of µ0 on the pdf fX0 and on the differential entropy h(X0) ofX0, the

random position of the Wiener process at time of stimulation t0. Panel A: Differential

entropy of X0 as a function of α = µ0/σ
2
0 . Panel B: Pdf of X0 for the constant diffusion

parameter σ2
0 = 4. Panel C: Pdf of X0 for the proportional diffusion parameter σ2

0 =

kµ0 when k = 0.2. In this case, neither fX0 nor h(X0) depend on µ0. Panel D: Pdf of

X0 for the linearly proportional diffusion parameter σ2
0 = kµ0 + m when k = 0.1 and

m = 1. Insets in the upper left corners of panels B, C and D illustrate the differential

entropy h(X0) for the chosen values of µ0 under the different assumptions for σ2
0 . Note

that the differential entropy is lower for those µ0 yielding peaked fX0 .
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