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Abstract

It is widely accepted that neuronal firing rates contain a significant amount of information about the

stimulus intensity. Nevertheless, theoretical studies on the coding accuracy inferred from the exact spike

counting distributions are rare. We present an analysis based on the number of observed spikes assuming

the stochastic perfect integrate-and-fire model with a change point, representing the stimulus onset, for

which we calculate the corresponding Fisher information to investigate the accuracy of rate coding. We

analyze the effect of changing the duration of the time window and the influence of several parameters of

the model, in particular the level of the presynaptic spontaneous activity and the level of random fluctuation

of the membrane potential, which can be interpreted as noise of the system. The results show that the

Fisher information is nonmonotone with respect to the length of the observation period. This counter-

intuitive result is caused by the discrete nature of the count of spikes. We observe also that the signal can

be enhanced by noise, since the Fisher information is nonmonotone with respect to the level of spontaneous

activity and, in some cases, also with respect to the level of fluctuation of the membrane potential.
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I. INTRODUCTION

The question how the information is encoded in the brain activity remains one of the major

unresolved problems in neuroscience. A pioneering work in this direction was done by Adrian [1]

who did experiments on the stretch receptor in a muscle spindle and demonstrated that the number

of spikes emitted by the receptor neuron increases with the force applied to the muscle. Since

then, the neuronal firing rate has been traditionally thought to contain relevant information about

external stimuli. The firing rate is usually determined by counting the number of spikes that occur

within a predefined time window [2]. The irregularities encountered in real spike trains make the

determination of the firing rate complicated, and thus a sufficiently long time window is necessary

to achieve a satisfactory precision.

It is clear that an approach based only on the firing rate neglects all the information possibly

contained in the exact timing of the spikes [3–5], leading to the concept of temporal coding [6–

10]. One of the common objections against reducing the complexity of neural coding only to firing

rates is based on behavioral experiments, which suggest that reaction times are often rather short

[11] and thus are against the common understanding that the reliability of rate coding increases

proportionally to the applied time window.

In the last decades, the performance of both temporal and rate coding was investigated for

various settings, ranging from single neurons to neuronal networks, see for example [12–18]. The

problem of quantifying the code performance is often approached by examining the accuracy with

which the stimulus can be ultimately decoded from the observed response, and the best decoding

precision is evaluated using the Cramér-Rao lower bound on the mean squared error, see e.g. [19–

24]. Since the probability distributions of the number of spikes are rarely known for advanced

neuronal models, two approaches can be mostly encountered in the literature. Either processes

based on a statistical description of the neuronal activity and enabling a straightforward way to

express the count of spikes are used, e.g. Bernoulli or Poisson processes, [25–27], or the rate is

inferred from interspike intervals [28].

In this work, the probability distribution of the number of spikes in a fixed time window for

the stochastic perfect integrate-and-fire model is derived. We then use Fisher information to infer

the rate coding accuracy, and investigate how it is influenced by the key parameters of the model.

In particular, our first goal is to study the role of the observation time window. Throughout the

paper, the time window is always the window used by the nervous system and not a window
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determined by an external observer. Our second goal is to investigate how the amount of noise

in the form of either presynaptic spontaneous activity or the random fluctuation of the membrane

potential impacts the decoding accuracy, and if there is an optimal level of noise enhancing the

signal, like for example in stochastic resonance and other similar phenomena, which were found in

many settings (see, e.g., [29–36], and many more). As we show, counting spikes in a longer time

window does not always improve the decoding accuracy. Moreover, the loss in decoding precision

caused by a change in the length of the time window might be, at least partially, compensated by

increasing the level of spontaneous activity of presynaptic neurons. Finally, we identify several

stochastic-resonance-like phenomena related to the level of spontaneous activity and the level of

fluctuation of the membrane potential.

II. METHODS

A. Fisher information

A common approach to analyze the decoding performance is to ask how well an optimal de-

coder can estimate the true value of the presented stimulus s based on a stochastic neuronal re-

sponse R [26, 31, 37, 38]. To quantify the estimation accuracy, the mean squared error is used,

MSE(ŝ) = E
[
(ŝ− s)2] , (1)

where ŝ is the estimator of s from R. If the estimator ŝ is unbiased, i.e. E(ŝ) = s, the mean squared

error is equal to the variance of the estimator, MSE(ŝ) = Var(ŝ). According to the Cramér-Rao

theorem [39, 40], every unbiased and regular estimator ŝ satisfies the inequality

Var(ŝ)≥ 1
J(s)

, (2)

where J(s) denotes the Fisher information about s carried by R. For the sake of simplicity and ana-

lytical tractability, many theoretical studies on neural coding use the inverse of Fisher information

as an approximation of the mean squared error, which implies that a higher Fisher information is

assumed to reflect a higher decoding accuracy [29, 31].

From the rate coding perspective, the response R is the number of spikes after the stimulus

onset. Hence, R is a discrete quantity, with probability mass function (pmf) pR(r;s) and the Fisher

information is given by

J(s) = ∑
r

1
pR(r;s)

[
∂

∂ s
pR(r;s)

]2

. (3)
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Note that the stimulus level s plays the role of a parameter of the distribution of R.

B. Neuronal model

Throughout the study, we describe the neuronal activity by the stochastic perfect integrate-and-

fire model introduced by Gerstein and Mandelbrot [41]. The idea of the model is to approximate

the membrane potential dynamics by a Wiener process X(t), which is given as the solution to a

stochastic differential equation

dX(t) = µ dt +σ dW (t), X(0) = 0,

where W (t) is the standard (driftless) Wiener process, µ > 0 is the drift and σ > 0 is the diffusion

parameter. The membrane potential is thus driven by a deterministic force µ accompanied by

white noise. Once X(t) reaches a constant threshold B > 0, a spike is elicited, X(t) is immediately

reset to its starting value 0 and the accumulation of the membrane potential starts anew. The

resulting spike train is then a renewal point process, where inter-spike intervals are independent

and identically distributed as T ∼ IG(B/µ,B2/σ2), an inverse Gaussian distribution with mean

E(T ) = B/µ and variance Var(T ) = Bσ2/µ3.

Denote by X0 the value of the membrane potential at a randomly chosen time. The distribution

of X0 can be derived from the known transition probability density of the Wiener process under

the absorbing boundary B, which gives the probability density that the process starting from zero

at time zero attains the value x at time t while the boundary B has not been crossed during that

time [42, 43]

f B
X (x, t) =

1√
2πσ2t

{
exp
[
−(x−µt)2

2σ2t

]
− exp

[
2µB
σ2 −

(x−2B−µt)2

2σ2t

]}
. (4)

The conditional density of X0 given that the time elapsed since the last spike is t can be written as

fX0|T>t(x|t) =
f B
X (x, t)

1−FT (t)
, (5)

where FT (t) is the cumulative distribution function (cdf) of the inter-spike interval T . The time

interval between the randomly chosen time point and the last preceding spike is the backward

recurrence time S, which has the probability density function (pdf) fS(t) = [1−FT (t)]/E(T ) [44].

Multiplying the conditional density fX0|T>t(x|t) by fS(t) and integrating over all possible t yields
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FIG. 1. Schematic illustration of the studied model. Top: A sample path of the membrane potential X(t),

described by a Wiener process. When X(t) exceeds a constant threshold B > 0, an action potential is

generated. Then X(t) is reset to 0 and its evolution starts anew. At time t0, a stimulus is applied, and the

parameters of the process change from µ0, σ2
0 to µ(s), σ2(s). The times from the stimulus onset to the first,

second, third,. . . , n-th evoked spike are denoted by T1, T2, T3, . . . , Tn. Bottom: The corresponding counting

process of evoked spikes N(t∗), which gives the number of spikes in a time window [t0, t0 + t∗].

the unconditional distribution of X0 as follows

fX0(x) =
∫

∞

0
fX0|T>t(x|t) fS(t)dt =

∫
∞

0

f B
X (x, t)
E(T )

dt

=
1
B

[
exp
(

µ(x−|x|)
σ2

)
− exp

(
2µ(x−B)

σ2

)]
. (6)

We consider a situation where a stimulus of level s is presented at time t0. The spontaneous

activity before t0 results only from the spontaneous activity of presynaptic neurons, while the

evoked activity after t0 is affected by the stimulation. Before t0, the parameters of the Wiener

process are µ = µ0 and σ2 = σ2
0 . The presentation of the stimulus of intensity s at t0 changes the

parameters to µ = µ(s) and σ2 = σ2(s) (Fig. 1).

Throughout the paper we assume that the evoked drift µ(s) is a sum of the spontaneous drift

µ0 and the stimulus-driven increment ∆µ(s). The specific functional form of µ(s) is derived from

the Hill function [45], which is frequently employed in both theoretical and experimental studies
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[46–50]. For a stimulus level s expressed on a logarithmic scale, it can be written as

µ(s) = µ0 +
A

1+ e−b(s−s0)
, s ∈ (−∞,∞). (7)

The parameter A is the maximum possible increment in the drift µ(s), b controls the steepness of

the function and s0 is the inflection point.

For the diffusion parameter σ2(s), we assume a linear dependence on the drift µ(s), that is

σ
2(s) = kµ(s)+m, (8)

where k,m ≥ 0. The linear relationship σ2(s) = kµ(s) + m can be derived for the membrane

potential described by a randomized random walk with Poissonian input, where the amount of

excitatory input is proportional to the stimulus intensity and the inhibitory input is constant [51,

p. 138]. By letting either k or m be equal to zero, we obtain the following two special cases:

1. σ2(s) = kµ(s).

This corresponds to balanced excitatory and inhibitory input [52, 53].

2. σ2(s) = m.

Together with the requirement lims→−∞ σ2(s) = σ2
0 , this gives a diffusion parameter inde-

pendent of the stimulation, that is σ2(s) = σ2
0 .

In the following we study the accuracy with which the stimulus intensity s can be decoded from

N(t∗), the number of spikes observed in a time window of duration t∗.

III. RESULTS

A. Fisher information

The reported Fisher information J(s) about s based on the observation of N(t∗) was calcu-

lated numerically using the formulas for the distribution of N(t∗) given in Appendix. Throughout

the paper, we consider two different scenarios corresponding to two possible beginnings of the

observation time window:

1. The observation time window starts with an evoked spike.

The initial value of the membrane potential is known and X0 = 0. (Fig. 2 and 4a.)
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FIG. 2. Caption on the next page.

2. The observation time window starts at t0.

The initial value of the membrane potential X0 is random and has pdf (6), with µ = µ0 and

σ2 = σ2
0 . (Fig. 3 and 4b.)

We focus on the dependence of the Fisher information on the duration of the time window t∗,

but we also take into account the level of spontaneous activity µ0 and the parameters k and m

governing the diffusion parameter σ2(s). Without loss of generality, the threshold B is set to B = 1

and, as a consequence, drift µ represents also the firing rate. Moreover, we set A = 50, b = 1 and

s0 = 0.

Fisher information with respect to the length of the time window t∗ In general, Fisher infor-

mation roughly increases as the time window gets longer (Fig. 2a, b when the observation time

window starts with a spike, i.e. X0 = 0, and 3a, b when the time window starts at t0, i.e. X0 is

random). In both cases, however, the Fisher information is nonmonotone and has many local max-

ima and minima. The local extremes are more pronounced when X0 = 0, but they are also clearly
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FIG. 2. (Previous page.) Fisher information J(0) about the stimulus intensity s = 0 based on the number

of spikes N(t∗) in a time window of length t∗. The observation time window starts with a spike and the

initial value of the membrane potential at the beginning of the time window is thus X0 = 0. In all cases,

the diffusion coefficient is σ2(s) = kµ(s)+m. Panels (a), (b), (c): Fisher information as a function of the

spontaneous firing rate µ0 and the duration of the time window t∗ when k = 0.01 and m = 0.5. The Fisher

information is nonmonotone with respect to both µ0 and t∗. Panels (d), (e), (f ): Fisher information as a

function of the spontaneous firing rate µ0 and the absolute coefficient m of the diffusion parameter σ2(s)

when t∗ = 0.025s and k = 0.01. Panels (g), (h), (i): Fisher information as a function of the spontaneous

firing rate µ0 and the coefficient of proportionality k of the diffusion parameter σ2(s) when t∗ = 0.025s

and m = 0.5. For some values of µ0 (dashed and dot-dashed lines in Panels e, f ), the Fisher information is

initially increasing with respect to k and m, and thus with respect to the fluctuation level of the membrane

potential. The white dashed lines in the first column (Panels a, d and g) mark the points satisfying t∗ =

nB/µ(s), which approximately correspond to the local maxima of J(s) with respect to t∗, where B = 1 is

the membrane potential threshold and n = 1,2, . . . .

visible when X0 is random. Therefore, observing the process for a longer time may not necessarily

lead to a higher decoding accuracy.

Fisher information with respect to the level of spontaneous activity µ0 When the response

starts with a spike, the Fisher information has again a nonmonotone behavior with respect to µ0,

with many local maxima and minima (Fig. 2a, c, d, f, g, i) and a qualitatively similar behavior

is also observed when X0 is random, (Fig. 3a, c, d, f, g, i). Therefore, increasing the amount

of presynaptic spontaneous activity may result in both improving or deteriorating the accuracy

of decoding the stimulus, depending on the particular parameter conditions. For example, from

Fig. 2c we observe that the Fisher information can be initially decreasing or increasing with respect

to µ0 depending on whether the observation time window is small (t∗ = 0.007s, t∗ = 0.02s) or

large (t∗ = 0.04s).

If we ignore local extremes, the overall tendency is that the Fisher information decreases with

respect to µ0 due to the variability of the underlying process, which is linearly proportional to µ0.

When k = 0, however, the Fisher information has a mild overall increasing tendency (Fig. 4). This

is because more spikes can be observed in the same time window due to the higher spontaneous

activity, while the variability of the process remains constant (Fig. 4).
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FIG. 3. Fisher information J(0) about the stimulus intensity s = 0 when the time window starts at t0 and

the initial value of the membrane potential X0 is thus random. In all cases, the coefficient diffusion is

σ2(s) = kµ(s)+m. Panels (a), (b), (c): Fisher information as a function of the spontaneous firing rate µ0

and the time window t∗ when k = 0.01 and m = 0.5. The Fisher information is nonmonotone with respect

to both µ0 and t∗. Panels (d), (e), (f ): Fisher information as a function of µ0 and m when t∗ = 0.025s and

k = 0.01. Panels (g), (h), (i): Fisher information as a function of µ0 and k when t∗ = 0.025s and m = 0.5.

For any choice of µ0, the Fisher information is decreasing in k and m. The white dashed lines in the first

column (Panels a, d and g) mark the points satisfying t∗ = nB/µ(s), which approximately correspond to the

local maxima of the Fisher information with respect to t∗, where B = 1 is the membrane potential threshold

and n ∈ N.

It is interesting to look at the mutual effect of both the spontaneous activity and the time window

on the Fisher information, see Fig. 2a and Fig. 3a when X0 = 0 and X0 is random, respectively. The

white dashed lines displayed in the figures mark all points where the time window is t∗= nB/µ(s),

n∈N, which approximately correspond to the local maxima of the Fisher information with respect

9



(a)

0 20 40 60 80 100
0

0.5

1

1.5

2

spontaneous firing rate µ0 (Hz)

J N
(t
∗ )

fo
r
X
0

=
0

t∗ = 0.007 s
t∗ = 0.02 s
t∗ = 0.04 s

(b)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

spontaneous firing rate µ0 (Hz)

J N
(t
∗ )

fo
r
X
0

ra
nd

om

t∗ = 0.007 s
t∗ = 0.02 s
t∗ = 0.04 s

FIG. 4. Fisher information J(0) about the stimulus intensity s = 0 as a function of the spontaneous firing

rate µ0 when the diffusion coefficient is independent of stimulation, namely σ2(s) = σ2
0 = 2. (a) Fisher

information when the observation time window starts with a spike. (b) Fisher information when the ob-

servation window starts at t0. Three lengths of the observation window are used: t∗ = 0.007s (red, solid),

t∗ = 0.02s (blue, dashed), t∗ = 0.04s (green, dotted). If the local extremes are ignored, the Fisher informa-

tion has a mild overall increasing tendency in all the cases, suggesting that the decoding accuracy improves

with increasing spontaneous firing rate µ0.

to t∗ for fixed µ0 derived when σ2
0 = σ2(s) = 0, as discussed in more detail in Section III B. If

the parameters of the system are chosen to be near a local maximum of J(s) with respect to t∗

and then the observation time window is taken shorter, the loss in the decoding accuracy can be to

some extent compensated by increasing the level of spontaneous activity µ0. Similarly, if the level

of spontaneous activity is increased, by shortening the observation window we may get almost the

original decoding accuracy.

Fisher information with respect to the diffusion coefficient σ2(s) If X0 is random, increasing

the diffusion parameter σ2(s) through increasing k or m always yields a lower Fisher information

(Fig. 3d-i). On the other hand, when X0 = 0, in some cases the Fisher information is initially

increasing with respect to k and m (Fig. 2d-i), meaning that a positive level of noise enhances

the signal. There are also cases, though, where the Fisher information is strictly decreasing with

respect to k or m. Whether J(s) is increasing or decreasing in a given situation depends on the

level of spontaneous activity. If the spontaneous drift µ0 is approximately around

µ0 ≈
nB
t∗
− A

1+ exp(−b(s− s0))
, n ∈ N, (9)
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then increasing σ2(s) has the effect of deteriorating the decoding accuracy. On the other hand, if

the spontaneous drift µ0 is around

µ0 ≈
2n(n+1)B
(2n+1)t∗

− A
1+ exp(−b(s− s0))

, n ∈ N (10)

and σ2(s) is small, then increasing σ2(s) through k or m may improve the decoding accuracy.

Finally, increasing k or m causes that the local extremes of the Fisher information with respect to t∗

and µ0 become smaller and for a sufficiently large σ2(s) they are almost negligible.

B. Comparison with the limit case σ2 = 0

The counter-intuitive nonmonotone behavior of the Fisher information can be explained by

looking at the limit case σ2
0 = σ2(s) = 0, when the process X(t) is deterministic. The only ran-

domness in the system is then the initial value of the membrane potential X0 when the observation

time window does not start with a spike.

Denote by Tn the time from t0 to the n-th following spike. If X0 = x0 is known, Tn = tn is

deterministic and equal to

tn = (nB− x0)/µ(s). (11)

If X0 is random, the cdf of Tn is given by

FTn(t) = P
(

nB−X0

µ(s)
≤ t
)
= P

(
X0 ≥ nB−µ(s)t

)
= 1−FX0(nB−µ(s)t), (12)

where FX0 is the cdf of X0. Consequently, we can write

pN(t∗)(n) = P(Tn ≤ t∗< Tn+1) =

FX0(B−µ(s)t∗) n = 0

FX0

(
(n+1)B−µ(s)t∗

)
−FX0

(
nB−µ(s)t∗

)
n≥ 1.

(13)

If σ2
0 = 0, X0 is uniformly distributed over the interval [0,B], so we obtain

pN(t∗)(n) =



0 t∗ ∈
(

0, (n−1)B
µ(s)

)
1−n+ µ(s)t∗

B t∗ ∈
[
(n−1)B

µ(s) , nB
µ(s)

)
n+1− µ(s)t∗

B t∗ ∈
[

nB
µ(s) ,

(n+1)B
µ(s)

)
0 t∗ ∈

[
(n+1)B

µ(s) ,∞
)
,

(14)
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FIG. 5. (a) Fisher information J(0) about the stimulus intensity s = 0 as a function of the length of the

time window t∗ for the limit case of zero diffusion coefficient, σ2
0 = σ2(s) = 0. The Fisher informa-

tion goes to infinity for all t∗ satisfying t∗ = nB/µ(s), n ∈ {1,2, . . .}. (b) Fisher information J(0) when

σ2
0 > 0 and σ2(s) > 0. The local maxima are located approximately at t∗ = nB/µ(s). (c) Probabilities

of observing n spikes pN(t∗)(n) = P(N(t∗) = n) as functions of t∗ for the limit case σ2
0 = σ2(s) = 0. At

t∗ = nB/µ(s), the probability of observing n spikes is equal to 1 and all the other outcomes have zero prob-

ability. (d) The probabilities pN(t∗)(n) as functions of t∗ when σ2
0 > 0 and σ2(s) > 0. At t∗ = nB/µ(s),

the probability of observing n spikes is nearly one and decreases when the diffusion coefficient σ2(s) is

increased. All figures were obtained for the spontaneous firing rate µ0 = 50 Hz.

for n ∈ {1,2, . . .}, and for n = 0 we have

pN(t∗)(0) =

1− µ(s)t∗
B t∗ ∈

(
0, B

µ(s)

)
0 t∗ ∈

[
B

µ(s) ,∞
)
.

(15)

The Fisher information about s based on observing N(t∗) can be calculated as

J(s) =
[µ ′(s)t∗]2

[(n+1)B−µ(s)t∗][−nB+µ(s)t∗]
, if t∗ ∈

(
nB

µ(s)
,
(n+1)B

µ(s)

)
(16)
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and is illustrated in Fig. 5a. It is a piecewise function that is defined on every interval

(nB/µ(s),(n + 1)B/µ(s)), n = 0,1,2, . . . and for t∗ = nB/µ(s), n ∈ {1,2, . . .} goes to infin-

ity. The minimum Fisher information on the interval t∗ ∈ (nB/µ(s),(n+ 1)B/µ(s)) is achieved

at

t∗min =
2n(n+1)B
(2n+1)µ(s)

, n ∈ N. (17)

The discontinuities are caused by the shape of the probabilities pN(t∗)(n) = P(N(t∗) = n), illus-

trated in Fig. 5c. The probabilities pN(t∗)(n) are piecewise linear and the derivatives with respect

to s are not defined at t∗ = nB/µ(s), n ∈ N. At these points also pN(t∗)(n− 1) and pN(t∗)(n+ 1)

tend to zero and the corresponding terms in the formula for the Fisher information tend to infinity.

At t∗ = nB/µ(s), the probability of observing n spikes is equal to one.

Now we compare the Fisher information J(s) for the limit case σ2
0 = σ2(s) = 0 (Fig. 5a) with

the Fisher information J(s) for the previously studied cases σ2
0 > 0 and σ2(s) > 0 (Fig. 5b). It

can be seen that the local maxima of the Fisher information for σ2
0 > 0 and σ2(s)> 0 are located

near t∗ = nB/µ(s), n ∈ N. This can also be confirmed in Fig. 2a, d, g and Fig. 3a, d, g, where

the white dashed lines, corresponding to t∗ = nB/µ(s) are very close to the local maxima of the

Fisher information with respect to t∗. In Fig. 5b we can also notice that if the value of σ2(s) is

increased by increasing k or m, the local maxima have the tendency to vanish.

We can also see the correspondence between the shape of the Fisher information J(s) and the

probabilities pN(t∗)(n). As σ2(s) increases, the probabilities pN(t∗)(n) become smoother with not

so sharp transitions between the increasing and the decreasing part. Also the maximum of the

probability pN(t∗)(n) is less than 1 (Fig. 5d), which results in smaller fluctuations of the Fisher

information.

We can conclude that the nonmonotone behavior of the Fisher information is caused by the

discrete character of N(t∗). If the randomness of X(t) in the form of σ2(s) is not too high, there

are only a few possible outcomes of N(t∗). Hence the Fisher information is a sum of only a

small number of nonzero terms in the form (∂ pN(t∗)(n)/∂ s)2/pN(t∗)(n). Therefore, a big change

in any of them is strongly reflected in the Fisher information. Note that an individual term has

a big contribution if the respective probability is close to zero, which typically happens around

t∗ = nB/µ(s). The local maxima and minima of the Fisher information with respect to t∗ appear

periodically with the period approximately equal to B/µ(s), which is the mean inter-spike interval.

Hence, this phenomenon is not restricted only to short time windows.
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IV. DISCUSSION

This analysis reveals that even in neuronal models as simple as the perfect integrate-and-fire

model the effect of spontaneous activity, noise and the length of the observation window might be

highly nontrivial. In spite of the relative simplicity, the question of neuronal coding is often studied

on this or a similar level of complexity [54–58], because the perfect integrate-and-fire model is

the most complex setup allowing analytical calculations. Therefore, it is possible to identify the

reasons for the nonmonotone behavior of the Fisher information. Since the perfect integrate-and-

fire model is based on Brownian motion, it can be also applied on a wide variety of physical

problems beyond the field of neuroscience [59, 60], implying that the described phenomena might

appear also there.

Although analogous calculations for more detailed biophysical models, such as models includ-

ing leakage or setups considering the activity of a group of neurons, which are the directions in

which the analysis is to be extended in the future, are technically prohibitive, this fact cannot be

used to imply that the described effects do not occur therein. On the contrary, the most important

result presented here, i.e. that the Fisher information is nonmonotone with respect to the observa-

tion window t∗, is caused by the discrete nature of the counting distribution. Thus it is not specific

for the chosen model and should be largely independent of the amount of biophysical detail taken

into account. Our expectation concerning the role of µ0, k and m in leaky integrate-and-fire mod-

els is that they could have even stronger effect, since they may help to move the process from

subthreshold to suprathreshold regime (in case of µ0) or increase the chance that X(t) crosses

the threshold in subthreshold regime (in case of k and m), which is the classical phenomenon of

stochastic resonance [30].

We assumed one particular form of µ(s) given by the logistic function. However, the observed

phenomena are more general. When analyzing the Fisher information with respect to t∗ and k and

m, we fix µ0 and s, so the value of µ(s) is constant and the functional form of µ(s) plays no role.

When we study the behavior of the Fisher information with respect to µ0, the assumed form of

µ(s) might have some influence. Nevertheless, our results with respect to µ0 can also be obtained

for other types of µ(s), for example for the linear relationship µ(s) = µ0 + s, s≥ 0.
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V. CONCLUSIONS

We studied the accuracy of the rate code with respect to several key parameters of the neuronal

system and showed that the relationships are nontrivial. Altogether, our results may be summarized

in the following four points:

1. Using a longer time window may not necessarily improve the decoding accuracy.

2. Although the presynaptic spontaneous activity might seem a disturbing element, since it

bears no information about the stimulus, its presence at a certain level might improve the

decoding accuracy.

3. The loss in the decoding accuracy caused by the change of the time window can be partially

compensated if it is accompanied by an appropriate change of the level of spontaneous

activity, and vice versa. For example, a shorter time window may sometimes give almost

the same accuracy if the level of spontaneous activity is increased by an optimal amount.

4. If the time window begins with a spike, the decoding accuracy might be improved by in-

creasing the fluctuation of the membrane potential.
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Appendix: Distribution of N(t∗)

Here we show how the distribution of N(t∗) can be derived. The first step to obtain the distri-

bution of N(t∗) is to find the distribution of Tn, the time from t0 to the n-th following spike.

a. Distribution of Tn Since the Wiener process is a time and space homogeneous process,

the distribution of Tn, the n-th passage time of X(t) to a constant threshold B, is the same as

the first passage time of the same process X(t) to the threshold nB. Thus, Tn|X0, the time to

the n-th spike given a fixed starting position X0 = x0, follows an inverse Gaussian distribution
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IG((nB− x0)/µ(s),(nB− x0)
2/σ2(s)) with cdf

FTn|X0(t|x0) = Φ

(
−nB−x0−µ(s)t

σ(s)
√

t

)
+ exp

(
2(nB−x0)µ(s)

σ2(s)

)
Φ

(
−nB−x0+µ(s)t

σ(s)
√

t

)
. (A.1)

Multiplying the pdf of Tn|X0 by fX0(x), given by (6) with parameters µ0 and σ2
0 , and integrating

over all possible x0 values, we obtain the unconditional pdf of Tn

fTn(t) =
∫ B

−∞

fTn|X0(t|x) fX0(x)dx

=
µ(s)σ2

0 −2µ0σ2(s)
Bσ2

0
exp
(

2µ0(µ0σ2(s)t−µ(s)σ2
0 t+(n−1)Bσ2

0 )

σ4
0

)
×

×
[

exp
(

2µ0B
σ2

0

)
Φ

(
−nBσ2

0 +2µ0σ2(s)t−µ(s)σ2
0 t

σ2
0 σ(s)

√
t

)
−

−Φ

(
−(n−1)Bσ2

0 +2µ0σ2(s)t−µ(s)σ2
0 t

σ2
0 σ(s)

√
t

)]
+

+
µ(s)

B

[
Φ

(
nB−µ(s)t

σ(s)
√

t

)
−Φ

(
(n−1)B−µ(s)t

σ(s)
√

t

)]
. (A.2)

When n = 1, the distribution of T1 is identical to the distribution of the first-spike latency reported

in [61].

b. Distribution of N(t∗) Consider first the case when the membrane potential at time t0 is

fixed and known, i.e. X0 = x0. The conditional probability of observing n spikes in the time

window of length t∗ given that X0 = x0 can be written as

pN(t∗)|X0(n|x0) = P(N(t∗) = n|X0 = x0)

= P(Tn ≤ t∗|X0 = x0)−P(Tn+1 ≤ t∗|X0 = x0). (A.3)

Plugging (A.1) into (A.3), we obtain

pN(t∗)|X0(n|x0) = Φ

(
−nB− x0−µ(s)t∗

σ(s)
√

t∗

)
−Φ

(
−(n+1)B−x0−µ(s)t

σ(s)
√

t∗

)
+

+ exp
(

2µ(s)[nB−x0]

σ2(s)

)[
Φ

(
−nB−x0+µ(s)t∗

σ(s)
√

t∗

)
−

− exp
(

2µ(s)B
σ2(s)

)
Φ

(
−(n+1)B−x0+µ(s)t∗

σ(s)
√

t∗

)]
(A.4)

for n = 1,2, . . . . If n = 0, we have

pN(t∗)|X0(0|x0) = 1−Φ

(
−B−x0−µ(s)t∗

σ(s)
√

t∗

)
− exp

(
2(B−x0)µ(s)

σ2(s)

)
Φ

(
−B−x0+µ(s)t∗

σ(s)
√

t∗

)
.

(A.5)
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If the value of X0 is not known, the straightforward way to get the unconditional density of N(t∗)

is to calculate the joint density of N(t∗) and X0 and integrate over all possible values of X0, that is

pN(t∗)(n) =
∫ B

−∞

P(N(t∗) = n|X0 = x) fX0(x)dx (A.6)

using (A.4) and (6). Unfortunately, the closed form of (A.6) cannot be obtained and numerical

integration must be done. To avoid possible numerical issues, we suggest to compute pN(t∗)(n) as

pN(t∗)(n) =


∫ t∗

0 fTn(τ)[1−FT1(t−τ)]dτ n≥ 1

1−FT1(t
∗) n = 0,

(A.7)

which has the numerical advantage of performing the numerical integration only over a finite

interval.
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